An Enhanced Interval Type-2 Fuzzy C-Means Algorithm for Fuzzy Time Series Forecasting of Vegetation Dynamics: A Case Study from the Aksu Region, Xinjiang, China
Accurate prediction of the Normalized Difference Vegetation Index (NDVI) is crucial for regional ecological management and precision decision-making. Existing methodologies often rely on smoothed NDVI data as ground truth, overlooking uncertainties inherent in data acquisition and processing. Fuzzy...
Uloženo v:
| Vydáno v: | Land (Basel) Ročník 14; číslo 6; s. 1242 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.06.2025
|
| Témata: | |
| ISSN: | 2073-445X, 2073-445X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Accurate prediction of the Normalized Difference Vegetation Index (NDVI) is crucial for regional ecological management and precision decision-making. Existing methodologies often rely on smoothed NDVI data as ground truth, overlooking uncertainties inherent in data acquisition and processing. Fuzzy time series (FTS) prediction models based on the Fuzzy C-Means (FCM) clustering algorithm address some of these uncertainties by enabling soft partitioning through membership functions. However, the method remains limited by its reliance on expert experience in setting fuzzy parameters, which introduces uncertainty in the definition of fuzzy intervals and negatively affects prediction performance. To overcome these limitations, this study enhances the interval type-2 fuzzy clustering time series (IT2-FCM-FTS) model by developing a pixel-level time series forecasting framework, optimizing fuzzy interval divisions, and extending the model from unidimensional to spatial time series forecasting. Experimental results from 2021 to 2023 demonstrate that the proposed model outperforms both the Autoregressive Integrated Moving Average (ARIMA) and conventional FCM-FTS models, achieving the lowest RMSE (0.0624), MAE (0.0437), and SEM (0.000209) in 2021. Predictive analysis indicates a general ecological improvement in the Aksu region (Xinjiang, China), with persistent growth areas comprising 61.12% of the total and persistent decline areas accounting for 2.6%. In conclusion, this study presents an improved fuzzy model for NDVI time series prediction, providing valuable insights into regional desertification prevention and ecological strategy formulation. |
|---|---|
| AbstractList | Accurate prediction of the Normalized Difference Vegetation Index (NDVI) is crucial for regional ecological management and precision decision-making. Existing methodologies often rely on smoothed NDVI data as ground truth, overlooking uncertainties inherent in data acquisition and processing. Fuzzy time series (FTS) prediction models based on the Fuzzy C-Means (FCM) clustering algorithm address some of these uncertainties by enabling soft partitioning through membership functions. However, the method remains limited by its reliance on expert experience in setting fuzzy parameters, which introduces uncertainty in the definition of fuzzy intervals and negatively affects prediction performance. To overcome these limitations, this study enhances the interval type-2 fuzzy clustering time series (IT2-FCM-FTS) model by developing a pixel-level time series forecasting framework, optimizing fuzzy interval divisions, and extending the model from unidimensional to spatial time series forecasting. Experimental results from 2021 to 2023 demonstrate that the proposed model outperforms both the Autoregressive Integrated Moving Average (ARIMA) and conventional FCM-FTS models, achieving the lowest RMSE (0.0624), MAE (0.0437), and SEM (0.000209) in 2021. Predictive analysis indicates a general ecological improvement in the Aksu region (Xinjiang, China), with persistent growth areas comprising 61.12% of the total and persistent decline areas accounting for 2.6%. In conclusion, this study presents an improved fuzzy model for NDVI time series prediction, providing valuable insights into regional desertification prevention and ecological strategy formulation. |
| Audience | Academic |
| Author | Yin, Yue Li, Shengyang Liu, Li Chen, Yongqi Cao, Jinhua Wang, Kexin |
| Author_xml | – sequence: 1 givenname: Yongqi orcidid: 0009-0009-3347-2876 surname: Chen fullname: Chen, Yongqi – sequence: 2 givenname: Li surname: Liu fullname: Liu, Li – sequence: 3 givenname: Jinhua orcidid: 0009-0001-8532-4332 surname: Cao fullname: Cao, Jinhua – sequence: 4 givenname: Kexin surname: Wang fullname: Wang, Kexin – sequence: 5 givenname: Shengyang surname: Li fullname: Li, Shengyang – sequence: 6 givenname: Yue surname: Yin fullname: Yin, Yue |
| BookMark | eNpNUk1vEzEQXaEiUUpv_ABLXLPFH2uvl9sqNBCpCAkC6m01sWc3DokdbAcp_TX8VAypUD0Hj2beezOamZfVhQ8eq-o1ozdCdPTtDrxlDVWMN_xZdclpK-qmkfcXT_wX1XVKW1pex4Ru5GX1u_fk1m_AG7Rk6TPGX7Ajq9MBa04Wx4eHE5nXnxB8Iv1uCtHlzZ6MIT7mVm6P5CtGh4ksQkQDKTs_kTCS7zhhhuyCJ-9PHvbOpHekJ3NIhZGP9kTGGPYkb5D0P9KRfMGpYGfk3vmtAz_NyHzjPLyqno-wS3j9-F9V3xa3q_nH-u7zh-W8v6uNUDLXFgxjVJq1hrYFYyxbWypH1lk5KtMa06DSo2RcCd5gJzSVQgurWtMBlVKIq2p51rUBtsMhuj3E0xDADf8CIU4DxOzMDgeJzDSGWtkZ3TAutVbYrjuraCkErSpab85ahxh-HjHlYRuO0Zf2B8G56LhQihfUzRk1QRF1fgw5gilmsQyrLHd0Jd6XNWmhuWaFMDsTTAwpRRz_t8no8PcGhqc3IP4AkSalPw |
| Cites_doi | 10.1080/01431160600954670 10.1016/j.rse.2017.06.031 10.1007/s10462-020-09825-6 10.1016/j.quaint.2014.10.025 10.1111/j.1365-2486.2011.02419.x 10.1016/j.scitotenv.2019.01.022 10.1007/s40808-018-0431-3 10.1080/15481603.2021.1872244 10.1007/s10584-009-9760-6 10.1016/j.isprsjprs.2024.04.011 10.1109/TFUZZ.2012.2187453 10.1016/0165-0114(93)90355-L 10.1016/0165-0114(94)90067-1 10.1080/10106049.2019.1633421 10.1016/j.asoc.2022.109574 10.1109/JSTARS.2014.2361128 10.1134/S0097807818050317 10.1109/TSMCB.2008.2004818 10.1016/j.neucom.2016.10.070 10.3390/ijgi10100679 10.18638/ictic.2016.5.1.281 10.1080/01431160903586765 10.1007/s12517-020-06140-w 10.1007/s40333-016-0046-3 10.1016/S0019-9958(69)90591-9 10.1016/j.gloplacha.2018.06.005 10.1155/2017/1353691 10.1063/1.5064205 10.1016/j.jhydrol.2023.130518 10.1109/MGRS.2017.2762307 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SN 7ST ABUWG AFKRA ATCPS AZQEC BENPR BHPHI C1K CCPQU DWQXO GNUQQ HCIFZ PATMY PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PYCSY SOI DOA |
| DOI | 10.3390/land14061242 |
| DatabaseName | CrossRef Ecology Abstracts Environment Abstracts ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Environmental Science Database (subscripiton) ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition Environmental Science Collection Environment Abstracts Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Ecology Abstracts Environmental Sciences and Pollution Management ProQuest Central Environmental Science Collection ProQuest One Academic UKI Edition Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection Environmental Science Database ProQuest Central (New) ProQuest One Academic Environment Abstracts ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics |
| EISSN | 2073-445X |
| ExternalDocumentID | oai_doaj_org_article_5e1c4c0d59c84125886e7b9d60c7ca76 A845838281 10_3390_land14061242 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 5VS 7XC 8FE 8FH AADQD AAFWJ AAHBH AAYXX ADBBV AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI CCPQU CITATION GROUPED_DOAJ HCIFZ IAO ITC KQ8 MODMG M~E OK1 PATMY PHGZM PHGZT PIMPY PROAC PYCSY 7SN 7ST ABUWG AZQEC C1K DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI SOI |
| ID | FETCH-LOGICAL-c365t-dac1105cb8a77accd1bd05f19d5f6c7cc4e68f5126324e93805383d67c9a05533 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001516687100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2073-445X |
| IngestDate | Mon Nov 10 04:25:54 EST 2025 Fri Jul 18 05:21:16 EDT 2025 Tue Nov 04 18:10:44 EST 2025 Sat Nov 29 07:17:15 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c365t-dac1105cb8a77accd1bd05f19d5f6c7cc4e68f5126324e93805383d67c9a05533 |
| Notes | ObjectType-Case Study-2 SourceType-Scholarly Journals-1 content type line 14 ObjectType-Feature-4 ObjectType-Report-1 ObjectType-Article-3 |
| ORCID | 0009-0001-8532-4332 0009-0009-3347-2876 |
| OpenAccessLink | https://doaj.org/article/5e1c4c0d59c84125886e7b9d60c7ca76 |
| PQID | 3223923662 |
| PQPubID | 2032374 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_5e1c4c0d59c84125886e7b9d60c7ca76 proquest_journals_3223923662 gale_infotracacademiconefile_A845838281 crossref_primary_10_3390_land14061242 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-06-01 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 06 year: 2025 text: 2025-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Land (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Gorelick (ref_33) 2017; 202 ref_36 ref_13 Zhang (ref_3) 2021; 58 Khan (ref_37) 2020; 53 Zheng (ref_9) 2019; 660 ref_32 Linda (ref_29) 2012; 20 ref_30 Xue (ref_6) 2017; 2017 Farbo (ref_12) 2024; 211 Yuan (ref_34) 2013; 34 ref_16 Quintano (ref_19) 2011; 32 Salmeron (ref_27) 2017; 232 Kang (ref_4) 2014; 7 Darvishi (ref_17) 2020; 18 Belyakova (ref_24) 2018; 45 Alhamad (ref_18) 2007; 28 Xu (ref_11) 2015; 358 Liu (ref_1) 2018; 169 Reddy (ref_14) 2018; 4 Zhu (ref_35) 2017; 5 Yang (ref_5) 2016; 8 Yin (ref_31) 2022; 129 Song (ref_22) 1993; 54 Zhu (ref_25) 2009; 39 Jaber (ref_7) 2021; 36 ref_2 Ruspini (ref_21) 1969; 15 Wu (ref_10) 2010; 99 ref_28 ref_26 Guo (ref_15) 2024; 629 Piao (ref_8) 2011; 17 Rhif (ref_20) 2020; 13 Song (ref_23) 1994; 62 |
| References_xml | – volume: 28 start-page: 2513 year: 2007 ident: ref_18 article-title: Biophysical modelling and NDVI time series to project near-term forage supply: Spectral analysis aided by wavelet denoising and ARIMA modelling publication-title: Int. J. Remote Sens. doi: 10.1080/01431160600954670 – ident: ref_28 – volume: 202 start-page: 18 year: 2017 ident: ref_33 article-title: Google Earth Engine: Planetary-scale geospatial analysis for everyone publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2017.06.031 – ident: ref_30 – volume: 53 start-page: 5455 year: 2020 ident: ref_37 article-title: A survey of the recent architectures of deep convolutional neural networks publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09825-6 – volume: 358 start-page: 83 year: 2015 ident: ref_11 article-title: Climate variations in northern Xinjiang of China over the past 50 years under global warming publication-title: Quat. Int. doi: 10.1016/j.quaint.2014.10.025 – ident: ref_32 – volume: 17 start-page: 3228 year: 2011 ident: ref_8 article-title: Changes in satellite-derived vegetation growth trend in temperate and boreal Eurasia from 1982 to 2006 publication-title: Glob. Change Biol. doi: 10.1111/j.1365-2486.2011.02419.x – volume: 660 start-page: 236 year: 2019 ident: ref_9 article-title: Impacts of climate change and human activities on grassland vegetation variation in the Chinese Loess Plateau publication-title: Sci. Total. Environ. doi: 10.1016/j.scitotenv.2019.01.022 – volume: 4 start-page: 409 year: 2018 ident: ref_14 article-title: Prediction of vegetation dynamics using NDVI time series data and LSTM publication-title: Model. Earth Syst. Environ. doi: 10.1007/s40808-018-0431-3 – volume: 58 start-page: 235 year: 2021 ident: ref_3 article-title: Quantitatively distinguishing the impact of climate change and human activities on vegetation in mainland China with the improved residual method publication-title: GISci. Remote. Sens. doi: 10.1080/15481603.2021.1872244 – volume: 99 start-page: 457 year: 2010 ident: ref_10 article-title: Climate change and human activities: A case study in Xinjiang, China publication-title: Clim. Chang. doi: 10.1007/s10584-009-9760-6 – volume: 211 start-page: 244 year: 2024 ident: ref_12 article-title: Forecasting corn NDVI through AI-based approaches using sentinel 2 image time series publication-title: ISPRS J. Photogramm. Remote. Sens. doi: 10.1016/j.isprsjprs.2024.04.011 – volume: 20 start-page: 883 year: 2012 ident: ref_29 article-title: General Type-2 Fuzzy C-Means Algorithm for Uncertain Fuzzy Clustering publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2012.2187453 – volume: 54 start-page: 1 year: 1993 ident: ref_22 article-title: Forecasting enrollments with fuzzy time series—Part I publication-title: Fuzzy Sets Syst. doi: 10.1016/0165-0114(93)90355-L – volume: 62 start-page: 1 year: 1994 ident: ref_23 article-title: Forecasting enrollments with fuzzy time series—Part II publication-title: Fuzzy Sets Syst. doi: 10.1016/0165-0114(94)90067-1 – volume: 36 start-page: 1117 year: 2021 ident: ref_7 article-title: On the relationship between normalized difference vegetation index and land surface temperature: MODIS-based analysis in a semi-arid to arid environment publication-title: Geocarto Int. doi: 10.1080/10106049.2019.1633421 – volume: 129 start-page: 109574 year: 2022 ident: ref_31 article-title: Interval type-2 fuzzy C-means forecasting model for fuzzy time series publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.109574 – volume: 7 start-page: 4530 year: 2014 ident: ref_4 article-title: Use of geographically weighted regression model for exploring spatial patterns and local factors behind NDVI-precipitation correlation publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. doi: 10.1109/JSTARS.2014.2361128 – volume: 45 start-page: 50 year: 2018 ident: ref_24 article-title: Possibilities of flood forecasting in the West Caucasian rivers based on FCM model publication-title: Water Resour. doi: 10.1134/S0097807818050317 – volume: 39 start-page: 578 year: 2009 ident: ref_25 article-title: Generalized fuzzy c-means clustering algorithm with improved fuzzy partitions publication-title: IEEE Trans. Syst. Man Cybern. Part B (Cybern.) doi: 10.1109/TSMCB.2008.2004818 – ident: ref_2 – volume: 232 start-page: 52 year: 2017 ident: ref_27 article-title: Learning FCMs with multi-local and balanced memetic algorithms for forecasting industrial drying processes publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.10.070 – ident: ref_16 doi: 10.3390/ijgi10100679 – ident: ref_13 doi: 10.18638/ictic.2016.5.1.281 – volume: 32 start-page: 1595 year: 2011 ident: ref_19 article-title: Forecast of NDVI in coniferous areas using temporal ARIMA analysis and climatic data at a regional scale publication-title: Int. J. Remote Sens. doi: 10.1080/01431160903586765 – volume: 13 start-page: 1174 year: 2020 ident: ref_20 article-title: A deep learning approach for forecasting non-stationary big remote sensing time series publication-title: Arab. J. Geosci. doi: 10.1007/s12517-020-06140-w – volume: 18 start-page: 161 year: 2020 ident: ref_17 article-title: Monitoring and prediction spatiotemporal vegetation changes using NDVI index and CA-Markov model (case study: Kermanshah city) publication-title: Environ. Sci. – volume: 8 start-page: 556 year: 2016 ident: ref_5 article-title: Spatial-temporal dynamics of desert vegetation and its responses to climatic variations over the last three decades: A case study of Hexi region in Northwest China publication-title: J. Arid. Land doi: 10.1007/s40333-016-0046-3 – ident: ref_36 – volume: 15 start-page: 22 year: 1969 ident: ref_21 article-title: A new approach to clustering publication-title: Inf. Control doi: 10.1016/S0019-9958(69)90591-9 – volume: 169 start-page: 145 year: 2018 ident: ref_1 article-title: Temporal-spatial variations and influencing factors of vegetation cover in Xinjiang from 1982 to 2013 based on GIMMS-NDVI3g publication-title: Glob. Planet. Chang. doi: 10.1016/j.gloplacha.2018.06.005 – volume: 34 start-page: 1 year: 2013 ident: ref_34 article-title: Interval Type-2 Fuzzy c-Means Clustering Method for Interval Data publication-title: 2013. Engineering, I. – volume: 2017 start-page: 1353691 year: 2017 ident: ref_6 article-title: Significant remote sensing vegetation indices: A review of developments and applications publication-title: J. Sens. doi: 10.1155/2017/1353691 – ident: ref_26 doi: 10.1063/1.5064205 – volume: 629 start-page: 130518 year: 2024 ident: ref_15 article-title: LSTM time series NDVI prediction method incorporating climate elements: A case study of Yellow River Basin, China publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2023.130518 – volume: 5 start-page: 8 year: 2017 ident: ref_35 article-title: Deep learning in remote sensing: A comprehensive review and list of resources publication-title: IEEE Geosci. Remote Sens. Mag. doi: 10.1109/MGRS.2017.2762307 |
| SSID | ssj0000913845 |
| Score | 2.300152 |
| Snippet | Accurate prediction of the Normalized Difference Vegetation Index (NDVI) is crucial for regional ecological management and precision decision-making. Existing... |
| SourceID | doaj proquest gale crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | 1242 |
| SubjectTerms | Accuracy Algorithms Arid zones Climate change Clustering Comparative analysis Cost analysis Data acquisition Data processing Datasets Decision making Desertification ecological monitoring Environmental aspects Environmental management Environmental restoration Forecasting Forecasts and trends Fuzzy algorithms Fuzzy logic Fuzzy sets Fuzzy systems fuzzy time series modeling interval type-2 fuzzy C-means clustering Land use Measurement NDVI Normalized difference vegetative index Parameter uncertainty Precipitation Prediction models Remote sensing Statistical models Time series Time-series analysis Trends Vegetation vegetation dynamic Vegetation dynamics |
| SummonAdditionalLinks | – databaseName: Publicly Available Content Database dbid: PIMPY link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9NAEF1BikQvfFcECpoDiEut-HO9ywWZ0AgkWkUIUDhZ69l1WgpOiR2k9NfwU5lxNgUOcOLqtbQrzfPM7PjNGyGehFphjK4iCyR5kJpIBtqkGBhVafKZDhPbi7i-zY-P1Wymp749uvW0yq1P7B31Ru2ZedvkhEd2gVwxHxEMKbAnUsYvzr8FPEOK_7X6gRpXxQ4Lb4UDsTN9czT9dFlzYQ1MlWYb_ntCt_0RswcjjmlxGv8RmXoB_7-56T72TG7-31PfEjd8DgrFBjS3xRXX3BHXty3K7V3xo2jgsDnpyQHQ1wwJj8BX1iCGyeriYg3j4MhRlIPiy5x26E6-AmW_fo3bSoDLbq4FHv2JpmVyNSxq-Ojmnt8Ir9aN4e2eQwFjiqXAlMY1cL8LUFYKxVm7gneO-dIHMDttPhOQ5wfQD_y-Jz5MDt-PXwd-lEOAicy6wBqkPCPDSpk8N4g2qmyY1ZG2WS0xR0ydVDUlH6we73SiyDeoxMoctQkzSkn3xKBZNO6-gJpMZTLK8kIky9m0spWrUbkkza3WcTgUT7dmLM83ih0l3XTY3OXv5h6Kl2zjy3dYZ7t_sFjOS__ZlpmLMMXQZhpVSrmgUtLllbYypEObXA7FM0ZIyd6gWxo0vqmBjsq6WmWh-v_SsYqGYn-LkNK7ibb8BYgH_15-KHZjHjzcl3_2xaBbrtwjcQ2_d6ft8rHH-U-n3g6u priority: 102 providerName: ProQuest |
| Title | An Enhanced Interval Type-2 Fuzzy C-Means Algorithm for Fuzzy Time Series Forecasting of Vegetation Dynamics: A Case Study from the Aksu Region, Xinjiang, China |
| URI | https://www.proquest.com/docview/3223923662 https://doaj.org/article/5e1c4c0d59c84125886e7b9d60c7ca76 |
| Volume | 14 |
| WOSCitedRecordID | wos001516687100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2073-445X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913845 issn: 2073-445X databaseCode: DOA dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-445X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913845 issn: 2073-445X databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Environmental Science Database (subscripiton) customDbUrl: eissn: 2073-445X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913845 issn: 2073-445X databaseCode: PATMY dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2073-445X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913845 issn: 2073-445X databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2073-445X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913845 issn: 2073-445X databaseCode: PIMPY dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LbxNBDB6hggQXVF4ipVQ-gLh01X3PTG_bkAgkGkUVoHBazXpm0-cGZROk9tfwU7FnNygcEBeO-ziMbI_9ecb-LMSbUCuM0VWkgUQGqYnyQJsUA6MqTT7TYWI9iesnOZmo2UxPt0Z9cU1YRw_cCe4ocxGmGNpMo0opGiuVO1lpm4co0UhPth1KvZVMeR-so0SlWVfpnlBef8R1ghFHrziN_4hBnqr_bw7ZR5nxrnjcw0MoumU9Efdc81Q83HQPt8_Ez6KBUXPu7-3BH-eRqQBnk0EM4_Xd3S0Mg1NHAQiK6_mCUv_zGyBg2n_jjg_gEzHXAk_lRNNy3TMsavjq5n3pIbzvxtS3x1DAkMIccLXhLXArChBghOKqXcOZ41LmQ5hdNJdkY_ND8LO4n4sv49Hn4Yegn7IQYJJnq8AaJAiQYaWMlAbRRpUNszrSNqtzkjGmLlc14QImdnc6UbRtVWJzidqEGaHFF2KnWTTupYCaZGsyAmAhkqhtWtnK1ahckkqrdRwOxNuN3MvvHZlGSUkI66fc1s9AnLBSfv_DFNj-BRlG2RtG-S_DGIh3rNKSN-pqadD0_Qa0VKa8Kgvlr4xjFQ3E_kbrZb-D25IcHUHHJM_jvf-xmlfiUcyTg_35zb7YWS3X7rV4gD9WF-3yQNw_GU2mZwfeiOlp-vF0-u0X45v2zw |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VKVK58EYECsyBikut-u1dJIRM2qhRkyhCBYWTu55dp-XhlDgBpb-GX8BvZMZxChzg1gNX25LX62_nm539ZkaIZ66S6KPN6Q8EiRNqL3aUDtHRMldkMy0Gpi7i2k-GQzkeq9GG-LHOhWFZ5dom1obaTJFj5HsEPKLyII79V-dfHO4axaer6xYaK1gc2eU32rJVL3v79H93fL97cNw5dJquAg4GcTR3jEaivAhzqZNEIxovN25UeMpERYwJYmhjWRAPciFzqwJJMJWBiRNU2o0iDoCSyd8MCexuS2yOeoPR-8uoDlfZlGG0UtgHgXL3WJ_oMWv6of8H99UtAv5GBDW7dW_-b_NyS9xo_GhIV8C_LTZseUdsrdOsq7vie1rCQXlaCxygjnvSmgLedjs-dBcXF0voOANLTA3ppwl90fz0M5AH39zj1Bjg0KGtgNuXoq5YIA7TAt7ZSaPRhP1lqfl1LyCFDvkDwLLMJXDODpBnDenHagFvLGu-d2F8Vn6gxTjZhbpp-T3x9kom6L5oldPSPhBQEBh0RJ6qi4QNE-YmtwVKG4SJUcp322JnDZTsfFV1JKPdGgMq-x1QbfGaUXT5DNcKry9MZ5OsMT1ZZD0M0TWRQhmSPytlbJNcmdilQeskbovnjMGMLdp8plE3iRk0VK4NlqWyPlv3pdcW22sMZo2pq7JfAHz479tPxdbh8aCf9XvDo0fius-NlOtw1rZozWcL-1hcw6_zs2r2pFlVIE6uGrA_Afv0X9Y |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEF5VKQIuvBGBAnOg4lKrfnsXCSE3D1G1RFEFKDd3PbtOy8MpcQJKfw2_g1_HjGMXOMCtB65eS17vfvPY2W9mhHjmKok-2px2IEicUHuxo3SIjpa5Ip1pMTB1EdfDZDSSk4kab4gfbS4M0ypbnVgrajNDjpHvEvDIlAdx7O8WDS1i3B--OvvicAcpvmlt22msIXJgV9_o-Fa93O_TXm_7_nDwtvfaaToMOBjE0cIxGsn8RZhLnSQa0Xi5caPCUyYqYkwQQxvLgmwiFzW3KpAEWRmYOEGl3SjiYCip_80koENPR2zuDUbjo4sID1fclGG0ZtsHgXJ3mavosQX1Q_8PO1i3C_ibUagt3fDm_7xGt8SNxr-GdC0Qt8WGLe-Ia236dXVXfE9LGJQnNfEB6ngoyRrwcdzxYbg8P19Bz3ljyYJD-mlKf7Q4-Qzk2TdjnDIDHFK0FXBbU9QVE8dhVsB7O224m9BflZo_9wJS6JGfAEzXXAHn8gB53JB-rJZwZJkLvgOT0_IDCel0B-pm5vfEu0tZoPuiU85K-0BAQcDQEXmwLhJOTJib3BYobRAmRinf7YrtFjTZ2boaSUanOAZX9ju4umKPEXXxDtcQrx_M5tOsUUlZZD0M0TWRQhmSnytlbJNcmdilSesk7ornjMeMNd1irlE3CRs0Va4ZlqWyvnP3pdcVWy0es0YFVtkvMD789_BTcZVQmh3ujw4eies-91euo1xborOYL-1jcQW_Lk6r-ZNGwEAcXzZefwIafWhw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Enhanced+Interval+Type-2+Fuzzy+C-Means+Algorithm+for+Fuzzy+Time+Series+Forecasting+of+Vegetation+Dynamics%3A+A+Case+Study+from+the+Aksu+Region%2C+Xinjiang%2C+China&rft.jtitle=Land+%28Basel%29&rft.au=Chen%2C+Yongqi&rft.au=Liu%2C+Li&rft.au=Cao%2C+Jinhua&rft.au=Wang%2C+Kexin&rft.date=2025-06-01&rft.issn=2073-445X&rft.eissn=2073-445X&rft.volume=14&rft.issue=6&rft.spage=1242&rft_id=info:doi/10.3390%2Fland14061242&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_land14061242 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-445X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-445X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-445X&client=summon |