A Comprehensive Evaluation Framework for Benchmarking Multi-Objective Feature Selection in Omics-Based Biomarker Discovery

Machine learning algorithms have been extensively used for accurate classification of cancer subtypes driven by gene expression-based biomarkers. However, biomarker models combining multiple gene expression signatures are often not reproducible in external validation datasets and their feature set s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE/ACM transactions on computational biology and bioinformatics Jg. 21; H. 6; S. 2432 - 2446
Hauptverfasser: Cattelani, Luca, Ghosh, Arindam, Rintala, Teemu J., Fortino, Vittorio
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.11.2024
Schlagworte:
ISSN:1545-5963, 1557-9964, 1557-9964
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Machine learning algorithms have been extensively used for accurate classification of cancer subtypes driven by gene expression-based biomarkers. However, biomarker models combining multiple gene expression signatures are often not reproducible in external validation datasets and their feature set size is often not optimized, jeopardizing their translatability into cost-effective clinical tools. We investigated how to solve the multi-objective problem of finding the best trade-offs between classification performance and set size applying seven algorithms for machine learning-driven feature subset selection and analyse how they perform in a benchmark with eight large-scale transcriptome datasets of cancer, covering both training and external validation sets. The benchmark includes evaluation metrics assessing the performance of the individual biomarkers and the solution sets, according to their accuracy, diversity, and stability of the composing genes. Moreover, a new evaluation metric for cross-validation studies is proposed that generalizes the hypervolume, which is commonly used to assess the performance of multi-objective optimization algorithms. Biomarkers exhibiting 0.8 of balanced accuracy on the external dataset for breast, kidney and ovarian cancer using respectively 4, 2 and 7 features, were obtained. Genetic algorithms often provided better performance than other considered algorithms, and the recently proposed NSGA2-CH and NSGA2-CHS were the best performing methods in most cases.
AbstractList Machine learning algorithms have been extensively used for accurate classification of cancer subtypes driven by gene expression-based biomarkers. However, biomarker models combining multiple gene expression signatures are often not reproducible in external validation datasets and their feature set size is often not optimized, jeopardizing their translatability into cost-effective clinical tools. We investigated how to solve the multi-objective problem of finding the best trade-offs between classification performance and set size applying seven algorithms for machine learning-driven feature subset selection and analyse how they perform in a benchmark with eight large-scale transcriptome datasets of cancer, covering both training and external validation sets. The benchmark includes evaluation metrics assessing the performance of the individual biomarkers and the solution sets, according to their accuracy, diversity, and stability of the composing genes. Moreover, a new evaluation metric for cross-validation studies is proposed that generalizes the hypervolume, which is commonly used to assess the performance of multi-objective optimization algorithms. Biomarkers exhibiting 0.8 of balanced accuracy on the external dataset for breast, kidney and ovarian cancer using respectively 4, 2 and 7 features, were obtained. Genetic algorithms often provided better performance than other considered algorithms, and the recently proposed NSGA2-CH and NSGA2-CHS were the best performing methods in most cases.
Machine learning algorithms have been extensively used for accurate classification of cancer subtypes driven by gene expression-based biomarkers. However, biomarker models combining multiple gene expression signatures are often not reproducible in external validation datasets and their feature set size is often not optimized, jeopardizing their translatability into cost-effective clinical tools. We investigated how to solve the multi-objective problem of finding the best trade-offs between classification performance and set size applying seven algorithms for machine learning-driven feature subset selection and analyse how they perform in a benchmark with eight large-scale transcriptome datasets of cancer, covering both training and external validation sets. The benchmark includes evaluation metrics assessing the performance of the individual biomarkers and the solution sets, according to their accuracy, diversity, and stability of the composing genes. Moreover, a new evaluation metric for cross-validation studies is proposed that generalizes the hypervolume, which is commonly used to assess the performance of multi-objective optimization algorithms. Biomarkers exhibiting 0.8 of balanced accuracy on the external dataset for breast, kidney and ovarian cancer using respectively 4, 2 and 7 features, were obtained. Genetic algorithms often provided better performance than other considered algorithms, and the recently proposed NSGA2-CH and NSGA2-CHS were the best performing methods in most cases.Machine learning algorithms have been extensively used for accurate classification of cancer subtypes driven by gene expression-based biomarkers. However, biomarker models combining multiple gene expression signatures are often not reproducible in external validation datasets and their feature set size is often not optimized, jeopardizing their translatability into cost-effective clinical tools. We investigated how to solve the multi-objective problem of finding the best trade-offs between classification performance and set size applying seven algorithms for machine learning-driven feature subset selection and analyse how they perform in a benchmark with eight large-scale transcriptome datasets of cancer, covering both training and external validation sets. The benchmark includes evaluation metrics assessing the performance of the individual biomarkers and the solution sets, according to their accuracy, diversity, and stability of the composing genes. Moreover, a new evaluation metric for cross-validation studies is proposed that generalizes the hypervolume, which is commonly used to assess the performance of multi-objective optimization algorithms. Biomarkers exhibiting 0.8 of balanced accuracy on the external dataset for breast, kidney and ovarian cancer using respectively 4, 2 and 7 features, were obtained. Genetic algorithms often provided better performance than other considered algorithms, and the recently proposed NSGA2-CH and NSGA2-CHS were the best performing methods in most cases.
Author Rintala, Teemu J.
Fortino, Vittorio
Ghosh, Arindam
Cattelani, Luca
Author_xml – sequence: 1
  givenname: Luca
  orcidid: 0000-0003-4852-2310
  surname: Cattelani
  fullname: Cattelani, Luca
  email: luca.cattelani@uef.fi
  organization: Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
– sequence: 2
  givenname: Arindam
  orcidid: 0000-0002-8779-0986
  surname: Ghosh
  fullname: Ghosh, Arindam
  email: arindam.ghosh@uef.fi
  organization: Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
– sequence: 3
  givenname: Teemu J.
  orcidid: 0000-0003-1849-235X
  surname: Rintala
  fullname: Rintala, Teemu J.
  email: teemu.rintala@uef.fi
  organization: Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
– sequence: 4
  givenname: Vittorio
  orcidid: 0000-0001-8693-5285
  surname: Fortino
  fullname: Fortino, Vittorio
  email: vittorio.fortino@uef.fi
  organization: Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39401114$$D View this record in MEDLINE/PubMed
BookMark eNp9kc1u1DAUhS1URH_gAZAQ8pJNBt_4L142Q6cgFc2Cso4c54a6TeLBTgaVp2_CDAixYOUr6_vsq3POyckQBiTkNbAVADPvb9dlucpZLlZcFAwke0bOQEqdGaPEyTILmUmj-Ck5T-mezaRh4gU55UYwABBn5OclXYd-F_EOh-T3SK_2tpvs6MNAN9H2-CPEB9qGSEsc3F1v44MfvtHPUzf6bFvfoxsXa4N2nCLSL9gtN7PsB7rtvUtZaRM2tPRhcTHSDz65sMf4-JI8b22X8NXxvCBfN1e364_Zzfb60_ryJnNcyTFDRIbcSC1ZnmPbaOd0LlpWg27qQmrIUeWmqAs0QjScCetANQKaQlmnLecX5N3h3V0M3ydMY9XPK2DX2QHDlCoOoJSWHPSMvj2iU91jU-2in7d-rH7nNQNwAFwMKUVs_yDAqqWTaumkWjqpjp3Mjv7HcX78lfAYre_-a745mH4O4a-fNCguOX8CKSyZ9A
CODEN ITCBCY
CitedBy_id crossref_primary_10_1093_bib_bbae674
crossref_primary_10_3390_biomedinformatics5030034
Cites_doi 10.1007/978-1-4614-6940-7_15
10.1016/j.compbiomed.2023.106854
10.1073/pnas.2009192117
10.1016/j.ress.2005.11.018
10.4137/CMO.S18006
10.1111/j.2517-6161.1996.tb02080.x
10.1093/jnci/dju249
10.1093/bioadv/vbac074
10.2166/hydro.2014.116
10.1200/CCI.19.00119
10.1016/j.cmpb.2019.06.029
10.1016/j.crmeth.2023.100461
10.1186/s41241-020-00089-8
10.1038/s41746-024-01043-6
10.1007/s12032-022-01711-1
10.1016/j.bbe.2019.10.001
10.1109/4235.996017
10.1016/S1672-0229(08)60050-9
10.3389/fonc.2022.932689
10.1038/sj.bjc.6600776
10.1109/TSMCB.2012.2227469
10.1109/TEVC.2013.2281535
10.1007/978-0-85729-652-8_1
10.1038/s41467-022-31609-5
10.4111/kju.2014.55.4.239
10.1093/bioinformatics/btz521
10.1038/s41586-021-04278-5
10.1145/3300148
10.1093/bioinformatics/btaa144
10.1016/j.asoc.2024.112332
10.1056/NEJMoa041588
10.1007/978-3-540-70928-2_64
10.1007/s10549-017-4619-4
10.21037/tlcr-22-151
10.1038/s41540-018-0056-1
10.1158/0008-5472.CAN-12-3232
10.1007/978-981-99-4749-2_61
10.1016/j.heliyon.2019.e02826
10.1186/1741-7015-10-87
10.1093/bioinformatics/btac463
10.1109/MCI.2006.1597059
10.1373/clinchem.2016.254649
10.1186/s13046-021-02026-1
10.1093/ckj/sfaa188
10.1109/TEVC.2015.2504420
10.1002/jcb.29620
10.1038/onc.2017.48
ContentType Journal Article
DBID 97E
ESBDL
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/TCBB.2024.3480150
DatabaseName IEEE Xplore (IEEE)
IEEE Xplore Open Access Journals
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1557-9964
EndPage 2446
ExternalDocumentID 39401114
10_1109_TCBB_2024_3480150
10716353
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Jane and Aatos Erkko Foundation
  grantid: 210026
– fundername: Academy of Finland
  grantid: 336275; 332510; 358037
  funderid: 10.13039/501100002341
GroupedDBID 0R~
29I
4.4
53G
5GY
5VS
6IK
8US
97E
AAJGR
AAKMM
AALFJ
AARMG
AASAJ
AAWTH
AAWTV
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACM
ACPRK
ADBCU
ADL
AEBYY
AEFXT
AEJOY
AENEX
AENSD
AETIX
AFRAH
AFWIH
AFWXC
AGQYO
AGSQL
AHBIQ
AIBXA
AIKLT
AKJIK
AKQYR
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATWAV
AVWKF
BDXCO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CCLIF
CS3
DU5
EBS
EJD
ESBDL
FEDTE
GUFHI
HGAVV
HZ~
I07
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
LHSKQ
M43
O9-
OCL
P1C
P2P
PQQKQ
RIA
RIE
RNI
RNS
ROL
RZB
TN5
XOL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7X8
ID FETCH-LOGICAL-c365t-eee0e39575022efd7cc724f0b17db85712e6298b8e944d304ac16d41d86ac7a33
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001375732400037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5963
1557-9964
IngestDate Sun Sep 28 16:13:24 EDT 2025
Wed Aug 06 16:36:18 EDT 2025
Tue Nov 18 22:16:48 EST 2025
Sat Nov 29 01:52:07 EST 2025
Wed Aug 27 02:33:19 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License https://creativecommons.org/licenses/by/4.0/legalcode
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-eee0e39575022efd7cc724f0b17db85712e6298b8e944d304ac16d41d86ac7a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8779-0986
0000-0003-4852-2310
0000-0003-1849-235X
0000-0001-8693-5285
OpenAccessLink https://ieeexplore.ieee.org/document/10716353
PMID 39401114
PQID 3116675317
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_3116675317
pubmed_primary_39401114
crossref_primary_10_1109_TCBB_2024_3480150
ieee_primary_10716353
crossref_citationtrail_10_1109_TCBB_2024_3480150
PublicationCentury 2000
PublicationDate 2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE/ACM transactions on computational biology and bioinformatics
PublicationTitleAbbrev TCBB
PublicationTitleAlternate IEEE/ACM Trans Comput Biol Bioinform
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref15
ref14
ref11
ref10
ref17
ref16
ref19
ref18
Stahlecker (ref44) 2000; 20
ref50
ref46
ref45
ref48
ref42
ref41
ref43
Guyon (ref12) 2002
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
Zhan (ref47) 2015; 7
ref31
ref30
ref33
ref32
ref2
ref1
ref39
ref38
ref24
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
References_xml – ident: ref11
  doi: 10.1007/978-1-4614-6940-7_15
– ident: ref23
  doi: 10.1016/j.compbiomed.2023.106854
– volume: 7
  start-page: 1398
  issue: 8
  year: 2015
  ident: ref47
  article-title: Identification of immunohistochemical markers for distinguishing lung adenocarcinoma from squamous cell carcinoma
  publication-title: J. Thoracic Dis.
– ident: ref5
  doi: 10.1073/pnas.2009192117
– ident: ref29
  doi: 10.1016/j.ress.2005.11.018
– ident: ref42
  doi: 10.4137/CMO.S18006
– volume-title: Gene Selectionfor Cancer Classification Using Support Vector Machines
  year: 2002
  ident: ref12
– ident: ref31
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref49
  doi: 10.1093/jnci/dju249
– ident: ref6
  doi: 10.1093/bioadv/vbac074
– ident: ref21
  doi: 10.2166/hydro.2014.116
– ident: ref39
  doi: 10.1200/CCI.19.00119
– ident: ref17
  doi: 10.1016/j.cmpb.2019.06.029
– ident: ref7
  doi: 10.1016/j.crmeth.2023.100461
– ident: ref37
  doi: 10.1186/s41241-020-00089-8
– ident: ref3
  doi: 10.1038/s41746-024-01043-6
– ident: ref1
  doi: 10.1007/s12032-022-01711-1
– volume: 20
  start-page: 5041
  issue: 6D
  year: 2000
  ident: ref44
  article-title: MIA as a reliable tumor marker in the serum of patients with malignant melanoma
  publication-title: Anticancer Res.
– ident: ref18
  doi: 10.1016/j.bbe.2019.10.001
– ident: ref15
  doi: 10.1109/4235.996017
– ident: ref24
  doi: 10.1016/S1672-0229(08)60050-9
– ident: ref50
  doi: 10.3389/fonc.2022.932689
– ident: ref41
  doi: 10.1038/sj.bjc.6600776
– ident: ref22
  doi: 10.1109/TSMCB.2012.2227469
– ident: ref27
  doi: 10.1109/TEVC.2013.2281535
– ident: ref30
  doi: 10.1007/978-0-85729-652-8_1
– ident: ref19
  doi: 10.1038/s41467-022-31609-5
– ident: ref46
  doi: 10.4111/kju.2014.55.4.239
– ident: ref20
  doi: 10.1093/bioinformatics/btz521
– ident: ref2
  doi: 10.1038/s41586-021-04278-5
– ident: ref33
  doi: 10.1145/3300148
– ident: ref4
  doi: 10.1093/bioinformatics/btaa144
– ident: ref26
  doi: 10.1016/j.asoc.2024.112332
– ident: ref34
  doi: 10.1056/NEJMoa041588
– ident: ref25
  doi: 10.1007/978-3-540-70928-2_64
– ident: ref35
  doi: 10.1007/s10549-017-4619-4
– ident: ref48
  doi: 10.21037/tlcr-22-151
– ident: ref16
  doi: 10.1038/s41540-018-0056-1
– ident: ref9
  doi: 10.1158/0008-5472.CAN-12-3232
– ident: ref14
  doi: 10.1007/978-981-99-4749-2_61
– ident: ref38
  doi: 10.1016/j.heliyon.2019.e02826
– ident: ref10
  doi: 10.1186/1741-7015-10-87
– ident: ref13
  doi: 10.1093/bioinformatics/btac463
– ident: ref28
  doi: 10.1109/MCI.2006.1597059
– ident: ref8
  doi: 10.1373/clinchem.2016.254649
– ident: ref36
  doi: 10.1186/s13046-021-02026-1
– ident: ref40
  doi: 10.1093/ckj/sfaa188
– ident: ref32
  doi: 10.1109/TEVC.2015.2504420
– ident: ref45
  doi: 10.1002/jcb.29620
– ident: ref43
  doi: 10.1038/onc.2017.48
SSID ssj0024904
Score 2.395192
Snippet Machine learning algorithms have been extensively used for accurate classification of cancer subtypes driven by gene expression-based biomarkers. However,...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2432
SubjectTerms Accuracy
Algorithms
Benchmark testing
Benchmarking
Biological system modeling
biology and genetics
Biomarkers, Tumor - analysis
Biomarkers, Tumor - genetics
Biomarkers, Tumor - metabolism
Cancer
Classification algorithms
Computational Biology - methods
Databases, Genetic
evolutionary computing and genetic algorithms
Feature extraction
Gene Expression Profiling - methods
Genetic algorithms
Humans
Machine Learning
Measurement
Neoplasms - genetics
Neoplasms - metabolism
Prediction algorithms
Training
Transcriptome - genetics
Title A Comprehensive Evaluation Framework for Benchmarking Multi-Objective Feature Selection in Omics-Based Biomarker Discovery
URI https://ieeexplore.ieee.org/document/10716353
https://www.ncbi.nlm.nih.gov/pubmed/39401114
https://www.proquest.com/docview/3116675317
Volume 21
WOSCitedRecordID wos001375732400037&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024904
  issn: 1545-5963
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3db9MwED-xCSRe2IABHTAZiSekDCexY-dx3VbxtCExpL5FsX3VOrEUpS3S-Ou5s9MCD0PiLQ--ONHd-e58Hz-A96Ylp0CjptgETaZmQWeuLrgCYGYdoleylRFswlxc2Om0_jw0q8deGESMxWd4zI8xlx8Wfs1XZaTh5N2XutyBHWOq1Kz1e7BeHbEC2SXINInVkMLMZf3x6nQ8plCwUMclT0vRDP_GiOCk5-ovexQBVu73NaPNmez959fuw5PBuRQnSRqewgPsnsGjBDd59xx-nghW_x6vU9W6ON-O-haTTZGWIC9WjEl2r2_beI8uYo9udulu0tko2Gtc9yi-RAgdJp534vJ27pfZmGxiELQh02IvzuZLzzWidwfwdXJ-dfopG7AXMl9WepXR30jkHJ4mI4-zYLw3hZpJl5vgrDZ5gVVRW2exViqUUrU-r4LKg61ab9qyfAG73aLDVyAwON3aoK0LloJB6Ug4TB48HR2uKqQZgdxwoPHDYHLGx_jWxABF1g3zr2H-NQP_RvBhS_I9TeX41-IDZs4fCxNfRvBuw-eGdIoTJW2Hi_WyKfO8okCKXKsRvEwCsKXeyM3hPW99DY9589Su-AZ2V_0a38JD_2M1X_ZHJLhTexQF9xdb0Oci
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB5BAcGFZ4GlPIzECSnFSezYOXZLV0WULRKL1FsU27PqIppF2V2k9td3xsku5VAkbjnYiaMZe77xPD6Ad6YmUKBRk2-CJlHToBNXZpwBMLUO0StZy0g2YcZje3JSfu2L1WMtDCLG5DPc5ccYyw9zv-KrMtrhhO5znd-EW0yd1Zdr_WmtV0a2QAYFiSbF6oOYqSw_TPaHQ3IGM7Wbc78UzQRwzAlOO139ZZEixcr1aDNandGD_1zvQ7jfw0ux1-nDI7iBzWO40xFOnj-Biz3BB0CLp13eujjYNPsWo3WaliAcK4akvadndbxJF7FKNzl2P7rTUTBuXLUovkUSHZ48a8Tx2cwvkiFZxSDogzwXW_FxtvCcJXq-Dd9HB5P9w6RnX0h8XuhlQn8jkaN4msw8ToPx3mRqKl1qgrPapBkWWWmdxVKpkEtV-7QIKg22qL2p8_wpbDXzBp-DwOB0bYO2LlhyB6Uj9TBp8HR4uCKTZgByLYHK963JmSHjZxVdFFlWLL-K5Vf18hvA-82UX11fjn8N3mbhXBnYyWUAb9dyrmhXcaikbnC-WlR5mhbkShG4GsCzTgE2s9d68-Kat76Bu4eTL0fV0afx5x24xwvpihdfwtayXeEruO1_L2eL9nVU30sbEOmD
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Comprehensive+Evaluation+Framework+for+Benchmarking+Multi-Objective+Feature+Selection+in+Omics-Based+Biomarker+Discovery&rft.jtitle=IEEE%2FACM+transactions+on+computational+biology+and+bioinformatics&rft.au=Cattelani%2C+Luca&rft.au=Ghosh%2C+Arindam&rft.au=Rintala%2C+Teemu+J.&rft.au=Fortino%2C+Vittorio&rft.date=2024-11-01&rft.pub=IEEE&rft.issn=1545-5963&rft.volume=21&rft.issue=6&rft.spage=2432&rft.epage=2446&rft_id=info:doi/10.1109%2FTCBB.2024.3480150&rft_id=info%3Apmid%2F39401114&rft.externalDocID=10716353
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5963&client=summon