A Comprehensive Evaluation Framework for Benchmarking Multi-Objective Feature Selection in Omics-Based Biomarker Discovery
Machine learning algorithms have been extensively used for accurate classification of cancer subtypes driven by gene expression-based biomarkers. However, biomarker models combining multiple gene expression signatures are often not reproducible in external validation datasets and their feature set s...
Gespeichert in:
| Veröffentlicht in: | IEEE/ACM transactions on computational biology and bioinformatics Jg. 21; H. 6; S. 2432 - 2446 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.11.2024
|
| Schlagworte: | |
| ISSN: | 1545-5963, 1557-9964, 1557-9964 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Machine learning algorithms have been extensively used for accurate classification of cancer subtypes driven by gene expression-based biomarkers. However, biomarker models combining multiple gene expression signatures are often not reproducible in external validation datasets and their feature set size is often not optimized, jeopardizing their translatability into cost-effective clinical tools. We investigated how to solve the multi-objective problem of finding the best trade-offs between classification performance and set size applying seven algorithms for machine learning-driven feature subset selection and analyse how they perform in a benchmark with eight large-scale transcriptome datasets of cancer, covering both training and external validation sets. The benchmark includes evaluation metrics assessing the performance of the individual biomarkers and the solution sets, according to their accuracy, diversity, and stability of the composing genes. Moreover, a new evaluation metric for cross-validation studies is proposed that generalizes the hypervolume, which is commonly used to assess the performance of multi-objective optimization algorithms. Biomarkers exhibiting 0.8 of balanced accuracy on the external dataset for breast, kidney and ovarian cancer using respectively 4, 2 and 7 features, were obtained. Genetic algorithms often provided better performance than other considered algorithms, and the recently proposed NSGA2-CH and NSGA2-CHS were the best performing methods in most cases. |
|---|---|
| AbstractList | Machine learning algorithms have been extensively used for accurate classification of cancer subtypes driven by gene expression-based biomarkers. However, biomarker models combining multiple gene expression signatures are often not reproducible in external validation datasets and their feature set size is often not optimized, jeopardizing their translatability into cost-effective clinical tools. We investigated how to solve the multi-objective problem of finding the best trade-offs between classification performance and set size applying seven algorithms for machine learning-driven feature subset selection and analyse how they perform in a benchmark with eight large-scale transcriptome datasets of cancer, covering both training and external validation sets. The benchmark includes evaluation metrics assessing the performance of the individual biomarkers and the solution sets, according to their accuracy, diversity, and stability of the composing genes. Moreover, a new evaluation metric for cross-validation studies is proposed that generalizes the hypervolume, which is commonly used to assess the performance of multi-objective optimization algorithms. Biomarkers exhibiting 0.8 of balanced accuracy on the external dataset for breast, kidney and ovarian cancer using respectively 4, 2 and 7 features, were obtained. Genetic algorithms often provided better performance than other considered algorithms, and the recently proposed NSGA2-CH and NSGA2-CHS were the best performing methods in most cases. Machine learning algorithms have been extensively used for accurate classification of cancer subtypes driven by gene expression-based biomarkers. However, biomarker models combining multiple gene expression signatures are often not reproducible in external validation datasets and their feature set size is often not optimized, jeopardizing their translatability into cost-effective clinical tools. We investigated how to solve the multi-objective problem of finding the best trade-offs between classification performance and set size applying seven algorithms for machine learning-driven feature subset selection and analyse how they perform in a benchmark with eight large-scale transcriptome datasets of cancer, covering both training and external validation sets. The benchmark includes evaluation metrics assessing the performance of the individual biomarkers and the solution sets, according to their accuracy, diversity, and stability of the composing genes. Moreover, a new evaluation metric for cross-validation studies is proposed that generalizes the hypervolume, which is commonly used to assess the performance of multi-objective optimization algorithms. Biomarkers exhibiting 0.8 of balanced accuracy on the external dataset for breast, kidney and ovarian cancer using respectively 4, 2 and 7 features, were obtained. Genetic algorithms often provided better performance than other considered algorithms, and the recently proposed NSGA2-CH and NSGA2-CHS were the best performing methods in most cases.Machine learning algorithms have been extensively used for accurate classification of cancer subtypes driven by gene expression-based biomarkers. However, biomarker models combining multiple gene expression signatures are often not reproducible in external validation datasets and their feature set size is often not optimized, jeopardizing their translatability into cost-effective clinical tools. We investigated how to solve the multi-objective problem of finding the best trade-offs between classification performance and set size applying seven algorithms for machine learning-driven feature subset selection and analyse how they perform in a benchmark with eight large-scale transcriptome datasets of cancer, covering both training and external validation sets. The benchmark includes evaluation metrics assessing the performance of the individual biomarkers and the solution sets, according to their accuracy, diversity, and stability of the composing genes. Moreover, a new evaluation metric for cross-validation studies is proposed that generalizes the hypervolume, which is commonly used to assess the performance of multi-objective optimization algorithms. Biomarkers exhibiting 0.8 of balanced accuracy on the external dataset for breast, kidney and ovarian cancer using respectively 4, 2 and 7 features, were obtained. Genetic algorithms often provided better performance than other considered algorithms, and the recently proposed NSGA2-CH and NSGA2-CHS were the best performing methods in most cases. |
| Author | Rintala, Teemu J. Fortino, Vittorio Ghosh, Arindam Cattelani, Luca |
| Author_xml | – sequence: 1 givenname: Luca orcidid: 0000-0003-4852-2310 surname: Cattelani fullname: Cattelani, Luca email: luca.cattelani@uef.fi organization: Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland – sequence: 2 givenname: Arindam orcidid: 0000-0002-8779-0986 surname: Ghosh fullname: Ghosh, Arindam email: arindam.ghosh@uef.fi organization: Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland – sequence: 3 givenname: Teemu J. orcidid: 0000-0003-1849-235X surname: Rintala fullname: Rintala, Teemu J. email: teemu.rintala@uef.fi organization: Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland – sequence: 4 givenname: Vittorio orcidid: 0000-0001-8693-5285 surname: Fortino fullname: Fortino, Vittorio email: vittorio.fortino@uef.fi organization: Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39401114$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kc1u1DAUhS1URH_gAZAQ8pJNBt_4L142Q6cgFc2Cso4c54a6TeLBTgaVp2_CDAixYOUr6_vsq3POyckQBiTkNbAVADPvb9dlucpZLlZcFAwke0bOQEqdGaPEyTILmUmj-Ck5T-mezaRh4gU55UYwABBn5OclXYd-F_EOh-T3SK_2tpvs6MNAN9H2-CPEB9qGSEsc3F1v44MfvtHPUzf6bFvfoxsXa4N2nCLSL9gtN7PsB7rtvUtZaRM2tPRhcTHSDz65sMf4-JI8b22X8NXxvCBfN1e364_Zzfb60_ryJnNcyTFDRIbcSC1ZnmPbaOd0LlpWg27qQmrIUeWmqAs0QjScCetANQKaQlmnLecX5N3h3V0M3ydMY9XPK2DX2QHDlCoOoJSWHPSMvj2iU91jU-2in7d-rH7nNQNwAFwMKUVs_yDAqqWTaumkWjqpjp3Mjv7HcX78lfAYre_-a745mH4O4a-fNCguOX8CKSyZ9A |
| CODEN | ITCBCY |
| CitedBy_id | crossref_primary_10_1093_bib_bbae674 crossref_primary_10_3390_biomedinformatics5030034 |
| Cites_doi | 10.1007/978-1-4614-6940-7_15 10.1016/j.compbiomed.2023.106854 10.1073/pnas.2009192117 10.1016/j.ress.2005.11.018 10.4137/CMO.S18006 10.1111/j.2517-6161.1996.tb02080.x 10.1093/jnci/dju249 10.1093/bioadv/vbac074 10.2166/hydro.2014.116 10.1200/CCI.19.00119 10.1016/j.cmpb.2019.06.029 10.1016/j.crmeth.2023.100461 10.1186/s41241-020-00089-8 10.1038/s41746-024-01043-6 10.1007/s12032-022-01711-1 10.1016/j.bbe.2019.10.001 10.1109/4235.996017 10.1016/S1672-0229(08)60050-9 10.3389/fonc.2022.932689 10.1038/sj.bjc.6600776 10.1109/TSMCB.2012.2227469 10.1109/TEVC.2013.2281535 10.1007/978-0-85729-652-8_1 10.1038/s41467-022-31609-5 10.4111/kju.2014.55.4.239 10.1093/bioinformatics/btz521 10.1038/s41586-021-04278-5 10.1145/3300148 10.1093/bioinformatics/btaa144 10.1016/j.asoc.2024.112332 10.1056/NEJMoa041588 10.1007/978-3-540-70928-2_64 10.1007/s10549-017-4619-4 10.21037/tlcr-22-151 10.1038/s41540-018-0056-1 10.1158/0008-5472.CAN-12-3232 10.1007/978-981-99-4749-2_61 10.1016/j.heliyon.2019.e02826 10.1186/1741-7015-10-87 10.1093/bioinformatics/btac463 10.1109/MCI.2006.1597059 10.1373/clinchem.2016.254649 10.1186/s13046-021-02026-1 10.1093/ckj/sfaa188 10.1109/TEVC.2015.2504420 10.1002/jcb.29620 10.1038/onc.2017.48 |
| ContentType | Journal Article |
| DBID | 97E ESBDL RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1109/TCBB.2024.3480150 |
| DatabaseName | IEEE Xplore (IEEE) IEEE Xplore Open Access Journals IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1557-9964 |
| EndPage | 2446 |
| ExternalDocumentID | 39401114 10_1109_TCBB_2024_3480150 10716353 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Jane and Aatos Erkko Foundation grantid: 210026 – fundername: Academy of Finland grantid: 336275; 332510; 358037 funderid: 10.13039/501100002341 |
| GroupedDBID | 0R~ 29I 4.4 53G 5GY 5VS 6IK 8US 97E AAJGR AAKMM AALFJ AARMG AASAJ AAWTH AAWTV ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACM ACPRK ADBCU ADL AEBYY AEFXT AEJOY AENEX AENSD AETIX AFRAH AFWIH AFWXC AGQYO AGSQL AHBIQ AIBXA AIKLT AKJIK AKQYR AKRVB ALMA_UNASSIGNED_HOLDINGS ASPBG ATWAV AVWKF BDXCO BEFXN BFFAM BGNUA BKEBE BPEOZ CCLIF CS3 DU5 EBS EJD ESBDL FEDTE GUFHI HGAVV HZ~ I07 IEDLZ IFIPE IPLJI JAVBF LAI LHSKQ M43 O9- OCL P1C P2P PQQKQ RIA RIE RNI RNS ROL RZB TN5 XOL AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7X8 |
| ID | FETCH-LOGICAL-c365t-eee0e39575022efd7cc724f0b17db85712e6298b8e944d304ac16d41d86ac7a33 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001375732400037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-5963 1557-9964 |
| IngestDate | Sun Sep 28 16:13:24 EDT 2025 Wed Aug 06 16:36:18 EDT 2025 Tue Nov 18 22:16:48 EST 2025 Sat Nov 29 01:52:07 EST 2025 Wed Aug 27 02:33:19 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0/legalcode |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c365t-eee0e39575022efd7cc724f0b17db85712e6298b8e944d304ac16d41d86ac7a33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-8779-0986 0000-0003-4852-2310 0000-0003-1849-235X 0000-0001-8693-5285 |
| OpenAccessLink | https://ieeexplore.ieee.org/document/10716353 |
| PMID | 39401114 |
| PQID | 3116675317 |
| PQPubID | 23479 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_3116675317 pubmed_primary_39401114 crossref_primary_10_1109_TCBB_2024_3480150 ieee_primary_10716353 crossref_citationtrail_10_1109_TCBB_2024_3480150 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-11-01 |
| PublicationDateYYYYMMDD | 2024-11-01 |
| PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE/ACM transactions on computational biology and bioinformatics |
| PublicationTitleAbbrev | TCBB |
| PublicationTitleAlternate | IEEE/ACM Trans Comput Biol Bioinform |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref15 ref14 ref11 ref10 ref17 ref16 ref19 ref18 Stahlecker (ref44) 2000; 20 ref50 ref46 ref45 ref48 ref42 ref41 ref43 Guyon (ref12) 2002 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 Zhan (ref47) 2015; 7 ref31 ref30 ref33 ref32 ref2 ref1 ref39 ref38 ref24 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 |
| References_xml | – ident: ref11 doi: 10.1007/978-1-4614-6940-7_15 – ident: ref23 doi: 10.1016/j.compbiomed.2023.106854 – volume: 7 start-page: 1398 issue: 8 year: 2015 ident: ref47 article-title: Identification of immunohistochemical markers for distinguishing lung adenocarcinoma from squamous cell carcinoma publication-title: J. Thoracic Dis. – ident: ref5 doi: 10.1073/pnas.2009192117 – ident: ref29 doi: 10.1016/j.ress.2005.11.018 – ident: ref42 doi: 10.4137/CMO.S18006 – volume-title: Gene Selectionfor Cancer Classification Using Support Vector Machines year: 2002 ident: ref12 – ident: ref31 doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: ref49 doi: 10.1093/jnci/dju249 – ident: ref6 doi: 10.1093/bioadv/vbac074 – ident: ref21 doi: 10.2166/hydro.2014.116 – ident: ref39 doi: 10.1200/CCI.19.00119 – ident: ref17 doi: 10.1016/j.cmpb.2019.06.029 – ident: ref7 doi: 10.1016/j.crmeth.2023.100461 – ident: ref37 doi: 10.1186/s41241-020-00089-8 – ident: ref3 doi: 10.1038/s41746-024-01043-6 – ident: ref1 doi: 10.1007/s12032-022-01711-1 – volume: 20 start-page: 5041 issue: 6D year: 2000 ident: ref44 article-title: MIA as a reliable tumor marker in the serum of patients with malignant melanoma publication-title: Anticancer Res. – ident: ref18 doi: 10.1016/j.bbe.2019.10.001 – ident: ref15 doi: 10.1109/4235.996017 – ident: ref24 doi: 10.1016/S1672-0229(08)60050-9 – ident: ref50 doi: 10.3389/fonc.2022.932689 – ident: ref41 doi: 10.1038/sj.bjc.6600776 – ident: ref22 doi: 10.1109/TSMCB.2012.2227469 – ident: ref27 doi: 10.1109/TEVC.2013.2281535 – ident: ref30 doi: 10.1007/978-0-85729-652-8_1 – ident: ref19 doi: 10.1038/s41467-022-31609-5 – ident: ref46 doi: 10.4111/kju.2014.55.4.239 – ident: ref20 doi: 10.1093/bioinformatics/btz521 – ident: ref2 doi: 10.1038/s41586-021-04278-5 – ident: ref33 doi: 10.1145/3300148 – ident: ref4 doi: 10.1093/bioinformatics/btaa144 – ident: ref26 doi: 10.1016/j.asoc.2024.112332 – ident: ref34 doi: 10.1056/NEJMoa041588 – ident: ref25 doi: 10.1007/978-3-540-70928-2_64 – ident: ref35 doi: 10.1007/s10549-017-4619-4 – ident: ref48 doi: 10.21037/tlcr-22-151 – ident: ref16 doi: 10.1038/s41540-018-0056-1 – ident: ref9 doi: 10.1158/0008-5472.CAN-12-3232 – ident: ref14 doi: 10.1007/978-981-99-4749-2_61 – ident: ref38 doi: 10.1016/j.heliyon.2019.e02826 – ident: ref10 doi: 10.1186/1741-7015-10-87 – ident: ref13 doi: 10.1093/bioinformatics/btac463 – ident: ref28 doi: 10.1109/MCI.2006.1597059 – ident: ref8 doi: 10.1373/clinchem.2016.254649 – ident: ref36 doi: 10.1186/s13046-021-02026-1 – ident: ref40 doi: 10.1093/ckj/sfaa188 – ident: ref32 doi: 10.1109/TEVC.2015.2504420 – ident: ref45 doi: 10.1002/jcb.29620 – ident: ref43 doi: 10.1038/onc.2017.48 |
| SSID | ssj0024904 |
| Score | 2.395192 |
| Snippet | Machine learning algorithms have been extensively used for accurate classification of cancer subtypes driven by gene expression-based biomarkers. However,... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 2432 |
| SubjectTerms | Accuracy Algorithms Benchmark testing Benchmarking Biological system modeling biology and genetics Biomarkers, Tumor - analysis Biomarkers, Tumor - genetics Biomarkers, Tumor - metabolism Cancer Classification algorithms Computational Biology - methods Databases, Genetic evolutionary computing and genetic algorithms Feature extraction Gene Expression Profiling - methods Genetic algorithms Humans Machine Learning Measurement Neoplasms - genetics Neoplasms - metabolism Prediction algorithms Training Transcriptome - genetics |
| Title | A Comprehensive Evaluation Framework for Benchmarking Multi-Objective Feature Selection in Omics-Based Biomarker Discovery |
| URI | https://ieeexplore.ieee.org/document/10716353 https://www.ncbi.nlm.nih.gov/pubmed/39401114 https://www.proquest.com/docview/3116675317 |
| Volume | 21 |
| WOSCitedRecordID | wos001375732400037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024904 issn: 1545-5963 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-xCSRe2IABHTAZiSekDCexY-dx3VbxtCExpL5FsX3VOrEUpS3S-Ou5s9MCD0PiLQ--ONHd-e58Hz-A96Ylp0CjptgETaZmQWeuLrgCYGYdoleylRFswlxc2Om0_jw0q8deGESMxWd4zI8xlx8Wfs1XZaTh5N2XutyBHWOq1Kz1e7BeHbEC2SXINInVkMLMZf3x6nQ8plCwUMclT0vRDP_GiOCk5-ovexQBVu73NaPNmez959fuw5PBuRQnSRqewgPsnsGjBDd59xx-nghW_x6vU9W6ON-O-haTTZGWIC9WjEl2r2_beI8uYo9udulu0tko2Gtc9yi-RAgdJp534vJ27pfZmGxiELQh02IvzuZLzzWidwfwdXJ-dfopG7AXMl9WepXR30jkHJ4mI4-zYLw3hZpJl5vgrDZ5gVVRW2exViqUUrU-r4LKg61ab9qyfAG73aLDVyAwON3aoK0LloJB6Ug4TB48HR2uKqQZgdxwoPHDYHLGx_jWxABF1g3zr2H-NQP_RvBhS_I9TeX41-IDZs4fCxNfRvBuw-eGdIoTJW2Hi_WyKfO8okCKXKsRvEwCsKXeyM3hPW99DY9589Su-AZ2V_0a38JD_2M1X_ZHJLhTexQF9xdb0Oci |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BAcGFZ4GlPIzECSnFSezYOXZLV0WULRKL1FsU27PqIppF2V2k9td3xsku5VAkbjnYiaMZe77xPD6Ad6YmUKBRk2-CJlHToBNXZpwBMLUO0StZy0g2YcZje3JSfu2L1WMtDCLG5DPc5ccYyw9zv-KrMtrhhO5znd-EW0yd1Zdr_WmtV0a2QAYFiSbF6oOYqSw_TPaHQ3IGM7Wbc78UzQRwzAlOO139ZZEixcr1aDNandGD_1zvQ7jfw0ux1-nDI7iBzWO40xFOnj-Biz3BB0CLp13eujjYNPsWo3WaliAcK4akvadndbxJF7FKNzl2P7rTUTBuXLUovkUSHZ48a8Tx2cwvkiFZxSDogzwXW_FxtvCcJXq-Dd9HB5P9w6RnX0h8XuhlQn8jkaN4msw8ToPx3mRqKl1qgrPapBkWWWmdxVKpkEtV-7QIKg22qL2p8_wpbDXzBp-DwOB0bYO2LlhyB6Uj9TBp8HR4uCKTZgByLYHK963JmSHjZxVdFFlWLL-K5Vf18hvA-82UX11fjn8N3mbhXBnYyWUAb9dyrmhXcaikbnC-WlR5mhbkShG4GsCzTgE2s9d68-Kat76Bu4eTL0fV0afx5x24xwvpihdfwtayXeEruO1_L2eL9nVU30sbEOmD |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comprehensive+Evaluation+Framework+for+Benchmarking+Multi-Objective+Feature+Selection+in+Omics-Based+Biomarker+Discovery&rft.jtitle=IEEE%2FACM+transactions+on+computational+biology+and+bioinformatics&rft.au=Cattelani%2C+Luca&rft.au=Ghosh%2C+Arindam&rft.au=Rintala%2C+Teemu+J.&rft.au=Fortino%2C+Vittorio&rft.date=2024-11-01&rft.pub=IEEE&rft.issn=1545-5963&rft.volume=21&rft.issue=6&rft.spage=2432&rft.epage=2446&rft_id=info:doi/10.1109%2FTCBB.2024.3480150&rft_id=info%3Apmid%2F39401114&rft.externalDocID=10716353 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5963&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5963&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5963&client=summon |