A Mixed Integer Linear Programming Support Vector Machine for Cost-Effective Group Feature Selection: Branch-Cut-and-Price Approach
•A cost-effective 1-norm SVM model with group feature selection and its robust model are proposed.•A BCP algorithm is developed to efficiently solve the proposed feature selection models.•The proposed feature selection model can improve economic and predictive performances.•The robust model provides...
Uloženo v:
| Vydáno v: | European journal of operational research Ročník 299; číslo 3; s. 1055 - 1068 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
16.06.2022
|
| Témata: | |
| ISSN: | 0377-2217, 1872-6860 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •A cost-effective 1-norm SVM model with group feature selection and its robust model are proposed.•A BCP algorithm is developed to efficiently solve the proposed feature selection models.•The proposed feature selection model can improve economic and predictive performances.•The robust model provides a feasible solution by identifying a solution immune to cost uncertainty.•The BCP algorithm can rapidly find optimal solutions for large-scale problems.
Recently, cost-based feature selection has received significant attention due to its great ability to achieve promising prediction accuracy at a minimum feature acquisition cost. To further improve its predictive and economic performances, this research proposes a cost-effective 1-norm support vector machine with group feature selection as GFS-CESVM1. Its robust counterpart model, GFS-RCESVM1, is also introduced to address the cost uncertainty of features and feature groups because cost variation commonly exists in real-world problems. The proposed models are formulated as Mixed Integer Linear Programming (MILP). To efficiently solve the proposed SVM MILP models, we develop a Branch-Cut-and-Price (BCP) algorithm that considers only a limited number of variables and/or constraints, which thereby leads to rapid convergence to an optimal solution. Various experimental results on benchmark and synthetic datasets demonstrate that GFS-CESVM1 can achieve competitive outcomes by considering not only individual feature evaluation but also group structural information among features. The GFS-RCESVM1 can identify the subset of features that is immune to cost uncertainty and therefore provide feasible and optimal solutions. Furthermore, our BCP algorithm can dominantly outperform the ordinary BB algorithm for finding better objective value and integrality gap within a short period of time. |
|---|---|
| AbstractList | •A cost-effective 1-norm SVM model with group feature selection and its robust model are proposed.•A BCP algorithm is developed to efficiently solve the proposed feature selection models.•The proposed feature selection model can improve economic and predictive performances.•The robust model provides a feasible solution by identifying a solution immune to cost uncertainty.•The BCP algorithm can rapidly find optimal solutions for large-scale problems.
Recently, cost-based feature selection has received significant attention due to its great ability to achieve promising prediction accuracy at a minimum feature acquisition cost. To further improve its predictive and economic performances, this research proposes a cost-effective 1-norm support vector machine with group feature selection as GFS-CESVM1. Its robust counterpart model, GFS-RCESVM1, is also introduced to address the cost uncertainty of features and feature groups because cost variation commonly exists in real-world problems. The proposed models are formulated as Mixed Integer Linear Programming (MILP). To efficiently solve the proposed SVM MILP models, we develop a Branch-Cut-and-Price (BCP) algorithm that considers only a limited number of variables and/or constraints, which thereby leads to rapid convergence to an optimal solution. Various experimental results on benchmark and synthetic datasets demonstrate that GFS-CESVM1 can achieve competitive outcomes by considering not only individual feature evaluation but also group structural information among features. The GFS-RCESVM1 can identify the subset of features that is immune to cost uncertainty and therefore provide feasible and optimal solutions. Furthermore, our BCP algorithm can dominantly outperform the ordinary BB algorithm for finding better objective value and integrality gap within a short period of time. |
| Author | Yoon, Sang Won Won, Daehan Lee, In Gyu |
| Author_xml | – sequence: 1 givenname: In Gyu surname: Lee fullname: Lee, In Gyu email: ilee13@binghamton.edu organization: Department of Systems Science and Industrial Engineering, State University of New York at Binghamton Binghamton NY 13902, United States – sequence: 2 givenname: Sang Won surname: Yoon fullname: Yoon, Sang Won email: yoons@binghamton.edu organization: Department of Systems Science and Industrial Engineering, State University of New York at Binghamton Binghamton NY 13902, United States – sequence: 3 givenname: Daehan orcidid: 0000-0002-2566-8061 surname: Won fullname: Won, Daehan email: dhwon@binghamton.edu organization: Department of Systems Science and Industrial Engineering, State University of New York at Binghamton Binghamton NY 13902, United States |
| BookMark | eNp9kMFu2zAMQIWhA5Z2_YGe9APySLm2nGGXLGi7AilWoGuvgizTqYJEMmil6M778dnoTjv0RILkI8h3Kk5iiiTEBUKBgPWXXUG7xIUGjQXqAkr4IBbYGK3qpoYTsYDSGKU1mk_idBx3AIAVVgvxZyXvwit18jZm2hLLTYjkWN5z2rI7HELcyofjMCTO8ol8TizvnH-ehmQ_5es0ZnXV91MnvJC84XQc5DW5fGSSD7Sf6yl-ld_ZRf-s1sesXOzUPQdPcjUMnKZln8XH3u1HOv8Xz8Tj9dWv9Q-1-Xlzu15tlC_rKiuqjQNvlg4r4xxctiXWXQtYVk3X9mDaFhsN2LseDZWNX1K5JGO6rmq8huVleSaat72e0zgy9daH7OYDM7uwtwh2lml3dpZpZ5kWtZ1kTqj-Dx04HBz_fh_69gbR9NRLILajDxQ9dYEnMbZL4T38L-RWkag |
| CitedBy_id | crossref_primary_10_1016_j_measurement_2025_117506 crossref_primary_10_1016_j_ejor_2024_12_014 crossref_primary_10_1108_IMDS_12_2021_0807 crossref_primary_10_1007_s10732_025_09563_4 crossref_primary_10_1007_s00521_024_10043_2 crossref_primary_10_1007_s10614_024_10747_6 crossref_primary_10_1016_j_ejor_2022_11_031 crossref_primary_10_1016_j_jenvman_2022_114999 crossref_primary_10_1016_j_compgeo_2022_105112 crossref_primary_10_1016_j_cor_2023_106441 crossref_primary_10_1016_j_ejor_2025_03_028 crossref_primary_10_1016_j_omega_2024_103207 crossref_primary_10_1007_s10957_023_02352_8 crossref_primary_10_1016_j_compeleceng_2025_110232 crossref_primary_10_3390_bdcc9050119 |
| Cites_doi | 10.1080/10556780008805771 10.1109/TKDE.2015.2441716 10.1016/j.knosys.2017.12.008 10.1016/j.ejor.2017.02.037 10.1007/PL00011380 10.1016/S0377-2217(02)00911-6 10.1186/s12864-019-6413-7 10.1080/10556780903087124 10.1111/j.1467-9868.2007.00627.x 10.1016/j.knosys.2015.11.010 10.1016/j.procs.2015.06.035 10.1016/j.patrec.2019.02.011 10.1016/j.orl.2004.04.002 10.1016/j.ins.2014.03.110 10.1016/j.neunet.2013.07.005 10.1080/10618600.2012.681250 10.1016/j.jtbi.2019.110098 10.1039/C4MB00316K 10.1016/j.ejor.2010.02.032 10.1016/j.neucom.2018.07.012 10.19026/rjaset.7.299 10.1287/opre.1030.0065 10.1016/j.ejor.2005.07.023 10.1016/j.patcog.2014.01.008 10.1016/j.knosys.2020.106145 10.1111/j.1467-9868.2005.00532.x 10.1613/jair.120 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. |
| Copyright_xml | – notice: 2021 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ejor.2021.12.030 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Business |
| EISSN | 1872-6860 |
| EndPage | 1068 |
| ExternalDocumentID | 10_1016_j_ejor_2021_12_030 S0377221721010869 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABFRF ABJNI ABMAC ABUCO ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ACZNC ADBBV ADEZE ADGUI AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W KOM LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ RXW SCC SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSV SSW SSZ T5K TAE TN5 U5U XPP ZMT ~02 ~G- 1OL 29G 41~ 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO ADXHL AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HVGLF HZ~ R2- SEW VH1 WUQ ~HD |
| ID | FETCH-LOGICAL-c365t-e67a0c79a157aa04b316db01358dbf07bb18201faf17e38c9e39e77dd58c20943 |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000760198500018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0377-2217 |
| IngestDate | Sat Nov 29 07:20:42 EST 2025 Tue Nov 18 22:39:05 EST 2025 Fri Feb 23 02:39:49 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Feature selection Branch-Cut-and-Price Robust optimization Support vector machine Machine learning |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c365t-e67a0c79a157aa04b316db01358dbf07bb18201faf17e38c9e39e77dd58c20943 |
| ORCID | 0000-0002-2566-8061 |
| PageCount | 14 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ejor_2021_12_030 crossref_primary_10_1016_j_ejor_2021_12_030 elsevier_sciencedirect_doi_10_1016_j_ejor_2021_12_030 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-16 |
| PublicationDateYYYYMMDD | 2022-06-16 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-16 day: 16 |
| PublicationDecade | 2020 |
| PublicationTitle | European journal of operational research |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Bi, Zhang, Bennett (bib0007) 2004 Simon, Friedman, Hastie, Tibshirani (bib0030) 2013; 22 Unler, Murat (bib0034) 2010; 206 Hernández-Lobato, Hernández-Lobato, Dupont (bib0020) 2013; 14 Lee, Zhang, Yoon, Won (bib0023) 2020 Huo, Xin, Kang, Wang, Ma, Yu (bib0021) 2020; 486 Turney (bib0033) 1994; 2 Wang, Wang, Li, Liu, Zhao, Hu, Wu (bib0035) 2015; 27 Maldonado, Pérez, Weber, Labbé (bib0027) 2014; 279 Maldonado, Pérez, Bravo (bib0026) 2017; 261 Yuan, Lin (bib0037) 2006; 68 Zhang, Zhou (bib0038) 2013; 48 Zhu, Rosset, Tibshirani, Hastie (bib0040) 2004 Liu, Lin, Wu, Wang (bib0025) 2018; 143 Tang, Adam, Si (bib0031) 2018; 317 Zhou, Zhou, Li (bib0039) 2016; 95 Gamrath, G., Fischer, T., Gally, T., Gleixner, A. M., Hendel, G., Koch, T., Maher, S. J., Miltenberger, M., Müller, B., Pfetsch, M. E. et al. (2016). The scip optimization suite 3.2,. Piramuthu (bib0029) 2004; 156 Bradley, Mangasarian (bib0009) 2000; 13 Yang, Honavar (bib0036) 1998 Elssied, Ibrahim, Osman (bib0016) 2014; 7 Friedman, Hastie, Tibshirani (bib0018) Bennett, Demiriz, Shawe-Taylor (bib0005) 2000 Freitas, Costa-Pereira, Brazdil (bib0017) 2007 Crone, Lessmann, Stahlbock (bib0013) 2006; 173 Bertsimas, Sim (bib0006) 2004; 52 Turney (bib0032) 2000 Chicco, Jurman (bib0012) 2020; 21 Meier, Van De Geer, Bühlmann (bib0028) 2008; 70 Du, Du, Zhe, Luo, He, Long (bib0015) 2016 . Ben-Tal, Nemirovski (bib0004) 2000; 88 Ling, Yang, Wang, Zhang (bib0024) 2004 Kumar, Rath, Swain, Rath (bib0022) 2015; 54 Belotti, Lee, Liberti, Margot, Wächter (bib0003) 2009; 24 Bolón-Canedo, Porto-Díaz, Sánchez-Maroño, Alonso-Betanzos (bib0008) 2014; 47 Chen, Zhou, Kang, Wen (bib0011) 2020; 130 Carrizosa, Martin, Morales (bib0010) 2006 Ding, Feng, Chen, Lin (bib0014) 2014; 10 Asuncion, A., & Newman, D. (2007). UCI machine learning repository. Achterberg, Koch, Martin (bib0001) 2005; 33 Kumar (10.1016/j.ejor.2021.12.030_bib0022) 2015; 54 Piramuthu (10.1016/j.ejor.2021.12.030_bib0029) 2004; 156 Wang (10.1016/j.ejor.2021.12.030_bib0035) 2015; 27 Bertsimas (10.1016/j.ejor.2021.12.030_bib0006) 2004; 52 Liu (10.1016/j.ejor.2021.12.030_bib0025) 2018; 143 Ben-Tal (10.1016/j.ejor.2021.12.030_bib0004) 2000; 88 Elssied (10.1016/j.ejor.2021.12.030_bib0016) 2014; 7 Bi (10.1016/j.ejor.2021.12.030_bib0007) 2004 Tang (10.1016/j.ejor.2021.12.030_bib0031) 2018; 317 Chicco (10.1016/j.ejor.2021.12.030_bib0012) 2020; 21 Maldonado (10.1016/j.ejor.2021.12.030_bib0026) 2017; 261 Zhang (10.1016/j.ejor.2021.12.030_bib0038) 2013; 48 Ding (10.1016/j.ejor.2021.12.030_bib0014) 2014; 10 10.1016/j.ejor.2021.12.030_bib0019 Du (10.1016/j.ejor.2021.12.030_bib0015) 2016 Maldonado (10.1016/j.ejor.2021.12.030_bib0027) 2014; 279 Bradley (10.1016/j.ejor.2021.12.030_bib0009) 2000; 13 Simon (10.1016/j.ejor.2021.12.030_bib0030) 2013; 22 Turney (10.1016/j.ejor.2021.12.030_bib0032) 2000 Bennett (10.1016/j.ejor.2021.12.030_bib0005) 2000 Freitas (10.1016/j.ejor.2021.12.030_bib0017) 2007 Ling (10.1016/j.ejor.2021.12.030_bib0024) 2004 Achterberg (10.1016/j.ejor.2021.12.030_bib0001) 2005; 33 Zhu (10.1016/j.ejor.2021.12.030_bib0040) 2004 Belotti (10.1016/j.ejor.2021.12.030_bib0003) 2009; 24 Yuan (10.1016/j.ejor.2021.12.030_bib0037) 2006; 68 Zhou (10.1016/j.ejor.2021.12.030_bib0039) 2016; 95 Yang (10.1016/j.ejor.2021.12.030_bib0036) 1998 Bolón-Canedo (10.1016/j.ejor.2021.12.030_bib0008) 2014; 47 Chen (10.1016/j.ejor.2021.12.030_bib0011) 2020; 130 Friedman (10.1016/j.ejor.2021.12.030_bib0018) Turney (10.1016/j.ejor.2021.12.030_bib0033) 1994; 2 Hernández-Lobato (10.1016/j.ejor.2021.12.030_bib0020) 2013; 14 Crone (10.1016/j.ejor.2021.12.030_bib0013) 2006; 173 Unler (10.1016/j.ejor.2021.12.030_bib0034) 2010; 206 Huo (10.1016/j.ejor.2021.12.030_bib0021) 2020; 486 Lee (10.1016/j.ejor.2021.12.030_bib0023) 2020 10.1016/j.ejor.2021.12.030_bib0002 Carrizosa (10.1016/j.ejor.2021.12.030_bib0010) 2006 Meier (10.1016/j.ejor.2021.12.030_bib0028) 2008; 70 |
| References_xml | – volume: 206 start-page: 528 year: 2010 end-page: 539 ident: bib0034 article-title: A discrete particle swarm optimization method for feature selection in binary classification problems publication-title: European Journal of Operational Research – start-page: 521 year: 2004 end-page: 526 ident: bib0007 article-title: Column-generation boosting methods for mixture of kernels publication-title: Proceedings of the Tenth ACM SIGKDD International Conference On Knowledge Discovery and Data Mining – volume: 10 start-page: 2229 year: 2014 end-page: 2235 ident: bib0014 article-title: Identification of bacteriophage virion proteins by the ANOVA feature selection and analysis publication-title: Molecular Biosystems – volume: 261 start-page: 656 year: 2017 end-page: 665 ident: bib0026 article-title: Cost-based feature selection for support vector machines: An application in credit scoring publication-title: European Journal of Operational Research – volume: 88 start-page: 411 year: 2000 end-page: 424 ident: bib0004 article-title: Robust solutions of linear programming problems contaminated with uncertain data publication-title: Mathematical Programming – start-page: 15 year: 2000 end-page: 25 ident: bib0032 article-title: Types of cost in inductive concept learning. in: workshop on cost-sensitive learning publication-title: 17th international conference on machine learning university – volume: 21 start-page: 1 year: 2020 end-page: 13 ident: bib0012 article-title: The advantages of the matthews correlation coefficient (MCC) over f1 score and accuracy in binary classification evaluation publication-title: BMC Genomics – ident: bib0018 article-title: A note on the group lasso and a sparse group lasso – volume: 68 start-page: 49 year: 2006 end-page: 67 ident: bib0037 article-title: Model selection and estimation in regression with grouped variables publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) – volume: 2 start-page: 369 year: 1994 end-page: 409 ident: bib0033 article-title: Cost-sensitive classification: Empirical evaluation of a hybrid genetic decision tree induction algorithm publication-title: Journal of Artificial Intelligence Research – volume: 33 start-page: 42 year: 2005 end-page: 54 ident: bib0001 article-title: Branching rules revisited publication-title: Operations Research Letters – volume: 13 start-page: 1 year: 2000 end-page: 10 ident: bib0009 article-title: Massive data discrimination via linear support vector machines publication-title: Optimization Methods and Software – start-page: 69 year: 2004 ident: bib0024 article-title: Decision trees with minimal costs publication-title: Proceedings of the 21st international conference on machine learning – volume: 24 start-page: 597 year: 2009 end-page: 634 ident: bib0003 article-title: Branching and bounds tighteningtechniques for non-convex MINLP publication-title: Optimization Methods & Software – start-page: 65 year: 2000 end-page: 72 ident: bib0005 article-title: A column generation algorithm for boosting publication-title: Icml – year: 2006 ident: bib0010 article-title: A column generation approach for support vector machines publication-title: Technical Report – volume: 486 start-page: 110098 year: 2020 ident: bib0021 article-title: Sgl-svm: A novel method for tumor classification via support vector machine with sparse group lasso publication-title: Journal of Theoretical Biology – volume: 48 start-page: 32 year: 2013 end-page: 43 ident: bib0038 article-title: Analysis of programming properties and the row–column generation method for 1-norm support vector machines publication-title: Neural Networks – volume: 130 start-page: 132 year: 2020 end-page: 138 ident: bib0011 article-title: Locality-constrained group lasso coding for microvessel image classification publication-title: Pattern Recognition Letters – start-page: 117 year: 1998 end-page: 136 ident: bib0036 article-title: Feature subset selection using a genetic algorithm publication-title: Feature extraction, construction and selection – volume: 7 start-page: 625 year: 2014 end-page: 638 ident: bib0016 article-title: A novel feature selection based on one-way ANOVA f-test for e-mail spam classification publication-title: Research Journal of Applied Sciences, Engineering and Technology – volume: 173 start-page: 781 year: 2006 end-page: 800 ident: bib0013 article-title: The impact of preprocessing on data mining: An evaluation of classifier sensitivity in direct marketing publication-title: European Journal of Operational Research – reference: Gamrath, G., Fischer, T., Gally, T., Gleixner, A. M., Hendel, G., Koch, T., Maher, S. J., Miltenberger, M., Müller, B., Pfetsch, M. E. et al. (2016). The scip optimization suite 3.2,. – volume: 52 start-page: 35 year: 2004 end-page: 53 ident: bib0006 article-title: The price of robustness publication-title: Operations Research – volume: 279 start-page: 163 year: 2014 end-page: 175 ident: bib0027 article-title: Feature selection for support vector machines via mixed integer linear programming publication-title: Information Sciences – volume: 95 start-page: 1 year: 2016 end-page: 11 ident: bib0039 article-title: Cost-sensitive feature selection using random forest: Selecting low-cost subsets of informative features publication-title: Knowledge-Based Systems – volume: 27 start-page: 3029 year: 2015 end-page: 3041 ident: bib0035 article-title: Online feature selection with group structure analysis publication-title: IEEE Transactions on Knowledge and Data Engineering – start-page: 303 year: 2007 end-page: 312 ident: bib0017 article-title: Cost-sensitive decision trees applied to medical data publication-title: International Conference on Data Warehousing and Knowledge Discovery – volume: 22 start-page: 231 year: 2013 end-page: 245 ident: bib0030 article-title: A sparse-group lasso publication-title: Journal of Computational and Graphical Statistics – reference: . – volume: 70 start-page: 53 year: 2008 end-page: 71 ident: bib0028 article-title: The group lasso for logistic regression publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) – start-page: 239 year: 2016 end-page: 252 ident: bib0015 article-title: Bayesian group feature selection for support vector learning machines publication-title: Pacific-Asia Conference on Knowledge Discovery and Data Mining – start-page: 49 year: 2004 end-page: 56 ident: bib0040 article-title: 1-norm support vector machines publication-title: Advances in Neural Information Processing Systems – reference: Asuncion, A., & Newman, D. (2007). UCI machine learning repository. – volume: 317 start-page: 42 year: 2018 end-page: 49 ident: bib0031 article-title: Group feature selection with multiclass support vector machine publication-title: Neurocomputing – volume: 143 start-page: 42 year: 2018 end-page: 57 ident: bib0025 article-title: Online multi-label group feature selection publication-title: Knowledge-Based Systems – volume: 156 start-page: 483 year: 2004 end-page: 494 ident: bib0029 article-title: Evaluating feature selection methods for learning in data mining applications publication-title: European Journal of Operational Research – volume: 47 start-page: 2481 year: 2014 end-page: 2489 ident: bib0008 article-title: A framework for cost-based feature selection publication-title: Pattern Recognition – start-page: 106145 year: 2020 ident: bib0023 article-title: A mixed integer linear programming support vector machine for cost-effective feature selection publication-title: Knowledge-Based Systems – volume: 14 start-page: 1891 year: 2013 end-page: 1945 ident: bib0020 article-title: Generalized spike-and-slab priors for bayesian group feature selection using expectation propagation publication-title: The Journal of Machine Learning Research – volume: 54 start-page: 301 year: 2015 end-page: 310 ident: bib0022 article-title: Feature selection and classification of microarray data using mapreduce based ANOVA and k-nearest neighbor publication-title: Procedia Computer Science – volume: 13 start-page: 1 issue: 1 year: 2000 ident: 10.1016/j.ejor.2021.12.030_bib0009 article-title: Massive data discrimination via linear support vector machines publication-title: Optimization Methods and Software doi: 10.1080/10556780008805771 – volume: 27 start-page: 3029 issue: 11 year: 2015 ident: 10.1016/j.ejor.2021.12.030_bib0035 article-title: Online feature selection with group structure analysis publication-title: IEEE Transactions on Knowledge and Data Engineering doi: 10.1109/TKDE.2015.2441716 – volume: 14 start-page: 1891 issue: 1 year: 2013 ident: 10.1016/j.ejor.2021.12.030_bib0020 article-title: Generalized spike-and-slab priors for bayesian group feature selection using expectation propagation publication-title: The Journal of Machine Learning Research – volume: 143 start-page: 42 year: 2018 ident: 10.1016/j.ejor.2021.12.030_bib0025 article-title: Online multi-label group feature selection publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2017.12.008 – start-page: 521 year: 2004 ident: 10.1016/j.ejor.2021.12.030_bib0007 article-title: Column-generation boosting methods for mixture of kernels – volume: 261 start-page: 656 issue: 2 year: 2017 ident: 10.1016/j.ejor.2021.12.030_bib0026 article-title: Cost-based feature selection for support vector machines: An application in credit scoring publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2017.02.037 – volume: 88 start-page: 411 issue: 3 year: 2000 ident: 10.1016/j.ejor.2021.12.030_bib0004 article-title: Robust solutions of linear programming problems contaminated with uncertain data publication-title: Mathematical Programming doi: 10.1007/PL00011380 – volume: 156 start-page: 483 issue: 2 year: 2004 ident: 10.1016/j.ejor.2021.12.030_bib0029 article-title: Evaluating feature selection methods for learning in data mining applications publication-title: European Journal of Operational Research doi: 10.1016/S0377-2217(02)00911-6 – start-page: 303 year: 2007 ident: 10.1016/j.ejor.2021.12.030_bib0017 article-title: Cost-sensitive decision trees applied to medical data – volume: 21 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.ejor.2021.12.030_bib0012 article-title: The advantages of the matthews correlation coefficient (MCC) over f1 score and accuracy in binary classification evaluation publication-title: BMC Genomics doi: 10.1186/s12864-019-6413-7 – volume: 24 start-page: 597 issue: 4–5 year: 2009 ident: 10.1016/j.ejor.2021.12.030_bib0003 article-title: Branching and bounds tighteningtechniques for non-convex MINLP publication-title: Optimization Methods & Software doi: 10.1080/10556780903087124 – volume: 70 start-page: 53 issue: 1 year: 2008 ident: 10.1016/j.ejor.2021.12.030_bib0028 article-title: The group lasso for logistic regression publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) doi: 10.1111/j.1467-9868.2007.00627.x – start-page: 15 year: 2000 ident: 10.1016/j.ejor.2021.12.030_bib0032 article-title: Types of cost in inductive concept learning. in: workshop on cost-sensitive learning – volume: 95 start-page: 1 year: 2016 ident: 10.1016/j.ejor.2021.12.030_bib0039 article-title: Cost-sensitive feature selection using random forest: Selecting low-cost subsets of informative features publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2015.11.010 – volume: 54 start-page: 301 year: 2015 ident: 10.1016/j.ejor.2021.12.030_bib0022 article-title: Feature selection and classification of microarray data using mapreduce based ANOVA and k-nearest neighbor publication-title: Procedia Computer Science doi: 10.1016/j.procs.2015.06.035 – ident: 10.1016/j.ejor.2021.12.030_bib0019 – start-page: 65 year: 2000 ident: 10.1016/j.ejor.2021.12.030_bib0005 article-title: A column generation algorithm for boosting – volume: 130 start-page: 132 year: 2020 ident: 10.1016/j.ejor.2021.12.030_bib0011 article-title: Locality-constrained group lasso coding for microvessel image classification publication-title: Pattern Recognition Letters doi: 10.1016/j.patrec.2019.02.011 – start-page: 69 year: 2004 ident: 10.1016/j.ejor.2021.12.030_bib0024 article-title: Decision trees with minimal costs – volume: 33 start-page: 42 issue: 1 year: 2005 ident: 10.1016/j.ejor.2021.12.030_bib0001 article-title: Branching rules revisited publication-title: Operations Research Letters doi: 10.1016/j.orl.2004.04.002 – ident: 10.1016/j.ejor.2021.12.030_bib0002 – volume: 279 start-page: 163 year: 2014 ident: 10.1016/j.ejor.2021.12.030_bib0027 article-title: Feature selection for support vector machines via mixed integer linear programming publication-title: Information Sciences doi: 10.1016/j.ins.2014.03.110 – start-page: 49 year: 2004 ident: 10.1016/j.ejor.2021.12.030_bib0040 article-title: 1-norm support vector machines – volume: 48 start-page: 32 year: 2013 ident: 10.1016/j.ejor.2021.12.030_bib0038 article-title: Analysis of programming properties and the row–column generation method for 1-norm support vector machines publication-title: Neural Networks doi: 10.1016/j.neunet.2013.07.005 – volume: 22 start-page: 231 issue: 2 year: 2013 ident: 10.1016/j.ejor.2021.12.030_bib0030 article-title: A sparse-group lasso publication-title: Journal of Computational and Graphical Statistics doi: 10.1080/10618600.2012.681250 – volume: 486 start-page: 110098 year: 2020 ident: 10.1016/j.ejor.2021.12.030_bib0021 article-title: Sgl-svm: A novel method for tumor classification via support vector machine with sparse group lasso publication-title: Journal of Theoretical Biology doi: 10.1016/j.jtbi.2019.110098 – volume: 10 start-page: 2229 issue: 8 year: 2014 ident: 10.1016/j.ejor.2021.12.030_bib0014 article-title: Identification of bacteriophage virion proteins by the ANOVA feature selection and analysis publication-title: Molecular Biosystems doi: 10.1039/C4MB00316K – volume: 206 start-page: 528 issue: 3 year: 2010 ident: 10.1016/j.ejor.2021.12.030_bib0034 article-title: A discrete particle swarm optimization method for feature selection in binary classification problems publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2010.02.032 – ident: 10.1016/j.ejor.2021.12.030_bib0018 – volume: 317 start-page: 42 year: 2018 ident: 10.1016/j.ejor.2021.12.030_bib0031 article-title: Group feature selection with multiclass support vector machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.07.012 – year: 2006 ident: 10.1016/j.ejor.2021.12.030_bib0010 article-title: A column generation approach for support vector machines – volume: 7 start-page: 625 issue: 3 year: 2014 ident: 10.1016/j.ejor.2021.12.030_bib0016 article-title: A novel feature selection based on one-way ANOVA f-test for e-mail spam classification publication-title: Research Journal of Applied Sciences, Engineering and Technology doi: 10.19026/rjaset.7.299 – volume: 52 start-page: 35 issue: 1 year: 2004 ident: 10.1016/j.ejor.2021.12.030_bib0006 article-title: The price of robustness publication-title: Operations Research doi: 10.1287/opre.1030.0065 – volume: 173 start-page: 781 issue: 3 year: 2006 ident: 10.1016/j.ejor.2021.12.030_bib0013 article-title: The impact of preprocessing on data mining: An evaluation of classifier sensitivity in direct marketing publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2005.07.023 – start-page: 117 year: 1998 ident: 10.1016/j.ejor.2021.12.030_bib0036 article-title: Feature subset selection using a genetic algorithm – volume: 47 start-page: 2481 issue: 7 year: 2014 ident: 10.1016/j.ejor.2021.12.030_bib0008 article-title: A framework for cost-based feature selection publication-title: Pattern Recognition doi: 10.1016/j.patcog.2014.01.008 – start-page: 106145 year: 2020 ident: 10.1016/j.ejor.2021.12.030_bib0023 article-title: A mixed integer linear programming support vector machine for cost-effective feature selection publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2020.106145 – volume: 68 start-page: 49 issue: 1 year: 2006 ident: 10.1016/j.ejor.2021.12.030_bib0037 article-title: Model selection and estimation in regression with grouped variables publication-title: Journal of the Royal Statistical Society: Series B (Statistical Methodology) doi: 10.1111/j.1467-9868.2005.00532.x – start-page: 239 year: 2016 ident: 10.1016/j.ejor.2021.12.030_bib0015 article-title: Bayesian group feature selection for support vector learning machines – volume: 2 start-page: 369 year: 1994 ident: 10.1016/j.ejor.2021.12.030_bib0033 article-title: Cost-sensitive classification: Empirical evaluation of a hybrid genetic decision tree induction algorithm publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.120 |
| SSID | ssj0001515 |
| Score | 2.4681113 |
| Snippet | •A cost-effective 1-norm SVM model with group feature selection and its robust model are proposed.•A BCP algorithm is developed to efficiently solve the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 1055 |
| SubjectTerms | Branch-Cut-and-Price Feature selection Machine learning Robust optimization Support vector machine |
| Title | A Mixed Integer Linear Programming Support Vector Machine for Cost-Effective Group Feature Selection: Branch-Cut-and-Price Approach |
| URI | https://dx.doi.org/10.1016/j.ejor.2021.12.030 |
| Volume | 299 |
| WOSCitedRecordID | wos000760198500018&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6860 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001515 issn: 0377-2217 databaseCode: AIEXJ dateStart: 19950105 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LbxMxELZCixAceIQiyks-cIuMYu_DXm4hFCgSVaUWmtvKXnuVRmUTpUkVzvwhfiIe27vZVmlFD1xWkZV1NpkvnvH4m_kQeqtYzGVSUqLjWJJY6JQIk1KSsX4UF3GkDNNObIIfHIjRKDvsdP7UtTAXZ7yqxGqVzf6rqe2YNTaUzt7C3M2kdsC-tka3V2t2e_0nww96305XRrtcH5T02t0mNOs59ESsn64D93IGYXfvh0vZg_jQGIJNYBwOp-cL4lsaA6fI56ogToSDhiMnmhPYIB9AkmNMhssFkZUmTj8eglpXonVtwj8Ev3ZgXqchQ7-hJi8duEH7Ve_zr-V6VfL0gCNpn_9kzR048cMfpRkHnIcUht39gvZP2lrpIs4JY76Is16WmRdOCviLWossaHq2HLbd1IqNzsDnJSbvzGQKnV8ZdYnfcAx0qfP2FY_Y8BRrCtwkhzlymCOnLLdz3EHbjCeZXUe3B_t7o6-N94cA0Z1cha8UCrU8p_Dqk2wOhloBzvFj9DDsTPDAI-oJ6piqi-7VhRFd9KgWAMHBH3TRg1Y3y6fo9wA75OGAPOyRh1vIwwF52CMPB-Rhizx8GXnYIQ8H5OEGee_xJtzhGnc76PunvePhFxI0PkgRpcmCmJTLfsEzSRMuZT9WEU015OYToVXZ50qBwgAtZUm5iUSRmSgznGudiIIBK_YZ2qqmlXmOcCxkqqz_FkoVsU4yEamSMTtDRjXV3OwiWv_YeREa4IMOy1l-vZl3Ua-5Z-bbv9z47qS2YR4CWB-Y5haSN9z34laf8hLdX_-JXqGtxXxpXqO7xcXi9Hz-JuDxL8x-vj0 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Mixed+Integer+Linear+Programming+Support+Vector+Machine+for+Cost-Effective+Group+Feature+Selection%3A+Branch-Cut-and-Price+Approach&rft.jtitle=European+journal+of+operational+research&rft.au=Lee%2C+In+Gyu&rft.au=Yoon%2C+Sang+Won&rft.au=Won%2C+Daehan&rft.date=2022-06-16&rft.issn=0377-2217&rft.volume=299&rft.issue=3&rft.spage=1055&rft.epage=1068&rft_id=info:doi/10.1016%2Fj.ejor.2021.12.030&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ejor_2021_12_030 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon |