Computing non-stationary (s, S) policies using mixed integer linear programming
•We present a mathematical programming model to compute (s, S) policies parameters.•We introduce a mixed-integer linear programming reformulation.•Our reformulation can be solved by existing off-the-shelf solvers.•We discuss a computationally efficient binary search heuristic.•We observe average opt...
Saved in:
| Published in: | European journal of operational research Vol. 271; no. 2; pp. 490 - 500 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.12.2018
|
| Subjects: | |
| ISSN: | 0377-2217, 1872-6860 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | •We present a mathematical programming model to compute (s, S) policies parameters.•We introduce a mixed-integer linear programming reformulation.•Our reformulation can be solved by existing off-the-shelf solvers.•We discuss a computationally efficient binary search heuristic.•We observe average optimality gaps of 0.3%, and reasonable computational times.
This paper addresses the single-item single-stocking location non-stationary stochastic lot sizing problem under the (s, S) control policy. We first present a mixed integer non-linear programming (MINLP) formulation for determining near-optimal (s, S) policy parameters. To tackle larger instances, we then combine the previously introduced MINLP model and a binary search approach. These models can be reformulated as mixed integer linear programming (MILP) models which can be easily implemented and solved by using off-the-shelf optimization software. Computational experiments demonstrate that optimality gaps of these models are less than 0.3% of the optimal policy cost and computational times are reasonable. |
|---|---|
| ISSN: | 0377-2217 1872-6860 |
| DOI: | 10.1016/j.ejor.2018.05.030 |