An Enhanced Interval Type-2 Fuzzy C-Means Algorithm for Fuzzy Time Series Forecasting of Vegetation Dynamics: A Case Study from the Aksu Region, Xinjiang, China

Accurate prediction of the Normalized Difference Vegetation Index (NDVI) is crucial for regional ecological management and precision decision-making. Existing methodologies often rely on smoothed NDVI data as ground truth, overlooking uncertainties inherent in data acquisition and processing. Fuzzy...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Land (Basel) Ročník 14; číslo 6; s. 1242
Hlavní autoři: Chen, Yongqi, Liu, Li, Cao, Jinhua, Wang, Kexin, Li, Shengyang, Yin, Yue
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.06.2025
Témata:
ISSN:2073-445X, 2073-445X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Accurate prediction of the Normalized Difference Vegetation Index (NDVI) is crucial for regional ecological management and precision decision-making. Existing methodologies often rely on smoothed NDVI data as ground truth, overlooking uncertainties inherent in data acquisition and processing. Fuzzy time series (FTS) prediction models based on the Fuzzy C-Means (FCM) clustering algorithm address some of these uncertainties by enabling soft partitioning through membership functions. However, the method remains limited by its reliance on expert experience in setting fuzzy parameters, which introduces uncertainty in the definition of fuzzy intervals and negatively affects prediction performance. To overcome these limitations, this study enhances the interval type-2 fuzzy clustering time series (IT2-FCM-FTS) model by developing a pixel-level time series forecasting framework, optimizing fuzzy interval divisions, and extending the model from unidimensional to spatial time series forecasting. Experimental results from 2021 to 2023 demonstrate that the proposed model outperforms both the Autoregressive Integrated Moving Average (ARIMA) and conventional FCM-FTS models, achieving the lowest RMSE (0.0624), MAE (0.0437), and SEM (0.000209) in 2021. Predictive analysis indicates a general ecological improvement in the Aksu region (Xinjiang, China), with persistent growth areas comprising 61.12% of the total and persistent decline areas accounting for 2.6%. In conclusion, this study presents an improved fuzzy model for NDVI time series prediction, providing valuable insights into regional desertification prevention and ecological strategy formulation.
AbstractList Accurate prediction of the Normalized Difference Vegetation Index (NDVI) is crucial for regional ecological management and precision decision-making. Existing methodologies often rely on smoothed NDVI data as ground truth, overlooking uncertainties inherent in data acquisition and processing. Fuzzy time series (FTS) prediction models based on the Fuzzy C-Means (FCM) clustering algorithm address some of these uncertainties by enabling soft partitioning through membership functions. However, the method remains limited by its reliance on expert experience in setting fuzzy parameters, which introduces uncertainty in the definition of fuzzy intervals and negatively affects prediction performance. To overcome these limitations, this study enhances the interval type-2 fuzzy clustering time series (IT2-FCM-FTS) model by developing a pixel-level time series forecasting framework, optimizing fuzzy interval divisions, and extending the model from unidimensional to spatial time series forecasting. Experimental results from 2021 to 2023 demonstrate that the proposed model outperforms both the Autoregressive Integrated Moving Average (ARIMA) and conventional FCM-FTS models, achieving the lowest RMSE (0.0624), MAE (0.0437), and SEM (0.000209) in 2021. Predictive analysis indicates a general ecological improvement in the Aksu region (Xinjiang, China), with persistent growth areas comprising 61.12% of the total and persistent decline areas accounting for 2.6%. In conclusion, this study presents an improved fuzzy model for NDVI time series prediction, providing valuable insights into regional desertification prevention and ecological strategy formulation.
Audience Academic
Author Yin, Yue
Li, Shengyang
Liu, Li
Chen, Yongqi
Cao, Jinhua
Wang, Kexin
Author_xml – sequence: 1
  givenname: Yongqi
  orcidid: 0009-0009-3347-2876
  surname: Chen
  fullname: Chen, Yongqi
– sequence: 2
  givenname: Li
  surname: Liu
  fullname: Liu, Li
– sequence: 3
  givenname: Jinhua
  orcidid: 0009-0001-8532-4332
  surname: Cao
  fullname: Cao, Jinhua
– sequence: 4
  givenname: Kexin
  surname: Wang
  fullname: Wang, Kexin
– sequence: 5
  givenname: Shengyang
  surname: Li
  fullname: Li, Shengyang
– sequence: 6
  givenname: Yue
  surname: Yin
  fullname: Yin, Yue
BookMark eNpNUk1vEzEQXaEiUUpv_ABLXLPFH2uvl9sqNBCpCAkC6m01sWc3DokdbAcp_TX8VAypUD0Hj2beezOamZfVhQ8eq-o1ozdCdPTtDrxlDVWMN_xZdclpK-qmkfcXT_wX1XVKW1pex4Ru5GX1u_fk1m_AG7Rk6TPGX7Ajq9MBa04Wx4eHE5nXnxB8Iv1uCtHlzZ6MIT7mVm6P5CtGh4ksQkQDKTs_kTCS7zhhhuyCJ-9PHvbOpHekJ3NIhZGP9kTGGPYkb5D0P9KRfMGpYGfk3vmtAz_NyHzjPLyqno-wS3j9-F9V3xa3q_nH-u7zh-W8v6uNUDLXFgxjVJq1hrYFYyxbWypH1lk5KtMa06DSo2RcCd5gJzSVQgurWtMBlVKIq2p51rUBtsMhuj3E0xDADf8CIU4DxOzMDgeJzDSGWtkZ3TAutVbYrjuraCkErSpab85ahxh-HjHlYRuO0Zf2B8G56LhQihfUzRk1QRF1fgw5gilmsQyrLHd0Jd6XNWmhuWaFMDsTTAwpRRz_t8no8PcGhqc3IP4AkSalPw
Cites_doi 10.1080/01431160600954670
10.1016/j.rse.2017.06.031
10.1007/s10462-020-09825-6
10.1016/j.quaint.2014.10.025
10.1111/j.1365-2486.2011.02419.x
10.1016/j.scitotenv.2019.01.022
10.1007/s40808-018-0431-3
10.1080/15481603.2021.1872244
10.1007/s10584-009-9760-6
10.1016/j.isprsjprs.2024.04.011
10.1109/TFUZZ.2012.2187453
10.1016/0165-0114(93)90355-L
10.1016/0165-0114(94)90067-1
10.1080/10106049.2019.1633421
10.1016/j.asoc.2022.109574
10.1109/JSTARS.2014.2361128
10.1134/S0097807818050317
10.1109/TSMCB.2008.2004818
10.1016/j.neucom.2016.10.070
10.3390/ijgi10100679
10.18638/ictic.2016.5.1.281
10.1080/01431160903586765
10.1007/s12517-020-06140-w
10.1007/s40333-016-0046-3
10.1016/S0019-9958(69)90591-9
10.1016/j.gloplacha.2018.06.005
10.1155/2017/1353691
10.1063/1.5064205
10.1016/j.jhydrol.2023.130518
10.1109/MGRS.2017.2762307
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SN
7ST
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
C1K
CCPQU
DWQXO
GNUQQ
HCIFZ
PATMY
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PYCSY
SOI
DOA
DOI 10.3390/land14061242
DatabaseName CrossRef
Ecology Abstracts
Environment Abstracts
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Environmental Science Database (subscripiton)
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
Environmental Science Collection
Environment Abstracts
Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Ecology Abstracts
Environmental Sciences and Pollution Management
ProQuest Central
Environmental Science Collection
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
Environmental Science Database
ProQuest Central (New)
ProQuest One Academic
Environment Abstracts
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Economics
EISSN 2073-445X
ExternalDocumentID oai_doaj_org_article_5e1c4c0d59c84125886e7b9d60c7ca76
A845838281
10_3390_land14061242
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 5VS
7XC
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
CCPQU
CITATION
GROUPED_DOAJ
HCIFZ
IAO
ITC
KQ8
MODMG
M~E
OK1
PATMY
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
7SN
7ST
ABUWG
AZQEC
C1K
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
SOI
ID FETCH-LOGICAL-c365t-dac1105cb8a77accd1bd05f19d5f6c7cc4e68f5126324e93805383d67c9a05533
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001516687100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2073-445X
IngestDate Mon Nov 10 04:25:54 EST 2025
Fri Jul 18 05:21:16 EDT 2025
Tue Nov 04 18:10:44 EST 2025
Sat Nov 29 07:17:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-dac1105cb8a77accd1bd05f19d5f6c7cc4e68f5126324e93805383d67c9a05533
Notes ObjectType-Case Study-2
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-4
ObjectType-Report-1
ObjectType-Article-3
ORCID 0009-0001-8532-4332
0009-0009-3347-2876
OpenAccessLink https://doaj.org/article/5e1c4c0d59c84125886e7b9d60c7ca76
PQID 3223923662
PQPubID 2032374
ParticipantIDs doaj_primary_oai_doaj_org_article_5e1c4c0d59c84125886e7b9d60c7ca76
proquest_journals_3223923662
gale_infotracacademiconefile_A845838281
crossref_primary_10_3390_land14061242
PublicationCentury 2000
PublicationDate 2025-06-01
PublicationDateYYYYMMDD 2025-06-01
PublicationDate_xml – month: 06
  year: 2025
  text: 2025-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Land (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Gorelick (ref_33) 2017; 202
ref_36
ref_13
Zhang (ref_3) 2021; 58
Khan (ref_37) 2020; 53
Zheng (ref_9) 2019; 660
ref_32
Linda (ref_29) 2012; 20
ref_30
Xue (ref_6) 2017; 2017
Farbo (ref_12) 2024; 211
Yuan (ref_34) 2013; 34
ref_16
Quintano (ref_19) 2011; 32
Salmeron (ref_27) 2017; 232
Kang (ref_4) 2014; 7
Darvishi (ref_17) 2020; 18
Belyakova (ref_24) 2018; 45
Alhamad (ref_18) 2007; 28
Xu (ref_11) 2015; 358
Liu (ref_1) 2018; 169
Reddy (ref_14) 2018; 4
Zhu (ref_35) 2017; 5
Yang (ref_5) 2016; 8
Yin (ref_31) 2022; 129
Song (ref_22) 1993; 54
Zhu (ref_25) 2009; 39
Jaber (ref_7) 2021; 36
ref_2
Ruspini (ref_21) 1969; 15
Wu (ref_10) 2010; 99
ref_28
ref_26
Guo (ref_15) 2024; 629
Piao (ref_8) 2011; 17
Rhif (ref_20) 2020; 13
Song (ref_23) 1994; 62
References_xml – volume: 28
  start-page: 2513
  year: 2007
  ident: ref_18
  article-title: Biophysical modelling and NDVI time series to project near-term forage supply: Spectral analysis aided by wavelet denoising and ARIMA modelling
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160600954670
– ident: ref_28
– volume: 202
  start-page: 18
  year: 2017
  ident: ref_33
  article-title: Google Earth Engine: Planetary-scale geospatial analysis for everyone
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2017.06.031
– ident: ref_30
– volume: 53
  start-page: 5455
  year: 2020
  ident: ref_37
  article-title: A survey of the recent architectures of deep convolutional neural networks
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09825-6
– volume: 358
  start-page: 83
  year: 2015
  ident: ref_11
  article-title: Climate variations in northern Xinjiang of China over the past 50 years under global warming
  publication-title: Quat. Int.
  doi: 10.1016/j.quaint.2014.10.025
– ident: ref_32
– volume: 17
  start-page: 3228
  year: 2011
  ident: ref_8
  article-title: Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006
  publication-title: Glob. Change Biol.
  doi: 10.1111/j.1365-2486.2011.02419.x
– volume: 660
  start-page: 236
  year: 2019
  ident: ref_9
  article-title: Impacts of climate change and human activities on grassland vegetation variation in the Chinese Loess Plateau
  publication-title: Sci. Total. Environ.
  doi: 10.1016/j.scitotenv.2019.01.022
– volume: 4
  start-page: 409
  year: 2018
  ident: ref_14
  article-title: Prediction of vegetation dynamics using NDVI time series data and LSTM
  publication-title: Model. Earth Syst. Environ.
  doi: 10.1007/s40808-018-0431-3
– volume: 58
  start-page: 235
  year: 2021
  ident: ref_3
  article-title: Quantitatively distinguishing the impact of climate change and human activities on vegetation in mainland China with the improved residual method
  publication-title: GISci. Remote. Sens.
  doi: 10.1080/15481603.2021.1872244
– volume: 99
  start-page: 457
  year: 2010
  ident: ref_10
  article-title: Climate change and human activities: A case study in Xinjiang, China
  publication-title: Clim. Chang.
  doi: 10.1007/s10584-009-9760-6
– volume: 211
  start-page: 244
  year: 2024
  ident: ref_12
  article-title: Forecasting corn NDVI through AI-based approaches using sentinel 2 image time series
  publication-title: ISPRS J. Photogramm. Remote. Sens.
  doi: 10.1016/j.isprsjprs.2024.04.011
– volume: 20
  start-page: 883
  year: 2012
  ident: ref_29
  article-title: General Type-2 Fuzzy C-Means Algorithm for Uncertain Fuzzy Clustering
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2012.2187453
– volume: 54
  start-page: 1
  year: 1993
  ident: ref_22
  article-title: Forecasting enrollments with fuzzy time series—Part I
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/0165-0114(93)90355-L
– volume: 62
  start-page: 1
  year: 1994
  ident: ref_23
  article-title: Forecasting enrollments with fuzzy time series—Part II
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/0165-0114(94)90067-1
– volume: 36
  start-page: 1117
  year: 2021
  ident: ref_7
  article-title: On the relationship between normalized difference vegetation index and land surface temperature: MODIS-based analysis in a semi-arid to arid environment
  publication-title: Geocarto Int.
  doi: 10.1080/10106049.2019.1633421
– volume: 129
  start-page: 109574
  year: 2022
  ident: ref_31
  article-title: Interval type-2 fuzzy C-means forecasting model for fuzzy time series
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.109574
– volume: 7
  start-page: 4530
  year: 2014
  ident: ref_4
  article-title: Use of geographically weighted regression model for exploring spatial patterns and local factors behind NDVI-precipitation correlation
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2014.2361128
– volume: 45
  start-page: 50
  year: 2018
  ident: ref_24
  article-title: Possibilities of flood forecasting in the West Caucasian rivers based on FCM model
  publication-title: Water Resour.
  doi: 10.1134/S0097807818050317
– volume: 39
  start-page: 578
  year: 2009
  ident: ref_25
  article-title: Generalized fuzzy c-means clustering algorithm with improved fuzzy partitions
  publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybern.)
  doi: 10.1109/TSMCB.2008.2004818
– ident: ref_2
– volume: 232
  start-page: 52
  year: 2017
  ident: ref_27
  article-title: Learning FCMs with multi-local and balanced memetic algorithms for forecasting industrial drying processes
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.10.070
– ident: ref_16
  doi: 10.3390/ijgi10100679
– ident: ref_13
  doi: 10.18638/ictic.2016.5.1.281
– volume: 32
  start-page: 1595
  year: 2011
  ident: ref_19
  article-title: Forecast of NDVI in coniferous areas using temporal ARIMA analysis and climatic data at a regional scale
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160903586765
– volume: 13
  start-page: 1174
  year: 2020
  ident: ref_20
  article-title: A deep learning approach for forecasting non-stationary big remote sensing time series
  publication-title: Arab. J. Geosci.
  doi: 10.1007/s12517-020-06140-w
– volume: 18
  start-page: 161
  year: 2020
  ident: ref_17
  article-title: Monitoring and prediction spatiotemporal vegetation changes using NDVI index and CA-Markov model (case study: Kermanshah city)
  publication-title: Environ. Sci.
– volume: 8
  start-page: 556
  year: 2016
  ident: ref_5
  article-title: Spatial-temporal dynamics of desert vegetation and its responses to climatic variations over the last three decades: A case study of Hexi region in Northwest China
  publication-title: J. Arid. Land
  doi: 10.1007/s40333-016-0046-3
– ident: ref_36
– volume: 15
  start-page: 22
  year: 1969
  ident: ref_21
  article-title: A new approach to clustering
  publication-title: Inf. Control
  doi: 10.1016/S0019-9958(69)90591-9
– volume: 169
  start-page: 145
  year: 2018
  ident: ref_1
  article-title: Temporal-spatial variations and influencing factors of vegetation cover in Xinjiang from 1982 to 2013 based on GIMMS-NDVI3g
  publication-title: Glob. Planet. Chang.
  doi: 10.1016/j.gloplacha.2018.06.005
– volume: 34
  start-page: 1
  year: 2013
  ident: ref_34
  article-title: Interval Type-2 Fuzzy c-Means Clustering Method for Interval Data
  publication-title: 2013. Engineering, I.
– volume: 2017
  start-page: 1353691
  year: 2017
  ident: ref_6
  article-title: Significant remote sensing vegetation indices: A review of developments and applications
  publication-title: J. Sens.
  doi: 10.1155/2017/1353691
– ident: ref_26
  doi: 10.1063/1.5064205
– volume: 629
  start-page: 130518
  year: 2024
  ident: ref_15
  article-title: LSTM time series NDVI prediction method incorporating climate elements: A case study of Yellow River Basin, China
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2023.130518
– volume: 5
  start-page: 8
  year: 2017
  ident: ref_35
  article-title: Deep learning in remote sensing: A comprehensive review and list of resources
  publication-title: IEEE Geosci. Remote Sens. Mag.
  doi: 10.1109/MGRS.2017.2762307
SSID ssj0000913845
Score 2.300152
Snippet Accurate prediction of the Normalized Difference Vegetation Index (NDVI) is crucial for regional ecological management and precision decision-making. Existing...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 1242
SubjectTerms Accuracy
Algorithms
Arid zones
Climate change
Clustering
Comparative analysis
Cost analysis
Data acquisition
Data processing
Datasets
Decision making
Desertification
ecological monitoring
Environmental aspects
Environmental management
Environmental restoration
Forecasting
Forecasts and trends
Fuzzy algorithms
Fuzzy logic
Fuzzy sets
Fuzzy systems
fuzzy time series modeling
interval type-2 fuzzy C-means clustering
Land use
Measurement
NDVI
Normalized difference vegetative index
Parameter uncertainty
Precipitation
Prediction models
Remote sensing
Statistical models
Time series
Time-series analysis
Trends
Vegetation
vegetation dynamic
Vegetation dynamics
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEF1BikQvfFcECpoDiEut-HO9ywWZ0AgkWkUIUDhZ69l1WgpOiR2k9NfwU5lxNgUOcOLqtbQrzfPM7PjNGyGehFphjK4iCyR5kJpIBtqkGBhVafKZDhPbi7i-zY-P1Wymp749uvW0yq1P7B31Ru2ZedvkhEd2gVwxHxEMKbAnUsYvzr8FPEOK_7X6gRpXxQ4Lb4UDsTN9czT9dFlzYQ1MlWYb_ntCt_0RswcjjmlxGv8RmXoB_7-56T72TG7-31PfEjd8DgrFBjS3xRXX3BHXty3K7V3xo2jgsDnpyQHQ1wwJj8BX1iCGyeriYg3j4MhRlIPiy5x26E6-AmW_fo3bSoDLbq4FHv2JpmVyNSxq-Ojmnt8Ir9aN4e2eQwFjiqXAlMY1cL8LUFYKxVm7gneO-dIHMDttPhOQ5wfQD_y-Jz5MDt-PXwd-lEOAicy6wBqkPCPDSpk8N4g2qmyY1ZG2WS0xR0ydVDUlH6we73SiyDeoxMoctQkzSkn3xKBZNO6-gJpMZTLK8kIky9m0spWrUbkkza3WcTgUT7dmLM83ih0l3XTY3OXv5h6Kl2zjy3dYZ7t_sFjOS__ZlpmLMMXQZhpVSrmgUtLllbYypEObXA7FM0ZIyd6gWxo0vqmBjsq6WmWh-v_SsYqGYn-LkNK7ibb8BYgH_15-KHZjHjzcl3_2xaBbrtwjcQ2_d6ft8rHH-U-n3g6u
  priority: 102
  providerName: ProQuest
Title An Enhanced Interval Type-2 Fuzzy C-Means Algorithm for Fuzzy Time Series Forecasting of Vegetation Dynamics: A Case Study from the Aksu Region, Xinjiang, China
URI https://www.proquest.com/docview/3223923662
https://doaj.org/article/5e1c4c0d59c84125886e7b9d60c7ca76
Volume 14
WOSCitedRecordID wos001516687100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2073-445X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913845
  issn: 2073-445X
  databaseCode: DOA
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-445X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913845
  issn: 2073-445X
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Environmental Science Database (subscripiton)
  customDbUrl:
  eissn: 2073-445X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913845
  issn: 2073-445X
  databaseCode: PATMY
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2073-445X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913845
  issn: 2073-445X
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2073-445X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913845
  issn: 2073-445X
  databaseCode: PIMPY
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxNBDB6hggQXVF4ipVQ-gLh01X3PTG_bkAgkGkUVoHBazXpm0-cGZROk9tfwU7FnNygcEBeO-ziMbI_9ecb-LMSbUCuM0VWkgUQGqYnyQJsUA6MqTT7TYWI9iesnOZmo2UxPt0Z9cU1YRw_cCe4ocxGmGNpMo0opGiuVO1lpm4co0UhPth1KvZVMeR-so0SlWVfpnlBef8R1ghFHrziN_4hBnqr_bw7ZR5nxrnjcw0MoumU9Efdc81Q83HQPt8_Ez6KBUXPu7-3BH-eRqQBnk0EM4_Xd3S0Mg1NHAQiK6_mCUv_zGyBg2n_jjg_gEzHXAk_lRNNy3TMsavjq5n3pIbzvxtS3x1DAkMIccLXhLXArChBghOKqXcOZ41LmQ5hdNJdkY_ND8LO4n4sv49Hn4Yegn7IQYJJnq8AaJAiQYaWMlAbRRpUNszrSNqtzkjGmLlc14QImdnc6UbRtVWJzidqEGaHFF2KnWTTupYCaZGsyAmAhkqhtWtnK1ahckkqrdRwOxNuN3MvvHZlGSUkI66fc1s9AnLBSfv_DFNj-BRlG2RtG-S_DGIh3rNKSN-pqadD0_Qa0VKa8Kgvlr4xjFQ3E_kbrZb-D25IcHUHHJM_jvf-xmlfiUcyTg_35zb7YWS3X7rV4gD9WF-3yQNw_GU2mZwfeiOlp-vF0-u0X45v2zw
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VKVK58EYECsyBikut-u1dJIRM2qhRkyhCBYWTu55dp-XhlDgBpb-GX8BvZMZxChzg1gNX25LX62_nm539ZkaIZ66S6KPN6Q8EiRNqL3aUDtHRMldkMy0Gpi7i2k-GQzkeq9GG-LHOhWFZ5dom1obaTJFj5HsEPKLyII79V-dfHO4axaer6xYaK1gc2eU32rJVL3v79H93fL97cNw5dJquAg4GcTR3jEaivAhzqZNEIxovN25UeMpERYwJYmhjWRAPciFzqwJJMJWBiRNU2o0iDoCSyd8MCexuS2yOeoPR-8uoDlfZlGG0UtgHgXL3WJ_oMWv6of8H99UtAv5GBDW7dW_-b_NyS9xo_GhIV8C_LTZseUdsrdOsq7vie1rCQXlaCxygjnvSmgLedjs-dBcXF0voOANLTA3ppwl90fz0M5AH39zj1Bjg0KGtgNuXoq5YIA7TAt7ZSaPRhP1lqfl1LyCFDvkDwLLMJXDODpBnDenHagFvLGu-d2F8Vn6gxTjZhbpp-T3x9kom6L5oldPSPhBQEBh0RJ6qi4QNE-YmtwVKG4SJUcp322JnDZTsfFV1JKPdGgMq-x1QbfGaUXT5DNcKry9MZ5OsMT1ZZD0M0TWRQhmSPytlbJNcmdilQeskbovnjMGMLdp8plE3iRk0VK4NlqWyPlv3pdcW22sMZo2pq7JfAHz479tPxdbh8aCf9XvDo0fius-NlOtw1rZozWcL-1hcw6_zs2r2pFlVIE6uGrA_Afv0X9Y
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VKQIuvBGBAnOg4lKrfnsXCSE3D1G1RFEFKDd3PbtOy8MpcQJKfw2_g1_HjGMXOMCtB65eS17vfvPY2W9mhHjmKok-2px2IEicUHuxo3SIjpa5Ip1pMTB1EdfDZDSSk4kab4gfbS4M0ypbnVgrajNDjpHvEvDIlAdx7O8WDS1i3B--OvvicAcpvmlt22msIXJgV9_o-Fa93O_TXm_7_nDwtvfaaToMOBjE0cIxGsn8RZhLnSQa0Xi5caPCUyYqYkwQQxvLgmwiFzW3KpAEWRmYOEGl3SjiYCip_80koENPR2zuDUbjo4sID1fclGG0ZtsHgXJ3mavosQX1Q_8PO1i3C_ibUagt3fDm_7xGt8SNxr-GdC0Qt8WGLe-Ia236dXVXfE9LGJQnNfEB6ngoyRrwcdzxYbg8P19Bz3ljyYJD-mlKf7Q4-Qzk2TdjnDIDHFK0FXBbU9QVE8dhVsB7O224m9BflZo_9wJS6JGfAEzXXAHn8gB53JB-rJZwZJkLvgOT0_IDCel0B-pm5vfEu0tZoPuiU85K-0BAQcDQEXmwLhJOTJib3BYobRAmRinf7YrtFjTZ2boaSUanOAZX9ju4umKPEXXxDtcQrx_M5tOsUUlZZD0M0TWRQhmSnytlbJNcmdilSesk7ornjMeMNd1irlE3CRs0Va4ZlqWyvnP3pdcVWy0es0YFVtkvMD789_BTcZVQmh3ujw4eies-91euo1xborOYL-1jcQW_Lk6r-ZNGwEAcXzZefwIafWhw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Enhanced+Interval+Type-2+Fuzzy+C-Means+Algorithm+for+Fuzzy+Time+Series+Forecasting+of+Vegetation+Dynamics%3A+A+Case+Study+from+the+Aksu+Region%2C+Xinjiang%2C+China&rft.jtitle=Land+%28Basel%29&rft.au=Chen%2C+Yongqi&rft.au=Liu%2C+Li&rft.au=Cao%2C+Jinhua&rft.au=Wang%2C+Kexin&rft.date=2025-06-01&rft.issn=2073-445X&rft.eissn=2073-445X&rft.volume=14&rft.issue=6&rft.spage=1242&rft_id=info:doi/10.3390%2Fland14061242&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_land14061242
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-445X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-445X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-445X&client=summon