Precast production scheduling using multi-objective genetic algorithms
► This research develops a multi-objective precast production scheduling model (MOPPSM). ► In the model, production resources and buffer size between stations are considered. ► A multi-objective genetic algorithm is then developed to search for optimum solutions with minimum makespan and tardiness p...
Saved in:
| Published in: | Expert systems with applications Vol. 38; no. 7; pp. 8293 - 8302 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.07.2011
|
| Subjects: | |
| ISSN: | 0957-4174, 1873-6793 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | ► This research develops a multi-objective precast production scheduling model (MOPPSM). ► In the model, production resources and buffer size between stations are considered. ► A multi-objective genetic algorithm is then developed to search for optimum solutions with minimum makespan and tardiness penalties. ► The performance of the proposed model is validated by using five case studies. ► The experimental results show that the MOPPSM can successfully search for optimum precast production schedules. ► Furthermore, considering buffer sizes between stations is crucial for acquiring reasonable and feasible precast production schedules.
The goal of production scheduling is to achieve a profitable balance among on-time delivery, short customer lead time, and maximum utilization of resources. However, current practices in precast production scheduling are fairly basic, depending heavily on experience, thereby resulting in inefficient resource utilization and late delivery. Moreover, previous methods ignoring buffer size between stations typically induce unfeasible schedules. Certain computational techniques have been proven effective in scheduling. To enhance precast production scheduling, this research develops a multi-objective precast production scheduling model (MOPPSM). In the model, production resources and buffer size between stations are considered. A multi-objective genetic algorithm is then developed to search for optimum solutions with minimum makespan and tardiness penalties. The performance of the proposed model is validated by using five case studies. The experimental results show that the MOPPSM can successfully search for optimum precast production schedules. Furthermore, considering buffer sizes between stations is crucial for acquiring reasonable and feasible precast production schedules. |
|---|---|
| AbstractList | The goal of production scheduling is to achieve a profitable balance among on-time delivery, short customer lead time, and maximum utilization of resources. However, current practices in precast production scheduling are fairly basic, depending heavily on experience, thereby resulting in inefficient resource utilization and late delivery. Moreover, previous methods ignoring buffer size between stations typically induce unfeasible schedules. Certain computational techniques have been proven effective in scheduling. To enhance precast production scheduling, this research develops a multi-objective precast production scheduling model (MOPPSM). In the model, production resources and buffer size between stations are considered. A multi-objective genetic algorithm is then developed to search for optimum solutions with minimum makespan and tardiness penalties. The performance of the proposed model is validated by using five case studies. The experimental results show that the MOPPSM can successfully search for optimum precast production schedules. Furthermore, considering buffer sizes between stations is crucial for acquiring reasonable and feasible precast production schedules. ► This research develops a multi-objective precast production scheduling model (MOPPSM). ► In the model, production resources and buffer size between stations are considered. ► A multi-objective genetic algorithm is then developed to search for optimum solutions with minimum makespan and tardiness penalties. ► The performance of the proposed model is validated by using five case studies. ► The experimental results show that the MOPPSM can successfully search for optimum precast production schedules. ► Furthermore, considering buffer sizes between stations is crucial for acquiring reasonable and feasible precast production schedules. The goal of production scheduling is to achieve a profitable balance among on-time delivery, short customer lead time, and maximum utilization of resources. However, current practices in precast production scheduling are fairly basic, depending heavily on experience, thereby resulting in inefficient resource utilization and late delivery. Moreover, previous methods ignoring buffer size between stations typically induce unfeasible schedules. Certain computational techniques have been proven effective in scheduling. To enhance precast production scheduling, this research develops a multi-objective precast production scheduling model (MOPPSM). In the model, production resources and buffer size between stations are considered. A multi-objective genetic algorithm is then developed to search for optimum solutions with minimum makespan and tardiness penalties. The performance of the proposed model is validated by using five case studies. The experimental results show that the MOPPSM can successfully search for optimum precast production schedules. Furthermore, considering buffer sizes between stations is crucial for acquiring reasonable and feasible precast production schedules. |
| Author | Ko, Chien-Ho Wang, Shu-Fan |
| Author_xml | – sequence: 1 givenname: Chien-Ho surname: Ko fullname: Ko, Chien-Ho email: fpecount@yahoo.com.tw – sequence: 2 givenname: Shu-Fan surname: Wang fullname: Wang, Shu-Fan |
| BookMark | eNp9kT1PwzAQhi0EEm3hDzBlgyXBjhPblVhQRQGpEgwwW459aR3lo9hOEf8eR2ViqHQ6L-9z8j03R-f90ANCNwRnBBN232Tgv1WWY0IyPBU9QzMiOE0ZX9JzNMPLkqcF4cUlmnvfYEw4xnyG1u8OtPIh2bvBjDrYoU-83oEZW9tvk9FPvRvbYNOhaiAGDpBsoYdgdaLa7eBs2HX-Cl3UqvVw_fcu0Of66WP1km7enl9Xj5tUU1aGFFhJRM1qxQQuaVVVHJgyeS5Al1AZseRFzXNWaGYqbCA3OZgKqNaY16rIFV2g2-Pc-N2vEXyQnfUa2lb1MIxeCrYUBeZlGZN3J5Nxf4KjoKhqgcQxqt3gvYNaahvUpCI4ZVtJsJwky0ZOkuUkWeKpaETzf-je2U65n9PQwxGCaOpgwUmvLfQajI3HCNIM9hT-C5kdme0 |
| CitedBy_id | crossref_primary_10_1016_j_autcon_2023_104770 crossref_primary_10_1080_00207543_2022_2057254 crossref_primary_10_1038_s41598_025_02837_8 crossref_primary_10_1061__ASCE_CO_1943_7862_0001976 crossref_primary_10_1155_2020_3849561 crossref_primary_10_1080_00207543_2014_884732 crossref_primary_10_1016_j_autcon_2024_105945 crossref_primary_10_1016_j_cor_2020_105204 crossref_primary_10_1007_s00500_018_3258_y crossref_primary_10_1016_j_autcon_2023_104851 crossref_primary_10_1007_s00500_018_3273_z crossref_primary_10_1016_j_autcon_2022_104726 crossref_primary_10_1016_j_amc_2013_03_099 crossref_primary_10_1088_1757_899X_471_11_112083 crossref_primary_10_3390_buildings15020187 crossref_primary_10_1155_2013_474872 crossref_primary_10_1007_s40534_013_0010_2 crossref_primary_10_1016_j_eswa_2025_129234 crossref_primary_10_1016_j_jclepro_2019_05_229 crossref_primary_10_1080_0305215X_2024_2423188 crossref_primary_10_1007_s11804_015_1292_z crossref_primary_10_1016_j_asoc_2020_106204 crossref_primary_10_1080_00207543_2013_795250 crossref_primary_10_1038_s41598_023_42374_w crossref_primary_10_3390_agriculture10010003 crossref_primary_10_1016_j_cie_2023_109518 crossref_primary_10_1016_j_autcon_2024_105712 crossref_primary_10_1111_exsy_12533 crossref_primary_10_3390_su10061807 crossref_primary_10_3390_su9112069 crossref_primary_10_1016_j_autcon_2016_08_021 crossref_primary_10_1109_TII_2021_3128405 crossref_primary_10_1061__ASCE_CP_1943_5487_0000667 crossref_primary_10_1080_15623599_2024_2365064 crossref_primary_10_1061__ASCE_CO_1943_7862_0001556 crossref_primary_10_1108_ECAM_03_2025_0429 crossref_primary_10_1016_j_cie_2024_110017 crossref_primary_10_1108_ECAM_09_2022_0871 crossref_primary_10_1016_j_autcon_2017_10_026 crossref_primary_10_1016_j_jclepro_2023_137054 crossref_primary_10_3390_pr8121593 crossref_primary_10_1016_j_compfluid_2014_12_004 crossref_primary_10_1016_j_autcon_2023_104952 crossref_primary_10_1016_j_autcon_2021_103581 crossref_primary_10_1016_j_autcon_2023_104755 crossref_primary_10_1061_JCEMD4_COENG_14393 crossref_primary_10_1016_j_cie_2024_110173 crossref_primary_10_1007_s11750_020_00589_4 crossref_primary_10_1016_j_autcon_2017_08_013 crossref_primary_10_1061_JCEMD4_COENG_15995 crossref_primary_10_1016_j_engappai_2023_107163 crossref_primary_10_1016_j_jcde_2018_04_001 crossref_primary_10_1080_0305215X_2024_2366486 crossref_primary_10_1016_j_inffus_2024_102423 crossref_primary_10_1016_j_autcon_2022_104201 crossref_primary_10_1080_00207543_2019_1571687 crossref_primary_10_1080_0305215X_2016_1141204 crossref_primary_10_1016_j_autcon_2017_03_016 crossref_primary_10_1016_j_autcon_2021_103575 crossref_primary_10_1016_j_autcon_2016_08_001 crossref_primary_10_3390_su12219266 crossref_primary_10_1016_j_jclepro_2017_12_188 crossref_primary_10_3846_jcem_2022_16454 crossref_primary_10_1016_j_autcon_2014_08_004 crossref_primary_10_1016_j_engappai_2014_07_013 crossref_primary_10_1016_j_jclepro_2023_138406 crossref_primary_10_1007_s11356_024_31859_4 crossref_primary_10_1016_j_autcon_2016_08_007 crossref_primary_10_1109_TNNLS_2022_3217318 |
| Cites_doi | 10.1162/evco.1995.3.1.1 10.1109/WSC.1998.745989 10.1016/j.ejor.2005.12.014 10.15554/pcij.01012006.62.71 10.1016/S0925-5273(99)00104-8 10.1007/s00158-005-0557-6 10.1287/mnsc.16.10.B630 10.1007/s11269-005-9011-1 10.1080/0144619042000287732 10.1016/S0926-5805(01)00083-8 10.1016/S0305-0548(02)00059-X 10.1016/0360-1323(94)00039-U 10.1016/0965-9978(95)00096-8 10.1080/00207540600847152 10.1016/j.ijpe.2005.08.002 10.1061/(ASCE)0733-9364(2004)130:6(780) 10.1057/jors.1971.18 10.1016/j.jher.2008.10.001 10.1016/j.engappai.2006.01.010 10.1061/(ASCE)0733-9364(2001)127:4(270) 10.1057/jors.1965.8 10.1061/(ASCE)0733-9364(2002)128:6(513) 10.1504/IJISTA.2007.011574 10.1016/j.cie.2006.01.002 10.1002/nav.20000 10.1109/ICEC.1995.489161 10.1029/98WR02368 10.1080/00207540500103821 10.1016/0360-1323(93)90009-R 10.1109/5326.704576 10.1109/TSMC.1986.289288 |
| ContentType | Journal Article |
| Copyright | 2011 |
| Copyright_xml | – notice: 2011 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.eswa.2011.01.013 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-6793 |
| EndPage | 8302 |
| ExternalDocumentID | 10_1016_j_eswa_2011_01_013 S0957417411000339 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AAAKG AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO AAYFN ABBOA ABFNM ABKBG ABMAC ABMVD ABUCO ABXDB ABYKQ ACDAQ ACGFS ACHRH ACNNM ACNTT ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGJBL AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALEQD ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HAMUX HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ SBC SDF SDG SDP SDS SES SET SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABUFD ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c365t-e6518f6fa68053bbb7e6ad228ec5ebd8974f7264c6db0de2d2edbe3cc07fa42a3 |
| ISICitedReferencesCount | 86 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000289047700044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Thu Oct 02 07:12:29 EDT 2025 Sun Nov 09 12:13:27 EST 2025 Sat Nov 29 04:44:23 EST 2025 Tue Nov 18 22:31:01 EST 2025 Fri Feb 23 02:26:29 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Buffer Multi-objective genetic algorithms Scheduling Precast production |
| Language | English |
| License | https://www.elsevier.com/tdm/userlicense/1.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c365t-e6518f6fa68053bbb7e6ad228ec5ebd8974f7264c6db0de2d2edbe3cc07fa42a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
| PQID | 1701087301 |
| PQPubID | 23500 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_869840755 proquest_miscellaneous_1701087301 crossref_citationtrail_10_1016_j_eswa_2011_01_013 crossref_primary_10_1016_j_eswa_2011_01_013 elsevier_sciencedirect_doi_10_1016_j_eswa_2011_01_013 |
| PublicationCentury | 2000 |
| PublicationDate | 2011-07-01 |
| PublicationDateYYYYMMDD | 2011-07-01 |
| PublicationDate_xml | – month: 07 year: 2011 text: 2011-07-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2011 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Dawood, Neale (b0065) 1993; 28 Caraffa, Ianes, Bagchi, Sriskandarajah (b0045) 2001; 70 Leu, Hwang (b0130) 2002; 11 Dawood (b0070) 1995; 30 Spears, De Jong (b0210) 1991 Benjaoran, Dawood, Hobbs (b0025) 2005; 23 Lee, Lee, Tan (b0120) 2007; 177 Ko, C. H. (2002). Evolutionary Fuzzy Neural Inference Model (EFNIM) for Decision-Making in Construction Management. PhD Thesis, National Taiwan University of Science and Technology, Taipei, Taiwan. Schaffer, J.D. (1985). Multi-objective optimization with vector evaluated genetic algorithms. Proceedings of the 1st International Conference of Genetic Algorithms, 93–100. Campbell, Dudek, Smith (b0040) 1970; 16 Goldberg (b0095) 1989 Pathumnakul, Egbelu (b0145) 2006; 103 (Vol. 2, pp. 1273–1277). (pp. 284–294). Sawik (b0170) 2007; 45 Ray, Ripley, Neal (b0160) 2006; 51 West (b0205) 2006; 72 Kaige, Murata, Ishibuchi (b0225) 2003; 1 Bulbul, Kaminsky, Yano (b0035) 2004; 51 Azamathullaa, Wub, Ghania, Narulkarc, Zakariaa, Changa (b0020) 2008; 2 Leu, Hwang (b0125) 2001; 127 Psarras (b0155) 2007; 2 Kim, Weck (b0115) 2006; 31 Gupta (b0105) 1971; 22 Dawood, N. N. (1993). Knowledge elicitation and dynamic scheduling using a simulation model: An application to the precast manufacturing process. In Ph.D. Thesis. Nashville, TN: Department of Electrical Engineering, Vanderbilt University. Afshin Mansouri (b0005) 2005; 43 Ishibuchi, Murata (b0110) 1998; 28 Mansouri (b0135) 2006; 50 (p. 73). Murata, T., & Ishibuchi, H. (1995). MOGA: Multi-objective genetic algorithms. In Palmer (b0150) 1965; 16 Chan, Hu (b0050) 2002; 128 Vern, K., & Gunal, A. (1998). Use of simulation for construction elements manufacturing. In Tsao, Tommelein, Swanlund, Howell (b0195) 2004; 130 Augusto, Rabeau, Depince, Bennis (b0015) 2006; 19 Deb (b0080) 2009 Fonsecay, Flemingz (b0085) 1995; 3 Bennett, D. (2005). Chan, Hu (b0215) 2002; 79 Grefenstette (b0100) 1986; 16 Dawood (b0075) 1996; 25 (pp. 646–650). Coello, Lamont, Veldhuizen (b0055) 2007 Birkhauser. Aly, Peralta (b0010) 1999; 35 Cochran, Horng, Fowler (b0220) 2003; 30 Schaffer, J. D. (1984). Reddy, Kumar (b0165) 2006; 20 Gao, Y., Shi, L., & Yao, P. (2000). Study on multi-objective genetic algorithm. In Schaffer, Caruna, Eshelman, Das (b0235) 1989 Dawood (10.1016/j.eswa.2011.01.013_b0075) 1996; 25 Ray (10.1016/j.eswa.2011.01.013_b0160) 2006; 51 Campbell (10.1016/j.eswa.2011.01.013_b0040) 1970; 16 10.1016/j.eswa.2011.01.013_b0030 Goldberg (10.1016/j.eswa.2011.01.013_b0095) 1989 Schaffer (10.1016/j.eswa.2011.01.013_b0235) 1989 Dawood (10.1016/j.eswa.2011.01.013_b0065) 1993; 28 Fonsecay (10.1016/j.eswa.2011.01.013_b0085) 1995; 3 Mansouri (10.1016/j.eswa.2011.01.013_b0135) 2006; 50 10.1016/j.eswa.2011.01.013_b0090 Spears (10.1016/j.eswa.2011.01.013_b0210) 1991 Kaige (10.1016/j.eswa.2011.01.013_b0225) 2003; 1 Leu (10.1016/j.eswa.2011.01.013_b0125) 2001; 127 Augusto (10.1016/j.eswa.2011.01.013_b0015) 2006; 19 Chan (10.1016/j.eswa.2011.01.013_b0215) 2002; 79 10.1016/j.eswa.2011.01.013_b0200 Lee (10.1016/j.eswa.2011.01.013_b0120) 2007; 177 Grefenstette (10.1016/j.eswa.2011.01.013_b0100) 1986; 16 10.1016/j.eswa.2011.01.013_b0185 West (10.1016/j.eswa.2011.01.013_b0205) 2006; 72 Ishibuchi (10.1016/j.eswa.2011.01.013_b0110) 1998; 28 Azamathullaa (10.1016/j.eswa.2011.01.013_b0020) 2008; 2 Leu (10.1016/j.eswa.2011.01.013_b0130) 2002; 11 Tsao (10.1016/j.eswa.2011.01.013_b0195) 2004; 130 Bulbul (10.1016/j.eswa.2011.01.013_b0035) 2004; 51 Deb (10.1016/j.eswa.2011.01.013_b0080) 2009 Gupta (10.1016/j.eswa.2011.01.013_b0105) 1971; 22 Coello (10.1016/j.eswa.2011.01.013_b0055) 2007 10.1016/j.eswa.2011.01.013_b0140 Cochran (10.1016/j.eswa.2011.01.013_b0220) 2003; 30 Reddy (10.1016/j.eswa.2011.01.013_b0165) 2006; 20 10.1016/j.eswa.2011.01.013_b0060 Psarras (10.1016/j.eswa.2011.01.013_b0155) 2007; 2 Chan (10.1016/j.eswa.2011.01.013_b0050) 2002; 128 Aly (10.1016/j.eswa.2011.01.013_b0010) 1999; 35 Palmer (10.1016/j.eswa.2011.01.013_b0150) 1965; 16 Caraffa (10.1016/j.eswa.2011.01.013_b0045) 2001; 70 10.1016/j.eswa.2011.01.013_b0230 Sawik (10.1016/j.eswa.2011.01.013_b0170) 2007; 45 10.1016/j.eswa.2011.01.013_b0175 Kim (10.1016/j.eswa.2011.01.013_b0115) 2006; 31 Dawood (10.1016/j.eswa.2011.01.013_b0070) 1995; 30 Benjaoran (10.1016/j.eswa.2011.01.013_b0025) 2005; 23 Pathumnakul (10.1016/j.eswa.2011.01.013_b0145) 2006; 103 Afshin Mansouri (10.1016/j.eswa.2011.01.013_b0005) 2005; 43 |
| References_xml | – volume: 20 start-page: 861 year: 2006 end-page: 878 ident: b0165 article-title: Optimal reservoir operation using multi-objective evolutionary algorithm publication-title: Water Resources Management – volume: 103 start-page: 230 year: 2006 end-page: 245 ident: b0145 article-title: An algorithm for minimizing weighted earliness penalty in assembly job shops publication-title: International Journal of Production Economics – volume: 30 start-page: 197 year: 1995 end-page: 207 ident: b0070 article-title: Scheduling in the precast concrete industry using the simulation modelling approach publication-title: Journal of Building and Environment – reference: Schaffer, J. D. (1984). – year: 2009 ident: b0080 article-title: Multi-objective optimization using evolutionary algorithms – reference: Schaffer, J.D. (1985). Multi-objective optimization with vector evaluated genetic algorithms. Proceedings of the 1st International Conference of Genetic Algorithms, 93–100. – reference: Gao, Y., Shi, L., & Yao, P. (2000). Study on multi-objective genetic algorithm. In – reference: Ko, C. H. (2002). Evolutionary Fuzzy Neural Inference Model (EFNIM) for Decision-Making in Construction Management. PhD Thesis, National Taiwan University of Science and Technology, Taipei, Taiwan. – reference: Vern, K., & Gunal, A. (1998). Use of simulation for construction elements manufacturing. In – year: 1989 ident: b0095 article-title: Genetic algorithms in search, optimization and machine learning – volume: 25 start-page: 215 year: 1996 end-page: 223 ident: b0075 article-title: A simulation model for eliciting scheduling knowledge: An application to the precast manufacturing process publication-title: Journal of Advances in Engineering Software – volume: 16 start-page: 630 year: 1970 end-page: 637 ident: b0040 article-title: A heuristic algorithm for the publication-title: Management Science – volume: 177 start-page: 1948 year: 2007 end-page: 1968 ident: b0120 article-title: A multi-objective genetic algorithm for robust flight scheduling using simulation publication-title: European Journal of Operational Research – year: 1991 ident: b0210 article-title: An analysis of multi-point crossover publication-title: Foundations of genetic algorithms – volume: 130 start-page: 780 year: 2004 end-page: 789 ident: b0195 article-title: Work structuring to achieve integrated product-process design publication-title: Journal of Construction Engineering and Management – volume: 23 start-page: 93 year: 2005 end-page: 105 ident: b0025 article-title: Flowshop scheduling model for bespoke precast concrete production planning publication-title: Journal of Construction Management and Economics – volume: 16 start-page: 101 year: 1965 end-page: 107 ident: b0150 article-title: Sequencing jobs through a multi-stage process in the minimum total time – A quick method of obtaining a near optimum publication-title: Operations Research Quarterly – volume: 28 start-page: 392 year: 1998 end-page: 403 ident: b0110 article-title: Multi-objective genetic local search algorithm and its applications to flowshop scheduling publication-title: IEEE Transactions on Systems, Man and Cybernetics – year: 2007 ident: b0055 article-title: Evolutionary algorithms for solving multi-objective problems – reference: . Ph.D. Thesis. Nashville, TN: Department of Electrical Engineering, Vanderbilt University. – reference: Bennett, D. (2005). – volume: 16 start-page: 122 year: 1986 end-page: 128 ident: b0100 article-title: Optimization of control parameters for genetic algorithms publication-title: IEEE Transactions on Systems, Man and Cybernetics – reference: . Birkhauser. – volume: 19 start-page: 501 year: 2006 end-page: 510 ident: b0015 article-title: Multi-objective genetic algorithms: A way to improve the convergence rate publication-title: Engineering Applications of Artificial Intelligence – reference: (pp. 284–294). – volume: 50 start-page: 105 year: 2006 end-page: 119 ident: b0135 article-title: A simulated annealing approach to a bi-criteria sequencing problem in a two-stage supply chain publication-title: Computers and Industrial Engineering – volume: 28 start-page: 81 year: 1993 end-page: 95 ident: b0065 article-title: Capacity planning model for precast concrete building products publication-title: Journal of Building and Environment – volume: 51 start-page: 62 year: 2006 end-page: 71 ident: b0160 article-title: Lean manufacturing – A systematic approach to improving productivity in the precast concrete industry publication-title: PCI Journal – reference: (pp. 646–650). – reference: Dawood, N. N. (1993). Knowledge elicitation and dynamic scheduling using a simulation model: An application to the precast manufacturing process. In – reference: Murata, T., & Ishibuchi, H. (1995). MOGA: Multi-objective genetic algorithms. In – volume: 128 start-page: 513 year: 2002 end-page: 521 ident: b0050 article-title: Constraint programming approach to precast production scheduling publication-title: Journal of Construction Engineering and Management – volume: 2 start-page: 172 year: 2008 end-page: 181 ident: b0020 article-title: Comparison between genetic algorithm and linear programming approach for real time operation publication-title: Journal of Hydro-Environment Research – volume: 70 start-page: 101 year: 2001 end-page: 115 ident: b0045 article-title: Minimizing makespan in a blocking flowshop using genetic algorithms publication-title: International Journal of Production Economics – volume: 35 start-page: 2523 year: 1999 end-page: 2532 ident: b0010 article-title: Optimal design of aquifer cleanup systems under uncertainty using a neural network and a genetic algorithm publication-title: Water Resources Research – volume: 79 start-page: 1605 year: 2002 end-page: 1616 ident: b0215 article-title: Production scheduling for precast plants using a flow shop sequencing model publication-title: Journal of Computing in Civil Engineering, ASCE – volume: 45 start-page: 2629 year: 2007 end-page: 2653 ident: b0170 article-title: Multi-objective master production scheduling in make-to-order manufacturing publication-title: International Journal of Production Research – volume: 22 start-page: 39 year: 1971 end-page: 47 ident: b0105 article-title: A functional heuristic algorithm for the flowshop scheduling problem publication-title: Operational Research Quarterly – volume: 43 start-page: 3163 year: 2005 end-page: 3180 ident: b0005 article-title: Coordination of set-ups between two stages of a supply chain using multi-objective genetic algorithms publication-title: International Journal of Production Research – volume: 51 start-page: 407 year: 2004 end-page: 445 ident: b0035 article-title: Flow shop scheduling with earliness, tardiness, and intermediate inventory holding costs publication-title: Naval Research Logistics – volume: 31 start-page: 105 year: 2006 end-page: 116 ident: b0115 article-title: Adaptive weighted sum method for multiobjective optimization: A new method for Pareto publication-title: Structural and Multidisciplinary Optimization – volume: 2 start-page: 58 year: 2007 end-page: 76 ident: b0155 article-title: GA-based decision support systems in production scheduling publication-title: International Journal of Intelligent Systems Technologies and Applications – volume: 11 start-page: 439 year: 2002 end-page: 452 ident: b0130 article-title: GA-based resource-constrained flow-shop scheduling model for mixed precast production publication-title: Automation in Construction – volume: 127 start-page: 270 year: 2001 end-page: 280 ident: b0125 article-title: Optimal repetitive scheduling model with shareable resource constraint publication-title: Journal of Construction Engineering and Management – volume: 1 start-page: 14 year: 2003 end-page: 19 ident: b0225 article-title: Performance evaluation of memetic EMO algorithms using dominance relation-based replacement rules on MOO test problem publication-title: IEEE International Conference on System, Man and Cybernetics – start-page: 51 year: 1989 end-page: 60 ident: b0235 article-title: A study of control parameters affecting online performance of genetic algorithms for function optimization publication-title: Proceedings of the third international conference on genetic algorithms and their applications – volume: 30 start-page: 1087 year: 2003 end-page: 1102 ident: b0220 article-title: A multi-population genetic algorithm to solve multi-objective scheduling problems for parallel machines publication-title: Computers and Operations Research – volume: 72 start-page: 46 year: 2006 end-page: 52 ident: b0205 article-title: Flexible fabric molds for precast trusses publication-title: Concrete Precasting Plant and Technology – reference: , (Vol. 2, pp. 1273–1277). – volume: 3 start-page: 1 year: 1995 end-page: 16 ident: b0085 article-title: An overview of evolutionary algorithms in multiobjective optimization publication-title: Evolutionary Computation – reference: (p. 73). – volume: 3 start-page: 1 issue: 1 year: 1995 ident: 10.1016/j.eswa.2011.01.013_b0085 article-title: An overview of evolutionary algorithms in multiobjective optimization publication-title: Evolutionary Computation doi: 10.1162/evco.1995.3.1.1 – ident: 10.1016/j.eswa.2011.01.013_b0200 doi: 10.1109/WSC.1998.745989 – volume: 177 start-page: 1948 year: 2007 ident: 10.1016/j.eswa.2011.01.013_b0120 article-title: A multi-objective genetic algorithm for robust flight scheduling using simulation publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2005.12.014 – volume: 51 start-page: 62 year: 2006 ident: 10.1016/j.eswa.2011.01.013_b0160 article-title: Lean manufacturing – A systematic approach to improving productivity in the precast concrete industry publication-title: PCI Journal doi: 10.15554/pcij.01012006.62.71 – volume: 70 start-page: 101 issue: 2 year: 2001 ident: 10.1016/j.eswa.2011.01.013_b0045 article-title: Minimizing makespan in a blocking flowshop using genetic algorithms publication-title: International Journal of Production Economics doi: 10.1016/S0925-5273(99)00104-8 – year: 2007 ident: 10.1016/j.eswa.2011.01.013_b0055 – volume: 31 start-page: 105 year: 2006 ident: 10.1016/j.eswa.2011.01.013_b0115 article-title: Adaptive weighted sum method for multiobjective optimization: A new method for Pareto publication-title: Structural and Multidisciplinary Optimization doi: 10.1007/s00158-005-0557-6 – volume: 16 start-page: 630 year: 1970 ident: 10.1016/j.eswa.2011.01.013_b0040 article-title: A heuristic algorithm for the n job, m machine sequencing problem publication-title: Management Science doi: 10.1287/mnsc.16.10.B630 – volume: 20 start-page: 861 year: 2006 ident: 10.1016/j.eswa.2011.01.013_b0165 article-title: Optimal reservoir operation using multi-objective evolutionary algorithm publication-title: Water Resources Management doi: 10.1007/s11269-005-9011-1 – volume: 23 start-page: 93 year: 2005 ident: 10.1016/j.eswa.2011.01.013_b0025 article-title: Flowshop scheduling model for bespoke precast concrete production planning publication-title: Journal of Construction Management and Economics doi: 10.1080/0144619042000287732 – start-page: 51 year: 1989 ident: 10.1016/j.eswa.2011.01.013_b0235 article-title: A study of control parameters affecting online performance of genetic algorithms for function optimization – volume: 11 start-page: 439 year: 2002 ident: 10.1016/j.eswa.2011.01.013_b0130 article-title: GA-based resource-constrained flow-shop scheduling model for mixed precast production publication-title: Automation in Construction doi: 10.1016/S0926-5805(01)00083-8 – volume: 30 start-page: 1087 issue: 7 year: 2003 ident: 10.1016/j.eswa.2011.01.013_b0220 article-title: A multi-population genetic algorithm to solve multi-objective scheduling problems for parallel machines publication-title: Computers and Operations Research doi: 10.1016/S0305-0548(02)00059-X – ident: 10.1016/j.eswa.2011.01.013_b0090 – volume: 30 start-page: 197 year: 1995 ident: 10.1016/j.eswa.2011.01.013_b0070 article-title: Scheduling in the precast concrete industry using the simulation modelling approach publication-title: Journal of Building and Environment doi: 10.1016/0360-1323(94)00039-U – volume: 25 start-page: 215 year: 1996 ident: 10.1016/j.eswa.2011.01.013_b0075 article-title: A simulation model for eliciting scheduling knowledge: An application to the precast manufacturing process publication-title: Journal of Advances in Engineering Software doi: 10.1016/0965-9978(95)00096-8 – volume: 45 start-page: 2629 issue: 12 year: 2007 ident: 10.1016/j.eswa.2011.01.013_b0170 article-title: Multi-objective master production scheduling in make-to-order manufacturing publication-title: International Journal of Production Research doi: 10.1080/00207540600847152 – volume: 103 start-page: 230 issue: 1 year: 2006 ident: 10.1016/j.eswa.2011.01.013_b0145 article-title: An algorithm for minimizing weighted earliness penalty in assembly job shops publication-title: International Journal of Production Economics doi: 10.1016/j.ijpe.2005.08.002 – volume: 130 start-page: 780 year: 2004 ident: 10.1016/j.eswa.2011.01.013_b0195 article-title: Work structuring to achieve integrated product-process design publication-title: Journal of Construction Engineering and Management doi: 10.1061/(ASCE)0733-9364(2004)130:6(780) – volume: 22 start-page: 39 year: 1971 ident: 10.1016/j.eswa.2011.01.013_b0105 article-title: A functional heuristic algorithm for the flowshop scheduling problem publication-title: Operational Research Quarterly doi: 10.1057/jors.1971.18 – year: 1991 ident: 10.1016/j.eswa.2011.01.013_b0210 – volume: 2 start-page: 172 issue: 3 year: 2008 ident: 10.1016/j.eswa.2011.01.013_b0020 article-title: Comparison between genetic algorithm and linear programming approach for real time operation publication-title: Journal of Hydro-Environment Research doi: 10.1016/j.jher.2008.10.001 – volume: 19 start-page: 501 year: 2006 ident: 10.1016/j.eswa.2011.01.013_b0015 article-title: Multi-objective genetic algorithms: A way to improve the convergence rate publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2006.01.010 – volume: 127 start-page: 270 year: 2001 ident: 10.1016/j.eswa.2011.01.013_b0125 article-title: Optimal repetitive scheduling model with shareable resource constraint publication-title: Journal of Construction Engineering and Management doi: 10.1061/(ASCE)0733-9364(2001)127:4(270) – volume: 16 start-page: 101 year: 1965 ident: 10.1016/j.eswa.2011.01.013_b0150 article-title: Sequencing jobs through a multi-stage process in the minimum total time – A quick method of obtaining a near optimum publication-title: Operations Research Quarterly doi: 10.1057/jors.1965.8 – volume: 128 start-page: 513 year: 2002 ident: 10.1016/j.eswa.2011.01.013_b0050 article-title: Constraint programming approach to precast production scheduling publication-title: Journal of Construction Engineering and Management doi: 10.1061/(ASCE)0733-9364(2002)128:6(513) – volume: 2 start-page: 58 year: 2007 ident: 10.1016/j.eswa.2011.01.013_b0155 article-title: GA-based decision support systems in production scheduling publication-title: International Journal of Intelligent Systems Technologies and Applications doi: 10.1504/IJISTA.2007.011574 – volume: 50 start-page: 105 year: 2006 ident: 10.1016/j.eswa.2011.01.013_b0135 article-title: A simulated annealing approach to a bi-criteria sequencing problem in a two-stage supply chain publication-title: Computers and Industrial Engineering doi: 10.1016/j.cie.2006.01.002 – ident: 10.1016/j.eswa.2011.01.013_b0175 – volume: 51 start-page: 407 year: 2004 ident: 10.1016/j.eswa.2011.01.013_b0035 article-title: Flow shop scheduling with earliness, tardiness, and intermediate inventory holding costs publication-title: Naval Research Logistics doi: 10.1002/nav.20000 – ident: 10.1016/j.eswa.2011.01.013_b0230 – ident: 10.1016/j.eswa.2011.01.013_b0140 doi: 10.1109/ICEC.1995.489161 – volume: 79 start-page: 1605 issue: 17 year: 2002 ident: 10.1016/j.eswa.2011.01.013_b0215 article-title: Production scheduling for precast plants using a flow shop sequencing model publication-title: Journal of Computing in Civil Engineering, ASCE – volume: 35 start-page: 2523 issue: 8 year: 1999 ident: 10.1016/j.eswa.2011.01.013_b0010 article-title: Optimal design of aquifer cleanup systems under uncertainty using a neural network and a genetic algorithm publication-title: Water Resources Research doi: 10.1029/98WR02368 – volume: 72 start-page: 46 year: 2006 ident: 10.1016/j.eswa.2011.01.013_b0205 article-title: Flexible fabric molds for precast trusses publication-title: Concrete Precasting Plant and Technology – ident: 10.1016/j.eswa.2011.01.013_b0060 – volume: 43 start-page: 3163 year: 2005 ident: 10.1016/j.eswa.2011.01.013_b0005 article-title: Coordination of set-ups between two stages of a supply chain using multi-objective genetic algorithms publication-title: International Journal of Production Research doi: 10.1080/00207540500103821 – ident: 10.1016/j.eswa.2011.01.013_b0185 – ident: 10.1016/j.eswa.2011.01.013_b0030 – volume: 28 start-page: 81 year: 1993 ident: 10.1016/j.eswa.2011.01.013_b0065 article-title: Capacity planning model for precast concrete building products publication-title: Journal of Building and Environment doi: 10.1016/0360-1323(93)90009-R – volume: 1 start-page: 14 year: 2003 ident: 10.1016/j.eswa.2011.01.013_b0225 article-title: Performance evaluation of memetic EMO algorithms using dominance relation-based replacement rules on MOO test problem publication-title: IEEE International Conference on System, Man and Cybernetics – year: 1989 ident: 10.1016/j.eswa.2011.01.013_b0095 – volume: 28 start-page: 392 year: 1998 ident: 10.1016/j.eswa.2011.01.013_b0110 article-title: Multi-objective genetic local search algorithm and its applications to flowshop scheduling publication-title: IEEE Transactions on Systems, Man and Cybernetics doi: 10.1109/5326.704576 – volume: 16 start-page: 122 issue: 1 year: 1986 ident: 10.1016/j.eswa.2011.01.013_b0100 article-title: Optimization of control parameters for genetic algorithms publication-title: IEEE Transactions on Systems, Man and Cybernetics doi: 10.1109/TSMC.1986.289288 – year: 2009 ident: 10.1016/j.eswa.2011.01.013_b0080 |
| SSID | ssj0017007 |
| Score | 2.3204184 |
| Snippet | ► This research develops a multi-objective precast production scheduling model (MOPPSM). ► In the model, production resources and buffer size between stations... The goal of production scheduling is to achieve a profitable balance among on-time delivery, short customer lead time, and maximum utilization of resources.... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 8293 |
| SubjectTerms | Buffer Buffers Delivery scheduling Mathematical models Multi-objective genetic algorithms Optimization Precast Precast production Production scheduling Schedules Scheduling Searching Stations |
| Title | Precast production scheduling using multi-objective genetic algorithms |
| URI | https://dx.doi.org/10.1016/j.eswa.2011.01.013 https://www.proquest.com/docview/1701087301 https://www.proquest.com/docview/869840755 |
| Volume | 38 |
| WOSCitedRecordID | wos000289047700044&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-6793 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017007 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZZuoe97D6W3dBgb0UjkWNLfiyjoRujFNZB3oRkHS8NwS6J0_Xn78iS7JCRsj4MjAlGErbOl09HR-dCyCcJZSp0blze1oRNJ7xkErRkBlz2OewDtpX0d3F-Lufz_GIw-BFjYW5Woqrk7W1-_V9Fjc9Q2C509h7i7gbFB_gbhY53FDve_0nwF8hhetM4zyvrU8Me4w4WV5Q28Hzb2gZaN0JWm6WnO1dHGdrMratf9fqqWYQU5svOTw_WTUj6HMPhdg6-O9L2ZtcFsgU7q3tTfbBIL7ZsFrBoe7upiGaGaC8UKEtfUidSZyJ3ICJ2eFByX_cwrqlJG1b9N19708HyM2x-65BP1V1JvzrFE_m9RatzJYxeakvlxlBuDDV2V_KAHHGR5nJIjk6-ns6_dYdLYuyj6OMXhVgq7_a3_yaH9JW9lbtVRy6fksdhH0FPvPyfkQFUz8mTWKODBsp-QWYBDrSHA-3hQFs40D040AAH2sPhJfk5O738csZC7QxWJFnaMMjSiSyzUmcSadYYIyDTlnMJRQrGStxGlgKV4SKzZmyBWw7WQFIUY1HqKdfJKzKs6gpeE4q9cMZyrTnoqeSpG6ss5SQrc9dWjsgkzpAqQmJ5V99kpQ7LZkSOuz7XPq3Kna3TOPEqKIZe4VOIozv7fYxSUsia7ihMV1BvN8pVIUAywtVtROiBNjLL5RQ16vTNvV72LXnU_3_ekWGz3sJ78rC4aa426w8Bi38AcDuf4g |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Precast+production+scheduling+using+multi-objective+genetic+algorithms&rft.jtitle=Expert+systems+with+applications&rft.au=Ko%2C+Chien-Ho&rft.au=Wang%2C+Shu-Fan&rft.date=2011-07-01&rft.issn=0957-4174&rft.volume=38&rft.issue=7&rft.spage=8293&rft.epage=8302&rft_id=info:doi/10.1016%2Fj.eswa.2011.01.013&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_eswa_2011_01_013 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |