Faster parameterized algorithms for variants of 3-Hitting Set

In the A -Multi 3 -Hitting Set problem ( A -M3HS), where A ⊆ { 1 , 2 , 3 } , the input is a hypergraph G in which the hyperedges have sizes at most 3 and an integer k , and the goal is to decide if there is a set S of at most k vertices such that | S ∩ e | ∈ A for every hyperedge e . In this paper w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of combinatorial optimization Jg. 49; H. 4; S. 61
1. Verfasser: Tsur, Dekel
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.05.2025
Springer Nature B.V
Schlagworte:
ISSN:1382-6905, 1573-2886
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In the A -Multi 3 -Hitting Set problem ( A -M3HS), where A ⊆ { 1 , 2 , 3 } , the input is a hypergraph G in which the hyperedges have sizes at most 3 and an integer k , and the goal is to decide if there is a set S of at most k vertices such that | S ∩ e | ∈ A for every hyperedge e . In this paper we give O ∗ ( 2 . 027 k ) -time algorithms for { 1 } -M3HS and { 1 , 3 } -M3HS, and an O ∗ ( 1 . 381 k ) -time algorithm for { 2 } -M3HS.
AbstractList In the A -Multi 3 -Hitting Set problem ( A -M3HS), where A ⊆ { 1 , 2 , 3 } , the input is a hypergraph G in which the hyperedges have sizes at most 3 and an integer k , and the goal is to decide if there is a set S of at most k vertices such that | S ∩ e | ∈ A for every hyperedge e . In this paper we give O ∗ ( 2 . 027 k ) -time algorithms for { 1 } -M3HS and { 1 , 3 } -M3HS, and an O ∗ ( 1 . 381 k ) -time algorithm for { 2 } -M3HS.
In the A-Multi3-Hitting Set problem (A-M3HS), where A⊆{1,2,3}, the input is a hypergraph G in which the hyperedges have sizes at most 3 and an integer k, and the goal is to decide if there is a set S of at most k vertices such that |S∩e|∈A for every hyperedge e. In this paper we give O∗(2.027k)-time algorithms for {1}-M3HS and {1,3}-M3HS, and an O∗(1.381k)-time algorithm for {2}-M3HS.
In the A -Multi 3 -Hitting Set problem ( A -M3HS), where $$A \subseteq \{1,2,3\}$$ A ⊆ { 1 , 2 , 3 } , the input is a hypergraph G in which the hyperedges have sizes at most 3 and an integer k , and the goal is to decide if there is a set S of at most k vertices such that $$|S \cap e| \in A$$ | S ∩ e | ∈ A for every hyperedge e . In this paper we give $$O^*(2.027^k)$$ O ∗ ( 2 . 027 k ) -time algorithms for $$\{1\}$$ { 1 } -M3HS and $$\{1,3\}$$ { 1 , 3 } -M3HS, and an $$O^*(1.381^k)$$ O ∗ ( 1 . 381 k ) -time algorithm for $$\{2\}$$ { 2 } -M3HS.
ArticleNumber 61
Author Tsur, Dekel
Author_xml – sequence: 1
  givenname: Dekel
  orcidid: 0000-0001-9763-3784
  surname: Tsur
  fullname: Tsur, Dekel
  email: dekelts@cs.bgu.ac.il
  organization: Department of Computer Science, Ben-Gurion University of the Negev
BookMark eNp9kE1LAzEQhoMo2Fb_gKcFz9HJx-5mDx6kWCsUPKjnkM3O1pR2U5NU0F9vtILgoae8h_eZyTxjcjz4AQm5YHDFAOrryEDVigIvKTABQNURGbGyFpQrVR3nLBSnVQPlKRnHuAKAnOWI3MxMTBiKrQlmgzm5T-wKs1764NLrJha9D8W7Cc4MKRa-LwSdu5TcsCyeMJ2Rk96sI57_vhPyMrt7ns7p4vH-YXq7oFZUZaKorLQS67KFziAHxnldlb2wjWo4r4xo6wZ723atFRJNzQ22sgNuVb7FtExMyOV-7jb4tx3GpFd-F4a8UgteSiZzUeaW2rds8DEG7LV1ySTnhxSMW2sG-luW3svSWZb-kaVVRvk_dBvcxoSPw5DYQzGXhyWGv18doL4Ap8B9_A
CitedBy_id crossref_primary_10_1007_s10878_025_01300_8
Cites_doi 10.1016/j.jda.2009.08.001
10.1007/s00453-008-9199-6
10.1007/978-3-319-18173-8_18
10.1016/S1570-8667(03)00009-1
10.1007/978-3-319-21275-3
10.1080/00207160903176868
10.1371/journal.pone.0013055
10.1016/j.jcss.2017.11.001
10.1137/S0097539799349948
10.1007/978-3-030-67731-2_21
10.1016/j.tcs.2009.11.012
10.1007/s10878-025-01300-8
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
DOI 10.1007/s10878-025-01300-8
DatabaseName Springer Nature Link
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1573-2886
ExternalDocumentID 10_1007_s10878_025_01300_8
GrantInformation_xml – fundername: Ben-Gurion University
GroupedDBID -Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
203
29K
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACZOJ
ADHHG
ADHIR
ADHKG
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFDZB
AFGCZ
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BAPOH
BDATZ
BGNMA
BSONS
C6C
CAG
COF
CS3
CSCUP
D-I
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
J9A
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NPVJJ
NQJWS
NU0
O9-
O93
O9J
OAM
OVD
P2P
P9R
PF0
PT4
PT5
QOS
R89
R9I
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S27
S3B
SAP
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
ZMTXR
AAYXX
ABFSG
ABJCF
ABRTQ
ACSTC
AEZWR
AFFHD
AFHIU
AFKRA
AHWEU
AIXLP
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
GNUQQ
HCIFZ
M2P
M7S
PHGZM
PHGZT
PQGLB
PTHSS
ID FETCH-LOGICAL-c365t-e8c4c4e75b0dae20122765f3c989226a3b79efcbdbc34ea72aeb4d02c8130ab13
IEDL.DBID RSV
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001485764700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1382-6905
IngestDate Mon Sep 29 04:23:15 EDT 2025
Sat Nov 29 07:53:15 EST 2025
Tue Nov 18 22:23:58 EST 2025
Sat May 24 01:16:05 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Parameterized complexity
Branching algorithms
Graph algorithms
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-e8c4c4e75b0dae20122765f3c989226a3b79efcbdbc34ea72aeb4d02c8130ab13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9763-3784
OpenAccessLink https://link.springer.com/10.1007/s10878-025-01300-8
PQID 3254148134
PQPubID 2043856
ParticipantIDs proquest_journals_3254148134
crossref_citationtrail_10_1007_s10878_025_01300_8
crossref_primary_10_1007_s10878_025_01300_8
springer_journals_10_1007_s10878_025_01300_8
PublicationCentury 2000
PublicationDate 20250500
2025-05-00
20250501
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 5
  year: 2025
  text: 20250500
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Journal of combinatorial optimization
PublicationTitleAbbrev J Comb Optim
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References S Khanna (1300_CR11) 2001; 30
R Niedermeier (1300_CR13) 2003; 1
1300_CR10
M Dom (1300_CR2) 2010; 8
1300_CR14
D Mellor (1300_CR12) 2010; 5
MR Fellows (1300_CR4) 2018; 93
1300_CR15
H Fernau (1300_CR5) 2010; 87
FV Fomin (1300_CR7) 2010; 411
1300_CR3
M Cygan (1300_CR1) 2015
1300_CR8
H Fernau (1300_CR6) 2010; 57
1300_CR9
References_xml – ident: 1300_CR9
– volume: 8
  start-page: 76
  issue: 1
  year: 2010
  ident: 1300_CR2
  publication-title: J Discrete Algorithms
  doi: 10.1016/j.jda.2009.08.001
– volume: 57
  start-page: 97
  issue: 1
  year: 2010
  ident: 1300_CR6
  publication-title: Algorithmica
  doi: 10.1007/s00453-008-9199-6
– ident: 1300_CR10
  doi: 10.1007/978-3-319-18173-8_18
– volume: 1
  start-page: 89
  issue: 1
  year: 2003
  ident: 1300_CR13
  publication-title: J Discrete Algorithms
  doi: 10.1016/S1570-8667(03)00009-1
– volume-title: Parameterized algorithms
  year: 2015
  ident: 1300_CR1
  doi: 10.1007/978-3-319-21275-3
– volume: 87
  start-page: 3157
  issue: 14
  year: 2010
  ident: 1300_CR5
  publication-title: Int J Comput Math
  doi: 10.1080/00207160903176868
– volume: 5
  issue: 10
  year: 2010
  ident: 1300_CR12
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0013055
– volume: 93
  start-page: 30
  year: 2018
  ident: 1300_CR4
  publication-title: J Comput Syst Sci
  doi: 10.1016/j.jcss.2017.11.001
– volume: 30
  start-page: 1863
  issue: 6
  year: 2001
  ident: 1300_CR11
  publication-title: SIAM J Comput
  doi: 10.1137/S0097539799349948
– ident: 1300_CR3
– ident: 1300_CR8
  doi: 10.1007/978-3-030-67731-2_21
– ident: 1300_CR15
– volume: 411
  start-page: 1045
  issue: 7–9
  year: 2010
  ident: 1300_CR7
  publication-title: Theoret Comput Sci
  doi: 10.1016/j.tcs.2009.11.012
– ident: 1300_CR14
  doi: 10.1007/s10878-025-01300-8
SSID ssj0009054
Score 2.3670475
Snippet In the A -Multi 3 -Hitting Set problem ( A -M3HS), where A ⊆ { 1 , 2 , 3 } , the input is a hypergraph G in which the hyperedges have sizes at most 3 and an...
In the A -Multi 3 -Hitting Set problem ( A -M3HS), where $$A \subseteq \{1,2,3\}$$ A ⊆ { 1 , 2 , 3 } , the input is a hypergraph G in which the hyperedges have...
In the A-Multi3-Hitting Set problem (A-M3HS), where A⊆{1,2,3}, the input is a hypergraph G in which the hyperedges have sizes at most 3 and an integer k, and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 61
SubjectTerms Algorithms
Apexes
Combinatorics
Convex and Discrete Geometry
Graphs
Mathematical Modeling and Industrial Mathematics
Mathematics
Mathematics and Statistics
Operations Research/Decision Theory
Optimization
Theory of Computation
Title Faster parameterized algorithms for variants of 3-Hitting Set
URI https://link.springer.com/article/10.1007/s10878-025-01300-8
https://www.proquest.com/docview/3254148134
Volume 49
WOSCitedRecordID wos001485764700002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-2886
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009054
  issn: 1382-6905
  databaseCode: RSV
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV27TsMwFL2CwgADb0ShIA9sYCmJncQZGBCi6kKFKKBukZ9QqQ_UhA58PXaakIIACcYojuXc48TX8rnnAJxaIAXhMsRexA2mRIVOA9LHvq8DT0WRJLEszCbibpf1-8ltWRSWVWz36kiy-FMvFLsxpwYbOLIZ8TzMlmHFLnfMGTbc9R5rqV0vnFvZ2tzR7v3CslTm-z4-L0d1jvnlWLRYbdqb_xvnFmyU2SW6nE-HbVjS4x1YX9ActFc3H0Kt2S5ctLlTSkBOAXzkmDGDN60QHz5NpoP8eZQhm9Oimd1PO7oMmhhEcGdQUKVRT-d78NC-vr_q4NJRAUsShTnWTFJJdRwKT3ELhh8EcRQaIhOW2DyMExEn2kihhCRU8zjgWlDlBZLZN-HCJ_vQGE_G-gCQT5UwNrpECkqFotxIQyJFaGKU49Y0wa8Cm8pSbty5XgzTWijZBSq1gUqLQKWsCWcfz7zMxTZ-bd2q8ErLDy9LSeB8ze1waRPOK3zq2z_3dvi35kewFhQQO5Rb0Minr_oYVuUsH2TTk2JCvgMg8dgE
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD7oFNQH7-J0ah5800KbpLcHH0QcE7chbopvJbdqYRdZ6x789SZdu01RQR9L0pCeL805Id_5DsCpBpITJlzL9lhsUSJdowHpWI6jsC09TxBf5MUm_HY7eHoK74qksLRku5dXkvlOPZfsFhg1WGzIZsS2rWARlqj2WEYx_77zOJPatd1JKVsdO-qzn1ukynw_xmd3NIsxv1yL5t6mvvG_eW7CehFdosvJctiCBTXYhrU5zUH91JoKtaY7cFFnRikBGQXwvmHGJO9KItZ7Ho6S7KWfIh3TorE-Txu6DBrGiFiNJKdKo47KduGhft29alhFRQVLEM_NLBUIKqjyXW5LpsFwMPY9NyYiDEIdhzHC_VDFgksuCFXMx0xxKm0sAv0ljDtkDyqD4UDtA3Ko5LG2LhGcUi4pi0VMPEloGEvDramCUxo2EoXcuKl60YtmQsnGUJE2VJQbKgqqcDZ953UitvFr71qJV1T8eGlEsKlrrqdLq3Be4jNr_nm0g791P4GVRrfVjJo37dtDWMU53AbxGlSy0Zs6gmUxzpJ0dJwvzg9KEtro
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFH5oFdGDu1itmoM3HTozyWwHD6KWiloKVeltyKqFbrRjD_56k1naKiqIxyELmfcl5D3yve8BnGogGabcs2yfKotg4RkNSMdyHOnawvc5DnhabCJoNMJ2O2rOZfGnbPfiSTLLaTAqTf2kOhSqOpf4FhplWNcQz7BtW-EiLBFDpDfxeut5Jrtre1lZW-1H6jjQy9Nmvp_j89U08ze_PJGmN09t4_9r3oT13OtEl9k22YIF2d-GtTktQv31MBVwHe_ARY0aBQVklMF7hjHTeZcC0e7LYNRJXntjpH1dNNFxtqHRoIFC2Kp3Ugo1aslkF55qN49XdSuvtGBx7HuJJUNOOJGBx2xBNUiO6wa-pzCPwkj7ZxSzIJKKM8E4JpIGLpWMCNvlof4Tyhy8B6X-oC_3ATlEMKUtjTkjhAlCFVfYF5hEShjOTRmcwsgxz2XITTWMbjwTUDaGirWh4tRQcViGs-mYYSbC8WvvSoFdnB_IcYxdU-9cL5eU4bzAatb882wHf-t-AivN61p8f9u4O4RVN0XbAF6BUjJ6k0ewzCdJZzw6TvfpB1I048w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Faster+parameterized+algorithms+for+variants+of+3-Hitting+Set&rft.jtitle=Journal+of+combinatorial+optimization&rft.au=Tsur%2C+Dekel&rft.date=2025-05-01&rft.issn=1382-6905&rft.eissn=1573-2886&rft.volume=49&rft.issue=4&rft_id=info:doi/10.1007%2Fs10878-025-01300-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10878_025_01300_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1382-6905&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1382-6905&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1382-6905&client=summon