Computing non-stationary (s, S) policies using mixed integer linear programming
•We present a mathematical programming model to compute (s, S) policies parameters.•We introduce a mixed-integer linear programming reformulation.•Our reformulation can be solved by existing off-the-shelf solvers.•We discuss a computationally efficient binary search heuristic.•We observe average opt...
Uloženo v:
| Vydáno v: | European journal of operational research Ročník 271; číslo 2; s. 490 - 500 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.12.2018
|
| Témata: | |
| ISSN: | 0377-2217, 1872-6860 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | •We present a mathematical programming model to compute (s, S) policies parameters.•We introduce a mixed-integer linear programming reformulation.•Our reformulation can be solved by existing off-the-shelf solvers.•We discuss a computationally efficient binary search heuristic.•We observe average optimality gaps of 0.3%, and reasonable computational times.
This paper addresses the single-item single-stocking location non-stationary stochastic lot sizing problem under the (s, S) control policy. We first present a mixed integer non-linear programming (MINLP) formulation for determining near-optimal (s, S) policy parameters. To tackle larger instances, we then combine the previously introduced MINLP model and a binary search approach. These models can be reformulated as mixed integer linear programming (MILP) models which can be easily implemented and solved by using off-the-shelf optimization software. Computational experiments demonstrate that optimality gaps of these models are less than 0.3% of the optimal policy cost and computational times are reasonable. |
|---|---|
| ISSN: | 0377-2217 1872-6860 |
| DOI: | 10.1016/j.ejor.2018.05.030 |