Low-rank Gaussian mixture modeling of space-snapshot representation of microphone array measurements for acoustic imaging in a complex noisy environment

•Space-snapshot representation for acoustic imaging in a complex, noisy environment is investigated.•Low rank and Mixture of Gaussian modeling are proposed to achieve significant denoising performance.•Comparisons with other methods are made in simulations and experiments to verify the effect of the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mechanical systems and signal processing Jg. 165; S. 108294
Hauptverfasser: Yu, Liang, Antoni, Jerome, Deng, Jiayu, Li, Cong, Jiang, Weikang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Berlin Elsevier Ltd 15.02.2022
Elsevier BV
Elsevier
Schlagworte:
ISSN:0888-3270, 1096-1216
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Space-snapshot representation for acoustic imaging in a complex, noisy environment is investigated.•Low rank and Mixture of Gaussian modeling are proposed to achieve significant denoising performance.•Comparisons with other methods are made in simulations and experiments to verify the effect of the state-of-the-art methods. The microphone array can simultaneously obtain the multi-dimensional information (space-time-frequency) of sound sources, which is recognized as a fundamental and powerful tool in acoustic imaging. Acoustic Beamforming is one of the widely used methods in acoustic imaging. However, most of the applications of beamforming are based on the Gaussian noise assumption, which is not always accurate in on-site measurements. For example, shock noise with a skewed probability density function (PDF) may appear on the signal record when the turbulent eddies are not controlled. Thus, in this paper, the conventional Gaussian noise model is extended to a Gaussian mixture noise model, which can approximate any probability distribution of the noise in theory. The space-snapshot representation of microphone array measurements is further modeled as a combination of the low-rank matrix part (measurements from the sound sources) and a Gaussian mixture matrix part (measurement noise). The signal from the sources of interest is finally recovered by the Expectation–maximization algorithm, which iterates between the low-rank approximation of the sound sources and the estimation of the parameter of the Gaussian mixture model. The proposed method is further investigated with simulations and compared with robust principal component analysis (RPCA) and Gaussian-based probabilistic factor analysis (PFA). It is concluded that the proposed method outperforms the state-of-the-art denoising methods.
AbstractList •Space-snapshot representation for acoustic imaging in a complex, noisy environment is investigated.•Low rank and Mixture of Gaussian modeling are proposed to achieve significant denoising performance.•Comparisons with other methods are made in simulations and experiments to verify the effect of the state-of-the-art methods. The microphone array can simultaneously obtain the multi-dimensional information (space-time-frequency) of sound sources, which is recognized as a fundamental and powerful tool in acoustic imaging. Acoustic Beamforming is one of the widely used methods in acoustic imaging. However, most of the applications of beamforming are based on the Gaussian noise assumption, which is not always accurate in on-site measurements. For example, shock noise with a skewed probability density function (PDF) may appear on the signal record when the turbulent eddies are not controlled. Thus, in this paper, the conventional Gaussian noise model is extended to a Gaussian mixture noise model, which can approximate any probability distribution of the noise in theory. The space-snapshot representation of microphone array measurements is further modeled as a combination of the low-rank matrix part (measurements from the sound sources) and a Gaussian mixture matrix part (measurement noise). The signal from the sources of interest is finally recovered by the Expectation–maximization algorithm, which iterates between the low-rank approximation of the sound sources and the estimation of the parameter of the Gaussian mixture model. The proposed method is further investigated with simulations and compared with robust principal component analysis (RPCA) and Gaussian-based probabilistic factor analysis (PFA). It is concluded that the proposed method outperforms the state-of-the-art denoising methods.
The microphone array can simultaneously obtain the multi-dimensional information (space-time-frequency) of sound sources, which is recognized as a fundamental and powerful tool in acoustic imaging. Acoustic Beamforming is one of the widely used methods in acoustic imaging. However, most of the applications of beamforming are based on the Gaussian noise assumption, which is not always accurate in on-site measurements. For example, shock noise with a skewed probability density function (PDF) may appear on the signal record when the turbulent eddies are not controlled. Thus, in this paper, the conventional Gaussian noise model is extended to a Gaussian mixture noise model, which can approximate any probability distribution of the noise in theory. The space-snapshot representation of microphone array measurements is further modeled as a combination of the low-rank matrix part (measurements from the sound sources) and a Gaussian mixture matrix part (measurement noise). The signal from the sources of interest is finally recovered by the Expectation–maximization algorithm, which iterates between the low-rank approximation of the sound sources and the estimation of the parameter of the Gaussian mixture model. The proposed method is further investigated with simulations and compared with robust principal component analysis (RPCA) and Gaussian-based probabilistic factor analysis (PFA). It is concluded that the proposed method outperforms the state-of-the-art denoising methods.
ArticleNumber 108294
Author Li, Cong
Antoni, Jerome
Deng, Jiayu
Yu, Liang
Jiang, Weikang
Author_xml – sequence: 1
  givenname: Liang
  surname: Yu
  fullname: Yu, Liang
  organization: Institute of Vibration, Shock and Noise, State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, 200240 Shanghai, China
– sequence: 2
  givenname: Jerome
  surname: Antoni
  fullname: Antoni, Jerome
  organization: Université de Lyon, INSALyon, LVA, F-69621 Villeurbanne, France
– sequence: 3
  givenname: Jiayu
  surname: Deng
  fullname: Deng, Jiayu
  organization: Hagong Intelligent Robot Co., Ltd, 201100 Shanghai, China
– sequence: 4
  givenname: Cong
  surname: Li
  fullname: Li, Cong
  organization: Shanghai Hangyi Research Institute of High-tech Development, 200433 Shanghai, China
– sequence: 5
  givenname: Weikang
  surname: Jiang
  fullname: Jiang, Weikang
  email: wkjiang@sjtu.edu.cn
  organization: Institute of Vibration, Shock and Noise, State Key Laboratory of Mechanical System and Vibration, Shanghai Jiao Tong University, 200240 Shanghai, China
BackLink https://hal.science/hal-03644656$$DView record in HAL
BookMark eNqFkUFv1DAUhC1UJLaFX8DFEicO2dpx4jgHDlVFW6SVuMDZeuu8dL0kdrCdpftP-Lk4BPXAAU5PeppvNJq5JBfOOyTkLWdbzri8Pm7PY4zTtmQlzx9VttULsuGslQUvubwgG6aUKkTZsFfkMsYjY6ytmNyQnzv_owjgvtF7mGO04Ohon9IckI6-w8G6R-p7GicwWEQHUzz4RANOASO6BMl6twhGa4KfDjkWhRDgTEeEmF3GLIq094GC8XNM1lA7wuNiax0Favw4DfhEnbfxTNGdbPBugV6Tlz0MEd_8uVfk693HL7cPxe7z_afbm11hhKxT0fEGqn1dy1Zhs-9FYyresgrrXihQqJqq6xVwxqq2FG2jRJ87gAZLiaI39V5ckfer7wEGPYUcLpy1B6sfbnZ6-TEhq0rW8sSz9t2qnYL_PmNM-ujn4HI8Xcq8A2Nl3WaVWFW5kRgD9s-2nOllLn3Uv-fSy1x6nStT7V-UsWu9KYAd_sN-WFnMRZ0sBh2NRWewswFN0p23_-R_Acletz0
CitedBy_id crossref_primary_10_1016_j_ymssp_2023_110181
crossref_primary_10_1109_TIM_2025_3561398
crossref_primary_10_1016_j_ijmecsci_2024_109390
crossref_primary_10_1016_j_measurement_2022_110800
crossref_primary_10_1121_10_0026439
crossref_primary_10_1007_s00521_023_08843_z
crossref_primary_10_1016_j_jsv_2025_119167
crossref_primary_10_1016_j_jsv_2024_118654
crossref_primary_10_1016_j_ymssp_2025_112463
Cites_doi 10.1186/s13636-018-0130-z
10.1109/TSP.2007.893923
10.1016/j.ymssp.2018.04.028
10.1016/j.jsv.2015.11.036
10.1109/TIP.2011.2176743
10.1109/TSP.2018.2870357
10.1016/j.jsv.2018.10.030
10.1121/10.0001098
10.1121/1.3478780
10.1121/1.4997923
10.1115/1.4040521
10.1016/j.ymssp.2020.107370
10.1121/1.5023685
10.2514/6.2008-2855
10.2514/6.2007-3446
10.1016/j.ymssp.2018.09.019
10.1016/j.ultras.2004.12.005
10.1121/1.5116010
10.1023/A:1023709501986
10.2514/6.2011-2715
10.1016/j.jsv.2005.12.046
10.1016/j.apacoust.2010.09.004
10.1111/j.2517-6161.1977.tb01600.x
10.2514/6.2007-3436
10.1007/978-3-662-05058-3
10.1177/1475472X17718883
10.1121/1.5138930
10.1121/10.0000496
10.1016/j.jsv.2016.02.031
10.1007/s13272-019-00383-4
10.1121/10.0000983
10.1109/ACCESS.2020.2991606
10.1016/j.ymssp.2019.02.011
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright Elsevier BV Feb 15, 2022
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: Copyright Elsevier BV Feb 15, 2022
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
1XC
DOI 10.1016/j.ymssp.2021.108294
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1096-1216
ExternalDocumentID oai:HAL:hal-03644656v1
10_1016_j_ymssp_2021_108294
S0888327021006592
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG5
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SST
SSV
SSZ
T5K
XPP
ZMT
ZU3
~G-
29M
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CAG
CITATION
COF
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
WUQ
~HD
7SC
7SP
8FD
AGCQF
JQ2
L7M
L~C
L~D
1XC
ID FETCH-LOGICAL-c365t-d17a4b55698e7bf37c41904e5f38a8e874df8a10049239783f270a7e26e3fc5b3
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000704878800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0888-3270
IngestDate Tue Oct 14 20:14:29 EDT 2025
Sun Sep 07 03:48:33 EDT 2025
Sat Nov 29 07:16:58 EST 2025
Tue Nov 18 22:00:36 EST 2025
Fri Feb 23 02:42:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Noise modeling
Microphone array measurements
Acoustic imaging
Gaussian mixture model
Language English
License Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c365t-d17a4b55698e7bf37c41904e5f38a8e874df8a10049239783f270a7e26e3fc5b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4128-476X
PQID 2601600259
PQPubID 2045429
ParticipantIDs hal_primary_oai_HAL_hal_03644656v1
proquest_journals_2601600259
crossref_primary_10_1016_j_ymssp_2021_108294
crossref_citationtrail_10_1016_j_ymssp_2021_108294
elsevier_sciencedirect_doi_10_1016_j_ymssp_2021_108294
PublicationCentury 2000
PublicationDate 2022-02-15
PublicationDateYYYYMMDD 2022-02-15
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-15
  day: 15
PublicationDecade 2020
PublicationPlace Berlin
PublicationPlace_xml – name: Berlin
PublicationTitle Mechanical systems and signal processing
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Elsevier
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
– name: Elsevier
References A. Dinsenmeyer, J. Antoni, Q. Leclere, A. Pereira, On the denoising of cross-spectral matrices for (aero)acoustic applications, in: 7th Berlin Beamforming Conf. 2018, 2018.
Yu, Sapiro, Mallat (b0170) 2012; 21
J. Hald, Cross-spectral matrix diagonal reconstruction, in: Proc. INTER-NOISE 2016 - 45th Int. Congr. Expo. Noise Control Eng. Towar. a Quieter Futur., 2016.
T.B. Spalt, C.R. Fuller, T.F. Brooks, W.M. Humphrey, A background noise reduction technique using adaptive noise cancellation for microphone arrays, in: 17th AIAA/CEAS Aeroacoustics Conf. 2011 (32nd AIAA Aeroacoustics Conf., 2011. doi: 10.2514/6.2011-2715.
Dempster, Laird, Rubin (b0175) 1977; 39
De La Torre, Black (b0195) 2003
Kurz, Grosse, Reinhardt (b0155) 2005; 43
Dinsenmeyer, Antoni, Leclère, Pereira (b0130) 2020; 147
Beheshti, Sedghizadeh (b0160) 2018; 66
Chu, Ning, Yu, Huang, Wu (b0070) 2020; 8
Brooks, Humphreys (b0035) 2006; 294
A. Finez, A. Pereira, Q. Leclere, Broadband mode decomposition of ducted fan noise using cross-spectral matrix denoising, in: FAN 2015 – Int. Conf. Fan Noise, Technol. Numer. Methods, 2015.
Wang, Quost, Chazot, Antoni (b0200) 2016; 365
V. Fleury, J. Bulté, R. Dav, Determination of acoustic directivity from microphone array measurements using correlated monopoles, in: 14th AIAA/CEAS Aeroacoustics Conf. (29th AIAA Aeroacoustics Conf., 2008. doi: 10.2514/6.2008-2855.
Amailland, Thomas, Pézerat, Boucheron (b0120) 2018; 143
Arcondoulis, Liu, Xu, Chen (b0075) 2020; 147
Theodoridis (b0190) 2015
Xu, Tian, He, Zhang, Li (b0105) 2018
Snoussi, Mohammad-Djafari (b0185) 2007; 55
Leclère, Pereira, Bailly, Antoni, Picard (b0005) 2017; 16
Merino-Martínez, Sijtsma, Snellen, Ahlefeldt, Antoni, Bahr, Blacodon, Ernst, Finez, Funke, Geyer, Haxter, Herold, Huang, Humphreys, Leclère, Malgoezar, Michel, Padois, Pereira, Picard, Sarradj, Siller, Simons, Spehr (b0010) 2019; 10
Yang, Chu, Ping (b0050) 2019; 124
Blacodon (b0080) 2011; 72
Hald (b0135) 2019; 146
J. Bulté, Acoustic array measurements in aerodynamic wind tunnels: A subspace approach for noise suppression, in: 13th AIAA/CEAS Aeroacoustics Conf. (28th AIAA Aeroacoustics Conf., 2007. doi: 10.2514/6.2007-3446.
Antoni, Vanwynsberghe, Le Magueresse, Bouley, Gilquin (b0150) 2019; 146
Chu, Zhao, Yang, Yang (b0030) 2019; 440
Chiariotti, Martarelli, Castellini (b0020) 2019; 120
Allen, Blake, Dougherty, Lynch, Soderman, Underbrink, Dougherty (b0095) 2002
Park, Seong, Gerstoft (b0060) 2020; 147
Xu, Arcondoulis, Liu (b0065) 2021; 151
Meng, La Torre (b0165) 2013
Arguillat, Ricot, Bailly, Robert (b0085) 2010; 128
P. Sijtsma, CLEAN based on spatial source coherence, in: 13th AIAA/CEAS Aeroacoustics Conf. (28th AIAA Aeroacoustics Conf., 2007. doi: 10.1260/147547207783359459.
Grimm, Freudenberger (b0015) 2018; 2018
Hald (b0115) 2017; 142
J. Hald, K.B. Ginn, Cross-spectral matrix denoising for beamforming in wind tunnels, in: INTER-NOISE 2019 MADRID – 48th Int. Congr. Exhib. Noise Control Eng., 2019.
Bishop (b0180) 2006
Ning, Pan, Zhang, Liu, Li, Wei (b0055) 2018; 112
Yu, Antoni, Leclere (b0140) 2016; 372
Merino-Martínez (10.1016/j.ymssp.2021.108294_b0010) 2019; 10
Park (10.1016/j.ymssp.2021.108294_b0060) 2020; 147
Bishop (10.1016/j.ymssp.2021.108294_b0180) 2006
Wang (10.1016/j.ymssp.2021.108294_b0200) 2016; 365
Hald (10.1016/j.ymssp.2021.108294_b0135) 2019; 146
Chu (10.1016/j.ymssp.2021.108294_b0070) 2020; 8
10.1016/j.ymssp.2021.108294_b0110
Yu (10.1016/j.ymssp.2021.108294_b0170) 2012; 21
Xu (10.1016/j.ymssp.2021.108294_b0065) 2021; 151
Brooks (10.1016/j.ymssp.2021.108294_b0035) 2006; 294
10.1016/j.ymssp.2021.108294_b0090
Allen (10.1016/j.ymssp.2021.108294_b0095) 2002
Kurz (10.1016/j.ymssp.2021.108294_b0155) 2005; 43
Meng (10.1016/j.ymssp.2021.108294_b0165) 2013
De La Torre (10.1016/j.ymssp.2021.108294_b0195) 2003
10.1016/j.ymssp.2021.108294_b0025
Hald (10.1016/j.ymssp.2021.108294_b0115) 2017; 142
Theodoridis (10.1016/j.ymssp.2021.108294_b0190) 2015
Yu (10.1016/j.ymssp.2021.108294_b0140) 2016; 372
10.1016/j.ymssp.2021.108294_b0145
Chiariotti (10.1016/j.ymssp.2021.108294_b0020) 2019; 120
10.1016/j.ymssp.2021.108294_b0125
Amailland (10.1016/j.ymssp.2021.108294_b0120) 2018; 143
Arguillat (10.1016/j.ymssp.2021.108294_b0085) 2010; 128
10.1016/j.ymssp.2021.108294_b0040
Beheshti (10.1016/j.ymssp.2021.108294_b0160) 2018; 66
Ning (10.1016/j.ymssp.2021.108294_b0055) 2018; 112
Blacodon (10.1016/j.ymssp.2021.108294_b0080) 2011; 72
10.1016/j.ymssp.2021.108294_b0045
10.1016/j.ymssp.2021.108294_b0100
Chu (10.1016/j.ymssp.2021.108294_b0030) 2019; 440
Dinsenmeyer (10.1016/j.ymssp.2021.108294_b0130) 2020; 147
Xu (10.1016/j.ymssp.2021.108294_b0105) 2018
Dempster (10.1016/j.ymssp.2021.108294_b0175) 1977; 39
Leclère (10.1016/j.ymssp.2021.108294_b0005) 2017; 16
Grimm (10.1016/j.ymssp.2021.108294_b0015) 2018; 2018
Yang (10.1016/j.ymssp.2021.108294_b0050) 2019; 124
Arcondoulis (10.1016/j.ymssp.2021.108294_b0075) 2020; 147
Antoni (10.1016/j.ymssp.2021.108294_b0150) 2019; 146
Snoussi (10.1016/j.ymssp.2021.108294_b0185) 2007; 55
References_xml – volume: 143
  start-page: 2152
  year: 2018
  end-page: 2163
  ident: b0120
  article-title: Boundary layer noise subtraction in hydrodynamic tunnel using robust principal component analysis
  publication-title: J. Acoust. Soc. Am.
– volume: 146
  start-page: 399
  year: 2019
  end-page: 408
  ident: b0135
  article-title: Denoising of cross-spectral matrices using canonical coherence
  publication-title: J. Acoust. Soc. Am.
– volume: 146
  start-page: 4947
  year: 2019
  end-page: 4961
  ident: b0150
  article-title: Mapping uncertainties involved in sound source reconstruction with a cross-spectral-matrix-based Gibbs sampler
  publication-title: J. Acoust. Soc. Am.
– volume: 151
  start-page: 107370
  year: 2021
  ident: b0065
  article-title: Acoustic source imaging using densely connected convolutional networks
  publication-title: Mech. Syst. Signal Process.
– volume: 142
  start-page: 846
  year: 2017
  end-page: 854
  ident: b0115
  article-title: Removal of incoherent noise from an averaged cross-spectral matrix
  publication-title: J. Acoust. Soc. Am.
– start-page: 595
  year: 2015
  end-page: 639
  ident: b0190
  article-title: Machine Learning: A Bayesian and Optimization Perspective
– volume: 124
  start-page: 524
  year: 2019
  end-page: 540
  ident: b0050
  article-title: Two-dimensional multiple-snapshot grid-free compressive Beamforming
  publication-title: Mech. Syst. Signal Process.
– reference: J. Hald, K.B. Ginn, Cross-spectral matrix denoising for beamforming in wind tunnels, in: INTER-NOISE 2019 MADRID – 48th Int. Congr. Exhib. Noise Control Eng., 2019.
– year: 2018
  ident: b0105
  article-title: Denoising weighting beamforming method applied to sound source localization with airflow using microphone array
  publication-title: J. Vib. Acoust.
– reference: A. Finez, A. Pereira, Q. Leclere, Broadband mode decomposition of ducted fan noise using cross-spectral matrix denoising, in: FAN 2015 – Int. Conf. Fan Noise, Technol. Numer. Methods, 2015.
– volume: 39
  start-page: 1
  year: 1977
  end-page: 22
  ident: b0175
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B.
– volume: 294
  start-page: 856
  year: 2006
  end-page: 879
  ident: b0035
  article-title: A deconvolution approach for the mapping of acoustic sources (DAMAS) determined from phased microphone arrays
  publication-title: J. Sound Vib.
– volume: 440
  start-page: 161
  year: 2019
  end-page: 173
  ident: b0030
  article-title: Deconvolution using CLEAN-SC for acoustic source identification with spherical microphone arrays
  publication-title: J. Sound Vib.
– volume: 147
  start-page: EL7
  year: 2020
  end-page: EL12
  ident: b0075
  article-title: An array pairing method for localizing distributed sources by acoustic beamforming
  publication-title: J. Acoust. Soc. Am.
– volume: 128
  start-page: 1647
  year: 2010
  end-page: 1655
  ident: b0085
  article-title: Measured wavenumber: Frequency spectrum associated with acoustic and aerodynamic wall pressure fluctuations
  publication-title: J. Acoust. Soc. Am.
– reference: A. Dinsenmeyer, J. Antoni, Q. Leclere, A. Pereira, On the denoising of cross-spectral matrices for (aero)acoustic applications, in: 7th Berlin Beamforming Conf. 2018, 2018.
– volume: 72
  start-page: 11
  year: 2011
  end-page: 21
  ident: b0080
  article-title: Spectral estimation method for noisy data using a noise reference
  publication-title: Appl. Acoust.
– volume: 8
  start-page: 82500
  year: 2020
  end-page: 82513
  ident: b0070
  article-title: A high-resolution and low-frequency acoustic beamforming based on bayesian inference and non-synchronous measurements
  publication-title: IEEE Access.
– volume: 120
  start-page: 422
  year: 2019
  end-page: 448
  ident: b0020
  article-title: Acoustic Beamforming for noise source localization – reviews, methodology and applications
  publication-title: Mech. Syst. Signal Process.
– year: 2003
  ident: b0195
  article-title: A framework for robust subspace learning
  publication-title: Int. J. Comput. Vis.
– volume: 16
  start-page: 431
  year: 2017
  end-page: 456
  ident: b0005
  article-title: A unified formalism for acoustic imaging based on microphone array measurements
  publication-title: Int. J. Aeroacoustics
– year: 2002
  ident: b0095
  article-title: Beamforming in acoustic testing
  publication-title: Aeroacoustic Meas.
– volume: 55
  start-page: 3185
  year: 2007
  end-page: 3191
  ident: b0185
  article-title: Estimation of structured Gaussian mixtures: The inverse EM algorithm
  publication-title: IEEE Trans. Signal Process.
– volume: 2018
  year: 2018
  ident: b0015
  article-title: Wind noise reduction for a closely spaced microphone array in a car environment
  publication-title: Eurasip J. Audio, Speech, Music Process.
– start-page: 423
  year: 2006
  end-page: 454
  ident: b0180
  article-title: Machine Learning and Pattern Recoginiton
– reference: V. Fleury, J. Bulté, R. Dav, Determination of acoustic directivity from microphone array measurements using correlated monopoles, in: 14th AIAA/CEAS Aeroacoustics Conf. (29th AIAA Aeroacoustics Conf., 2008. doi: 10.2514/6.2008-2855.
– volume: 43
  start-page: 538
  year: 2005
  end-page: 546
  ident: b0155
  article-title: Strategies for reliable automatic onset time picking of acoustic emissions and of ultrasound signals in concrete
  publication-title: Ultrasonics
– volume: 147
  start-page: 2184
  year: 2020
  end-page: 2191
  ident: b0060
  article-title: Block-sparse two-dimensional off-grid beamforming with arbitrary planar array geometry
  publication-title: J. Acoust. Soc. Am.
– volume: 66
  start-page: 5694
  year: 2018
  end-page: 5704
  ident: b0160
  article-title: Number of source signal estimation by the mean squared eigenvalue error
  publication-title: IEEE Trans. Signal Process.
– reference: J. Hald, Cross-spectral matrix diagonal reconstruction, in: Proc. INTER-NOISE 2016 - 45th Int. Congr. Expo. Noise Control Eng. Towar. a Quieter Futur., 2016.
– year: 2013
  ident: b0165
  article-title: Robust matrix factorization with unknown noise
  publication-title: Proc. IEEE Int. Conf. Comput. Vis.
– reference: J. Bulté, Acoustic array measurements in aerodynamic wind tunnels: A subspace approach for noise suppression, in: 13th AIAA/CEAS Aeroacoustics Conf. (28th AIAA Aeroacoustics Conf., 2007. doi: 10.2514/6.2007-3446.
– volume: 10
  start-page: 197
  year: 2019
  end-page: 230
  ident: b0010
  article-title: A review of acoustic imaging methods using phased microphone arrays
  publication-title: CEAS Aeronaut. J.
– volume: 112
  start-page: 113
  year: 2018
  end-page: 128
  ident: b0055
  article-title: A highly efficient compressed sensing algorithm for acoustic imaging in low signal-to-noise ratio environments
  publication-title: Mech. Syst. Signal Process.
– volume: 21
  start-page: 2481
  year: 2012
  end-page: 2499
  ident: b0170
  article-title: Solving inverse problems with piecewise linear estimators: from Gaussian mixture models to structured sparsity
  publication-title: IEEE Trans. Image Process.
– reference: T.B. Spalt, C.R. Fuller, T.F. Brooks, W.M. Humphrey, A background noise reduction technique using adaptive noise cancellation for microphone arrays, in: 17th AIAA/CEAS Aeroacoustics Conf. 2011 (32nd AIAA Aeroacoustics Conf., 2011. doi: 10.2514/6.2011-2715.
– volume: 372
  start-page: 31
  year: 2016
  end-page: 49
  ident: b0140
  article-title: Spectral matrix completion by Cyclic Projection and application to sound source reconstruction from non-synchronous measurements
  publication-title: J. Sound Vib.
– reference: P. Sijtsma, CLEAN based on spatial source coherence, in: 13th AIAA/CEAS Aeroacoustics Conf. (28th AIAA Aeroacoustics Conf., 2007. doi: 10.1260/147547207783359459.
– volume: 147
  start-page: 3108
  year: 2020
  end-page: 3123
  ident: b0130
  article-title: A probabilistic approach for cross-spectral matrix denoising: benchmarking with some recent methods
  publication-title: J. Acoust. Soc. Am.
– volume: 365
  start-page: 260
  year: 2016
  end-page: 275
  ident: b0200
  article-title: Iterative beamforming for identification of multiple broadband sound sources
  publication-title: J. Sound Vib.
– volume: 2018
  issue: 1
  year: 2018
  ident: 10.1016/j.ymssp.2021.108294_b0015
  article-title: Wind noise reduction for a closely spaced microphone array in a car environment
  publication-title: Eurasip J. Audio, Speech, Music Process.
  doi: 10.1186/s13636-018-0130-z
– year: 2013
  ident: 10.1016/j.ymssp.2021.108294_b0165
  article-title: Robust matrix factorization with unknown noise
  publication-title: Proc. IEEE Int. Conf. Comput. Vis.
– volume: 55
  start-page: 3185
  issue: 7
  year: 2007
  ident: 10.1016/j.ymssp.2021.108294_b0185
  article-title: Estimation of structured Gaussian mixtures: The inverse EM algorithm
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2007.893923
– volume: 112
  start-page: 113
  year: 2018
  ident: 10.1016/j.ymssp.2021.108294_b0055
  article-title: A highly efficient compressed sensing algorithm for acoustic imaging in low signal-to-noise ratio environments
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.04.028
– volume: 365
  start-page: 260
  year: 2016
  ident: 10.1016/j.ymssp.2021.108294_b0200
  article-title: Iterative beamforming for identification of multiple broadband sound sources
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2015.11.036
– ident: 10.1016/j.ymssp.2021.108294_b0145
– volume: 21
  start-page: 2481
  issue: 5
  year: 2012
  ident: 10.1016/j.ymssp.2021.108294_b0170
  article-title: Solving inverse problems with piecewise linear estimators: from Gaussian mixture models to structured sparsity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2176743
– volume: 66
  start-page: 5694
  issue: 21
  year: 2018
  ident: 10.1016/j.ymssp.2021.108294_b0160
  article-title: Number of source signal estimation by the mean squared eigenvalue error
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2018.2870357
– volume: 440
  start-page: 161
  year: 2019
  ident: 10.1016/j.ymssp.2021.108294_b0030
  article-title: Deconvolution using CLEAN-SC for acoustic source identification with spherical microphone arrays
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2018.10.030
– volume: 147
  start-page: 3108
  issue: 5
  year: 2020
  ident: 10.1016/j.ymssp.2021.108294_b0130
  article-title: A probabilistic approach for cross-spectral matrix denoising: benchmarking with some recent methods
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/10.0001098
– volume: 128
  start-page: 1647
  issue: 4
  year: 2010
  ident: 10.1016/j.ymssp.2021.108294_b0085
  article-title: Measured wavenumber: Frequency spectrum associated with acoustic and aerodynamic wall pressure fluctuations
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.3478780
– ident: 10.1016/j.ymssp.2021.108294_b0110
– volume: 142
  start-page: 846
  issue: 2
  year: 2017
  ident: 10.1016/j.ymssp.2021.108294_b0115
  article-title: Removal of incoherent noise from an averaged cross-spectral matrix
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.4997923
– year: 2018
  ident: 10.1016/j.ymssp.2021.108294_b0105
  article-title: Denoising weighting beamforming method applied to sound source localization with airflow using microphone array
  publication-title: J. Vib. Acoust.
  doi: 10.1115/1.4040521
– volume: 151
  start-page: 107370
  year: 2021
  ident: 10.1016/j.ymssp.2021.108294_b0065
  article-title: Acoustic source imaging using densely connected convolutional networks
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2020.107370
– volume: 143
  start-page: 2152
  issue: 4
  year: 2018
  ident: 10.1016/j.ymssp.2021.108294_b0120
  article-title: Boundary layer noise subtraction in hydrodynamic tunnel using robust principal component analysis
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.5023685
– ident: 10.1016/j.ymssp.2021.108294_b0045
  doi: 10.2514/6.2008-2855
– ident: 10.1016/j.ymssp.2021.108294_b0090
  doi: 10.2514/6.2007-3446
– volume: 120
  start-page: 422
  year: 2019
  ident: 10.1016/j.ymssp.2021.108294_b0020
  article-title: Acoustic Beamforming for noise source localization – reviews, methodology and applications
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.09.019
– volume: 43
  start-page: 538
  issue: 7
  year: 2005
  ident: 10.1016/j.ymssp.2021.108294_b0155
  article-title: Strategies for reliable automatic onset time picking of acoustic emissions and of ultrasound signals in concrete
  publication-title: Ultrasonics
  doi: 10.1016/j.ultras.2004.12.005
– volume: 146
  start-page: 399
  issue: 1
  year: 2019
  ident: 10.1016/j.ymssp.2021.108294_b0135
  article-title: Denoising of cross-spectral matrices using canonical coherence
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.5116010
– year: 2003
  ident: 10.1016/j.ymssp.2021.108294_b0195
  article-title: A framework for robust subspace learning
  publication-title: Int. J. Comput. Vis.
  doi: 10.1023/A:1023709501986
– ident: 10.1016/j.ymssp.2021.108294_b0040
  doi: 10.2514/6.2011-2715
– ident: 10.1016/j.ymssp.2021.108294_b0100
– start-page: 595
  year: 2015
  ident: 10.1016/j.ymssp.2021.108294_b0190
– volume: 294
  start-page: 856
  issue: 4-5
  year: 2006
  ident: 10.1016/j.ymssp.2021.108294_b0035
  article-title: A deconvolution approach for the mapping of acoustic sources (DAMAS) determined from phased microphone arrays
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2005.12.046
– volume: 72
  start-page: 11
  issue: 1
  year: 2011
  ident: 10.1016/j.ymssp.2021.108294_b0080
  article-title: Spectral estimation method for noisy data using a noise reference
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2010.09.004
– ident: 10.1016/j.ymssp.2021.108294_b0125
– start-page: 423
  year: 2006
  ident: 10.1016/j.ymssp.2021.108294_b0180
– volume: 39
  start-page: 1
  issue: 1
  year: 1977
  ident: 10.1016/j.ymssp.2021.108294_b0175
  article-title: Maximum likelihood from incomplete data via the EM algorithm
  publication-title: J. R. Stat. Soc. Ser. B.
  doi: 10.1111/j.2517-6161.1977.tb01600.x
– ident: 10.1016/j.ymssp.2021.108294_b0025
  doi: 10.2514/6.2007-3436
– year: 2002
  ident: 10.1016/j.ymssp.2021.108294_b0095
  article-title: Beamforming in acoustic testing
  publication-title: Aeroacoustic Meas.
  doi: 10.1007/978-3-662-05058-3
– volume: 16
  start-page: 431
  issue: 4-5
  year: 2017
  ident: 10.1016/j.ymssp.2021.108294_b0005
  article-title: A unified formalism for acoustic imaging based on microphone array measurements
  publication-title: Int. J. Aeroacoustics
  doi: 10.1177/1475472X17718883
– volume: 146
  start-page: 4947
  issue: 6
  year: 2019
  ident: 10.1016/j.ymssp.2021.108294_b0150
  article-title: Mapping uncertainties involved in sound source reconstruction with a cross-spectral-matrix-based Gibbs sampler
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/1.5138930
– volume: 147
  start-page: EL7
  issue: 1
  year: 2020
  ident: 10.1016/j.ymssp.2021.108294_b0075
  article-title: An array pairing method for localizing distributed sources by acoustic beamforming
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/10.0000496
– volume: 372
  start-page: 31
  year: 2016
  ident: 10.1016/j.ymssp.2021.108294_b0140
  article-title: Spectral matrix completion by Cyclic Projection and application to sound source reconstruction from non-synchronous measurements
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2016.02.031
– volume: 10
  start-page: 197
  issue: 1
  year: 2019
  ident: 10.1016/j.ymssp.2021.108294_b0010
  article-title: A review of acoustic imaging methods using phased microphone arrays
  publication-title: CEAS Aeronaut. J.
  doi: 10.1007/s13272-019-00383-4
– volume: 147
  start-page: 2184
  issue: 4
  year: 2020
  ident: 10.1016/j.ymssp.2021.108294_b0060
  article-title: Block-sparse two-dimensional off-grid beamforming with arbitrary planar array geometry
  publication-title: J. Acoust. Soc. Am.
  doi: 10.1121/10.0000983
– volume: 8
  start-page: 82500
  year: 2020
  ident: 10.1016/j.ymssp.2021.108294_b0070
  article-title: A high-resolution and low-frequency acoustic beamforming based on bayesian inference and non-synchronous measurements
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2020.2991606
– volume: 124
  start-page: 524
  year: 2019
  ident: 10.1016/j.ymssp.2021.108294_b0050
  article-title: Two-dimensional multiple-snapshot grid-free compressive Beamforming
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.02.011
SSID ssj0009406
Score 2.4136248
Snippet •Space-snapshot representation for acoustic imaging in a complex, noisy environment is investigated.•Low rank and Mixture of Gaussian modeling are proposed to...
The microphone array can simultaneously obtain the multi-dimensional information (space-time-frequency) of sound sources, which is recognized as a fundamental...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108294
SubjectTerms Acoustic imaging
Acoustics
Algorithms
Arrays
Beamforming
Factor analysis
Gaussian beams (optics)
Gaussian mixture model
Mechanics
Microphone array measurements
Noise
Noise measurement
Noise modeling
Physics
Principal components analysis
Probabilistic models
Probability density functions
Random noise
Representations
Sound sources
Statistical analysis
Title Low-rank Gaussian mixture modeling of space-snapshot representation of microphone array measurements for acoustic imaging in a complex noisy environment
URI https://dx.doi.org/10.1016/j.ymssp.2021.108294
https://www.proquest.com/docview/2601600259
https://hal.science/hal-03644656
Volume 165
WOSCitedRecordID wos000704878800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1096-1216
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009406
  issn: 0888-3270
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLW6jQd4QHxqHQNZiLeQiSR24jxW02CgMvEwpL5FrutomdakatrS_pP9GH4cvv5I0gEVe-AliizbsXJP7Gvn3HMRehdNAiEVTvwxk9QnUkpfQVl9V4J84ILFk0DqQOFhcnHBRqP0W6_308XCrG6SsmTrdTr7r6ZWZcrYEDp7D3M3naoCda-Mrq7K7Or6T4YfVj98yMTufeLLWodITou1_k-gs95YlrOaSIT065LP6qtq4WltSxeHpD3IKTD1gLguPT6f8403bU8Ta8O9FJVOBeYVU5PqqCgh1BI46nLtlVVRb7pxdF03-KuEgGMTkWkk0_VPDCCTQGSYCV5wi6pOG2bOD3hbNIDkx4Uh6DSSC-CRS8sxLvhm6QqHuuJpZZvbUw61QYacK3RrMmR-FJokI83MHdPO3BtAmDD547JgTiiuTzbTugaR0jA4aWtvi3DfWRwbyqJjw11nupMMOslMJ3voIExoqpaFg8Hns9GXVvSZ6Nyuzdid6pXmF_42lr95RntXQNG94ylo9-fyCXps9y14YPD2FPVk-Qw96qhZPke3DnnYIQ9b5GGHPFzleBt5eBt5UKFFHtbIw13kYYU87JCHLfJwUWKOLfKwRh7uIO8F-v7x7PL03LeJP3wRxXThT4KEkzGlccpkMs6jRBDltxJJ84hxJllCJjnjoHWotidwdpmrl8sTGcYyygUdRy_RfqlGeYgw4wnhNA-4JBNCacjzmAiaxnkUxWMW8z4K3UvPhFXFh-QsN9kOg_fR-6bRzIjC7K4eO2tm1q81_mqm8Lm74Vtl--YRoAR_PhhmUAb0AZA6XAV9dOygkdlpqM60UCDsZ9Kj-431FXrYfn7HaH8xX8rX6IFYLYp6_sYC_BchzuTr
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-rank+Gaussian+mixture+modeling+of+space-snapshot+representation+of+microphone+array+measurements+for+acoustic+imaging+in+a+complex+noisy+environment&rft.jtitle=Mechanical+systems+and+signal+processing&rft.au=Yu%2C+Liang&rft.au=Antoni%2C+Jerome&rft.au=Deng%2C+Jiayu&rft.au=Li%2C+Cong&rft.date=2022-02-15&rft.issn=0888-3270&rft.volume=165&rft.spage=108294&rft_id=info:doi/10.1016%2Fj.ymssp.2021.108294&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ymssp_2021_108294
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-3270&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-3270&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-3270&client=summon