The Capacitated Vehicle Routing Problem: Stronger bounds in pseudo-polynomial time

•New mathematical models for the Capacitated Vehicle Routing Problem.•Lower bounds computable in pseudo-polynomial time.•Column-generation technique to solve vehicle routing problems with capacity constraints. The Capacitated Vehicle Routing Problem (CVRP) is a classic combinatorial optimization pro...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:European journal of operational research Ročník 272; číslo 1; s. 24 - 31
Hlavní autoři: Letchford, Adam N., Salazar-González, Juan-José
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.01.2019
Témata:
ISSN:0377-2217, 1872-6860
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:•New mathematical models for the Capacitated Vehicle Routing Problem.•Lower bounds computable in pseudo-polynomial time.•Column-generation technique to solve vehicle routing problems with capacity constraints. The Capacitated Vehicle Routing Problem (CVRP) is a classic combinatorial optimization problem for which many heuristics, relaxations and exact algorithms have been proposed. Since the CVRP is NP-hard in the strong sense, a natural research topic is relaxations that can be solved in pseudo-polynomial time. We consider several old and new relaxations of this kind, all of which are based on column generation. We also analyze the effect of adding some known inequalities. Computational experiments demonstrate that the best of our new relaxations yields extremely tight lower bounds.
ISSN:0377-2217
1872-6860
DOI:10.1016/j.ejor.2018.06.002