A survey on deep learning-based non-invasive brain signals: recent advances and new frontiers

Brain signals refer to the biometric information collected from the human brain. The research on brain signals aims to discover the underlying neurological or physical status of the individuals by signal decoding. The emerging deep learning techniques have improved the study of brain signals signifi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of neural engineering Ročník 18; číslo 3
Hlavní autori: Zhang, Xiang, Yao, Lina, Wang, Xianzhi, Monaghan, Jessica, McAlpine, David, Zhang, Yu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: England 01.06.2021
Predmet:
ISSN:1741-2552, 1741-2552
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Brain signals refer to the biometric information collected from the human brain. The research on brain signals aims to discover the underlying neurological or physical status of the individuals by signal decoding. The emerging deep learning techniques have improved the study of brain signals significantly in recent years. In this work, we first present a taxonomy of non-invasive brain signals and the basics of deep learning algorithms. Then, we provide the frontiers of applying deep learning for non-invasive brain signals analysis, by summarizing a large number of recent publications. Moreover, upon the deep learning-powered brain signal studies, we report the potential real-world applications which benefit not only disabled people but also normal individuals. Finally, we discuss the opening challenges and future directions.
AbstractList Brain signals refer to the biometric information collected from the human brain. The research on brain signals aims to discover the underlying neurological or physical status of the individuals by signal decoding. The emerging deep learning techniques have improved the study of brain signals significantly in recent years. In this work, we first present a taxonomy of non-invasive brain signals and the basics of deep learning algorithms. Then, we provide the frontiers of applying deep learning for non-invasive brain signals analysis, by summarizing a large number of recent publications. Moreover, upon the deep learning-powered brain signal studies, we report the potential real-world applications which benefit not only disabled people but also normal individuals. Finally, we discuss the opening challenges and future directions.Brain signals refer to the biometric information collected from the human brain. The research on brain signals aims to discover the underlying neurological or physical status of the individuals by signal decoding. The emerging deep learning techniques have improved the study of brain signals significantly in recent years. In this work, we first present a taxonomy of non-invasive brain signals and the basics of deep learning algorithms. Then, we provide the frontiers of applying deep learning for non-invasive brain signals analysis, by summarizing a large number of recent publications. Moreover, upon the deep learning-powered brain signal studies, we report the potential real-world applications which benefit not only disabled people but also normal individuals. Finally, we discuss the opening challenges and future directions.
Brain signals refer to the biometric information collected from the human brain. The research on brain signals aims to discover the underlying neurological or physical status of the individuals by signal decoding. The emerging deep learning techniques have improved the study of brain signals significantly in recent years. In this work, we first present a taxonomy of non-invasive brain signals and the basics of deep learning algorithms. Then, we provide the frontiers of applying deep learning for non-invasive brain signals analysis, by summarizing a large number of recent publications. Moreover, upon the deep learning-powered brain signal studies, we report the potential real-world applications which benefit not only disabled people but also normal individuals. Finally, we discuss the opening challenges and future directions.
Author McAlpine, David
Wang, Xianzhi
Zhang, Yu
Zhang, Xiang
Yao, Lina
Monaghan, Jessica
Author_xml – sequence: 1
  givenname: Xiang
  orcidid: 0000-0001-5097-2113
  surname: Zhang
  fullname: Zhang, Xiang
  organization: Harvard University, Boston, Massachusetts, United States of America
– sequence: 2
  givenname: Lina
  surname: Yao
  fullname: Yao, Lina
  organization: University of New South Wales, Sydney, Australia
– sequence: 3
  givenname: Xianzhi
  surname: Wang
  fullname: Wang, Xianzhi
  organization: University of Technology Sydney, Sydney, Australia
– sequence: 4
  givenname: Jessica
  orcidid: 0000-0003-1416-4164
  surname: Monaghan
  fullname: Monaghan, Jessica
  organization: Macquarie University, Sydney, Australia
– sequence: 5
  givenname: David
  surname: McAlpine
  fullname: McAlpine, David
  organization: Macquarie University, Sydney, Australia
– sequence: 6
  givenname: Yu
  surname: Zhang
  fullname: Zhang, Yu
  organization: Lehigh University, Bethlehem, Pennsylvania, United States of America
BackLink https://www.ncbi.nlm.nih.gov/pubmed/33171452$$D View this record in MEDLINE/PubMed
BookMark eNpNkEtLxDAURoOMOA_du5Is3dRpnk3dDcP4gAE3upSSJjdDpJOOSVuZf2_BUVzdw_0O98I3R5PQBkDomuR3JFdqSQpOMioEXeralDk9Q7O_1eQfT9E8pY88Z6Qo8ws0ZSMQLugMva9w6uMAR9wGbAEOuAEdgw-7rNYJLB4_Zj4MOvkBcB21Dzj5XdBNuscRDIQOazvoYCBhHUYfvrCLbeg8xHSJzt1owtVpLtDbw-Z1_ZRtXx6f16ttZpgUXVYL5nLntDKMKUEUKCmIBWnBWSWsM4WlRha25gCc8TEhquRUM-tszSTQBbr9uXuI7WcPqav2PhloGh2g7VNFuSgllZSQUb05qX29B1sdot_reKx-K6Hf3ItmoA
CitedBy_id crossref_primary_10_1038_s41746_023_00983_9
crossref_primary_10_1109_ACCESS_2021_3118038
crossref_primary_10_1109_TCDS_2024_3431224
crossref_primary_10_52711_book_anv_icons_2024_007
crossref_primary_10_1038_s41597_022_01280_y
crossref_primary_10_1007_s11571_023_10035_3
crossref_primary_10_1016_j_bspc_2024_106171
crossref_primary_10_1088_1741_2552_acd1b6
crossref_primary_10_1088_1741_2552_ada30b
crossref_primary_10_3390_brainsci13020268
crossref_primary_10_3390_s22082948
crossref_primary_10_1109_TBME_2024_3356665
crossref_primary_10_32604_cmc_2022_029073
crossref_primary_10_1007_s00521_021_06352_5
crossref_primary_10_1109_JIOT_2022_3180215
crossref_primary_10_1186_s12938_023_01129_4
crossref_primary_10_1016_j_neuri_2023_100126
crossref_primary_10_1016_j_bspc_2022_103857
crossref_primary_10_1016_j_compbiomed_2022_106196
crossref_primary_10_1109_TBME_2021_3115799
crossref_primary_10_1016_j_neunet_2024_107066
crossref_primary_10_3390_s21196343
crossref_primary_10_1109_ACCESS_2025_3549120
crossref_primary_10_1109_TCDS_2020_3040438
crossref_primary_10_1155_2023_7741735
crossref_primary_10_1088_1741_2552_ac9e75
crossref_primary_10_3390_a16030149
crossref_primary_10_3390_s23010482
crossref_primary_10_1007_s12559_023_10233_5
crossref_primary_10_3390_s22093331
crossref_primary_10_1109_TII_2023_3297323
crossref_primary_10_1109_JBHI_2023_3315974
crossref_primary_10_3390_app14104199
crossref_primary_10_1016_j_bspc_2024_106189
crossref_primary_10_1016_j_jneumeth_2025_110536
crossref_primary_10_1016_j_earlhumdev_2025_106387
crossref_primary_10_3389_fnhum_2024_1320457
crossref_primary_10_1016_j_jneumeth_2023_109953
crossref_primary_10_3390_brainsci14050462
crossref_primary_10_1007_s11431_024_2744_5
crossref_primary_10_1109_TNSRE_2024_3351863
crossref_primary_10_1007_s11831_023_10047_6
crossref_primary_10_1109_TWC_2024_3470108
crossref_primary_10_1016_j_neucom_2025_130206
crossref_primary_10_3390_brainsci13030483
crossref_primary_10_3390_s21248291
crossref_primary_10_1038_s41598_022_06805_4
crossref_primary_10_1109_TNSRE_2023_3268979
crossref_primary_10_3390_a16080377
crossref_primary_10_1088_1741_2552_ad9403
crossref_primary_10_1186_s12984_025_01617_9
crossref_primary_10_3390_electronics13030541
crossref_primary_10_1088_2632_2153_ad9135
crossref_primary_10_3389_fnins_2022_1062889
crossref_primary_10_1016_j_knosys_2025_113315
crossref_primary_10_1017_S0263574725101781
crossref_primary_10_1109_ACCESS_2022_3228164
crossref_primary_10_3390_s21175746
crossref_primary_10_1109_TNSRE_2023_3300961
crossref_primary_10_3389_fnins_2022_801818
crossref_primary_10_1088_1741_2552_ac7257
crossref_primary_10_3390_machines13090804
crossref_primary_10_3390_s22041475
crossref_primary_10_1109_TCDS_2023_3293321
crossref_primary_10_1016_j_bspc_2023_105214
crossref_primary_10_1109_JBHI_2024_3464550
crossref_primary_10_3389_fnins_2022_824471
crossref_primary_10_1016_j_asoc_2024_111575
crossref_primary_10_1109_TNSRE_2023_3297654
crossref_primary_10_1016_j_eswa_2023_120575
crossref_primary_10_3390_brainsci13050770
crossref_primary_10_1016_j_patcog_2023_109915
crossref_primary_10_1088_1741_2552_acf2c9
crossref_primary_10_3389_fnhum_2021_643386
crossref_primary_10_3233_JIFS_237890
crossref_primary_10_1109_COMST_2024_3387124
crossref_primary_10_1088_1741_2552_ad2a36
crossref_primary_10_1186_s12938_024_01244_w
crossref_primary_10_3390_app112110294
crossref_primary_10_1109_ACCESS_2021_3132024
crossref_primary_10_1007_s11517_025_03340_y
crossref_primary_10_1155_atr_2432974
crossref_primary_10_1016_j_neunet_2023_04_045
crossref_primary_10_1109_ACCESS_2025_3577407
crossref_primary_10_1088_1741_2552_ad3eb5
crossref_primary_10_3390_app12031695
crossref_primary_10_1088_1741_2552_ac4f9a
crossref_primary_10_1007_s10489_024_06013_9
crossref_primary_10_1088_1741_2552_ad9cc0
crossref_primary_10_1109_ACCESS_2024_3351204
crossref_primary_10_1109_TNSRE_2023_3275172
crossref_primary_10_1088_1741_2552_adeae8
crossref_primary_10_1109_ACCESS_2025_3608083
crossref_primary_10_1007_s12652_022_04469_6
crossref_primary_10_1016_j_bspc_2023_105154
crossref_primary_10_1016_j_bspc_2023_104579
crossref_primary_10_3389_fnbot_2023_1174613
crossref_primary_10_1016_j_buildenv_2023_110661
crossref_primary_10_1109_TNSRE_2020_3040984
crossref_primary_10_3389_fnins_2025_1623380
crossref_primary_10_1109_JSEN_2025_3544242
crossref_primary_10_1016_j_neurad_2024_02_006
crossref_primary_10_3389_fnhum_2021_653659
crossref_primary_10_1080_03091902_2021_1906966
crossref_primary_10_1109_ACCESS_2022_3195513
crossref_primary_10_3390_medicines10080045
crossref_primary_10_1038_s41746_023_00859_y
crossref_primary_10_1111_exsy_13235
crossref_primary_10_1109_TCSII_2022_3177616
crossref_primary_10_1109_ACCESS_2022_3178100
crossref_primary_10_3389_fncom_2022_868642
crossref_primary_10_1155_2021_6472586
crossref_primary_10_1080_21681163_2023_2192831
crossref_primary_10_1109_TCDS_2021_3099344
crossref_primary_10_1007_s00521_022_07843_9
crossref_primary_10_1109_TNSRE_2024_3502135
crossref_primary_10_1016_j_neuroimage_2022_119056
crossref_primary_10_1109_TNSRE_2023_3286688
crossref_primary_10_3390_biomimetics10080554
crossref_primary_10_3389_fnins_2021_795488
crossref_primary_10_3389_fnins_2024_1509358
crossref_primary_10_1186_s12877_025_05676_4
crossref_primary_10_3390_app12136681
crossref_primary_10_1109_ACCESS_2023_3320561
crossref_primary_10_1109_TNNLS_2021_3053576
crossref_primary_10_1109_TNSRE_2023_3315717
crossref_primary_10_1016_j_bspc_2023_105497
crossref_primary_10_1088_1741_2552_ac7908
crossref_primary_10_3389_fnhum_2024_1348154
crossref_primary_10_1109_THMS_2022_3189576
crossref_primary_10_1007_s11704_021_0587_2
crossref_primary_10_1109_ACCESS_2024_3430838
crossref_primary_10_1007_s00521_025_11356_6
crossref_primary_10_1088_1741_2552_ad48bc
crossref_primary_10_3390_info15060301
crossref_primary_10_3389_fnins_2023_1148855
crossref_primary_10_1016_j_neunet_2025_108127
crossref_primary_10_3390_math12060806
crossref_primary_10_3390_s24061889
ContentType Journal Article
Copyright 2021 IOP Publishing Ltd.
Copyright_xml – notice: 2021 IOP Publishing Ltd.
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1088/1741-2552/abc902
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1741-2552
ExternalDocumentID 33171452
Genre Journal Article
Review
GroupedDBID ---
1JI
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CGR
CJUJL
CRLBU
CS3
CUY
CVF
DU5
EBS
ECM
EDWGO
EIF
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
M45
N5L
N9A
NPM
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
W28
XPP
7X8
ADEQX
AEINN
ID FETCH-LOGICAL-c365t-b53f0ffa8c338518e8651de6defd85dfc7d2c67db4ee434de618942a3dfdb36e2
IEDL.DBID 7X8
ISICitedReferencesCount 211
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000626876600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1741-2552
IngestDate Fri Sep 05 11:04:28 EDT 2025
Thu Jan 02 22:54:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords brain signals
brain–computer interface
survey
deep learning algorithms
Language English
License 2021 IOP Publishing Ltd.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-b53f0ffa8c338518e8651de6defd85dfc7d2c67db4ee434de618942a3dfdb36e2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0003-1416-4164
0000-0001-5097-2113
PMID 33171452
PQID 2459626211
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2459626211
pubmed_primary_33171452
PublicationCentury 2000
PublicationDate 2021-06-01
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: 2021-06-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAlternate J Neural Eng
PublicationYear 2021
SSID ssj0031790
Score 2.6599023
SecondaryResourceType review_article
Snippet Brain signals refer to the biometric information collected from the human brain. The research on brain signals aims to discover the underlying neurological or...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
SubjectTerms Algorithms
Brain
Brain-Computer Interfaces
Deep Learning
Electroencephalography - methods
Humans
Title A survey on deep learning-based non-invasive brain signals: recent advances and new frontiers
URI https://www.ncbi.nlm.nih.gov/pubmed/33171452
https://www.proquest.com/docview/2459626211
Volume 18
WOSCitedRecordID wos000626876600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFLaAMrBwlaNcMhJis9rEieOwoApRMUDVAaQuqLL9bMRAUpq2qP-e5yQtExISS4YckvX85d1-HyFX0HFcS6mYCEH7ACVgKQAwlyi0L9Kg0SkPCj8m_b4cDtNBnXAr6rbKpU4sFTXkxufI22HkeWIExiu340_mWaN8dbWm0FgnDY6ujEd1MlxVEbifPlUdiAwYus5hXabEH6u9utdW2qRlUuUXB7M0NL2d_y5xl2zXLibtVpjYI2s22yfNbobh9ceCXtOy6bPMpjfJa5cWs8ncLmieUbB2TGsaiTfm7RvQLM_YezZXvsudas8nQX3LB4L2hqKyRJNF6zaCgqoM37df1PmhCJ5i-4C89O6f7x5YzbjADBfxlOmYu45zShqMXHGrrBRxAFaAdSBjcCaB0IgEdGRtxCN8Esg0ChUHB5oLGx6SDVyXPSZUW9VxJuaREuj0gEwTLZ1MIAgAhLa6RS6XQhwhon2ZQmU2nxWjHzG2yFG1E6NxNXpjxLknbI_Dkz98fUq2Qo-9MmVyRhoORWPPyaaZT9-LyUUJFbz2B0_fIvLK3A
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+survey+on+deep+learning-based+non-invasive+brain+signals%3A+recent+advances+and+new+frontiers&rft.jtitle=Journal+of+neural+engineering&rft.au=Zhang%2C+Xiang&rft.au=Yao%2C+Lina&rft.au=Wang%2C+Xianzhi&rft.au=Monaghan%2C+Jessica&rft.date=2021-06-01&rft.eissn=1741-2552&rft.volume=18&rft.issue=3&rft_id=info:doi/10.1088%2F1741-2552%2Fabc902&rft_id=info%3Apmid%2F33171452&rft_id=info%3Apmid%2F33171452&rft.externalDocID=33171452
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2552&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2552&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2552&client=summon