A Tent Lévy Flying Sparrow Search Algorithm for Wrapper-Based Feature Selection: A COVID-19 Case Study

The “Curse of Dimensionality” induced by the rapid development of information science might have a negative impact when dealing with big datasets, and it also makes the problems of symmetry and asymmetry increasingly prominent. Feature selection (FS) can eliminate irrelevant information in big data...

Full description

Saved in:
Bibliographic Details
Published in:Symmetry (Basel) Vol. 15; no. 2; p. 316
Main Authors: Yang, Qinwen, Gao, Yuelin, Song, Yanjie
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.01.2023
Subjects:
ISSN:2073-8994, 2073-8994
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The “Curse of Dimensionality” induced by the rapid development of information science might have a negative impact when dealing with big datasets, and it also makes the problems of symmetry and asymmetry increasingly prominent. Feature selection (FS) can eliminate irrelevant information in big data and improve accuracy. As a recently proposed algorithm, the Sparrow Search Algorithm (SSA) shows its advantages in the FS tasks because of its superior performance. However, SSA is more subject to the population’s poor diversity and falls into a local optimum. Regarding this issue, we propose a variant of the SSA called the Tent Lévy Flying Sparrow Search Algorithm (TFSSA) to select the best subset of features in the wrapper-based method for classification purposes. After the performance results are evaluated on the CEC2020 test suite, TFSSA is used to select the best feature combination to maximize classification accuracy and simultaneously minimize the number of selected features. To evaluate the proposed TFSSA, we have conducted experiments on twenty-one datasets from the UCI repository to compare with nine algorithms in the literature. Nine metrics are used to evaluate and compare these algorithms’ performance properly. Furthermore, the method is also used on the coronavirus disease (COVID-19) dataset, and its classification accuracy and the average number of feature selections are 93.47% and 2.1, respectively, reaching the best. The experimental results and comparison in all datasets demonstrate the effectiveness of our new algorithm, TFSSA, compared with other wrapper-based algorithms.
AbstractList The “Curse of Dimensionality” induced by the rapid development of information science might have a negative impact when dealing with big datasets, and it also makes the problems of symmetry and asymmetry increasingly prominent. Feature selection (FS) can eliminate irrelevant information in big data and improve accuracy. As a recently proposed algorithm, the Sparrow Search Algorithm (SSA) shows its advantages in the FS tasks because of its superior performance. However, SSA is more subject to the population’s poor diversity and falls into a local optimum. Regarding this issue, we propose a variant of the SSA called the Tent Lévy Flying Sparrow Search Algorithm (TFSSA) to select the best subset of features in the wrapper-based method for classification purposes. After the performance results are evaluated on the CEC2020 test suite, TFSSA is used to select the best feature combination to maximize classification accuracy and simultaneously minimize the number of selected features. To evaluate the proposed TFSSA, we have conducted experiments on twenty-one datasets from the UCI repository to compare with nine algorithms in the literature. Nine metrics are used to evaluate and compare these algorithms’ performance properly. Furthermore, the method is also used on the coronavirus disease (COVID-19) dataset, and its classification accuracy and the average number of feature selections are 93.47% and 2.1, respectively, reaching the best. The experimental results and comparison in all datasets demonstrate the effectiveness of our new algorithm, TFSSA, compared with other wrapper-based algorithms.
Audience Academic
Author Gao, Yuelin
Song, Yanjie
Yang, Qinwen
Author_xml – sequence: 1
  givenname: Qinwen
  orcidid: 0000-0002-6762-1528
  surname: Yang
  fullname: Yang, Qinwen
– sequence: 2
  givenname: Yuelin
  orcidid: 0000-0003-2021-2097
  surname: Gao
  fullname: Gao, Yuelin
– sequence: 3
  givenname: Yanjie
  orcidid: 0000-0002-4313-8312
  surname: Song
  fullname: Song, Yanjie
BookMark eNptkdtKxDAQhoMoeLzyBQJeSjVpmqb1rq6uCgterIfLkk0na6RtapJV-kg-hy9mRMEDzlzMMHz__DCzjdZ72wNC-5QcMVaSYz92lJOUMJqvoa2UCJYUZZmt_-g30Z73jyQGJzzLyRZaVvgG-oBnb6_PI562o-mXeD5I5-wLnoN06gFX7dI6Ex46rK3D904OA7jkVHpo8BRkWDmIaAsqGNuf4ApPru-uzhJa4klk8DysmnEXbWjZetj7qjvodnp-M7lMZtcXV5NqliiW85DIAjJYgBZEFVwpYPlCZEBLqps8k0DIoigaYGkjeMOF4FoJQXSptMyaBVE520EHn3sHZ59W4EP9aFeuj5Z1KkSZs4IU4ptayhZq02sbnFSd8aquBE9pVnKWReroHypmA51R8fjaxPkvweGnQDnrvQNdD8500o01JfXHj-ofP4o0_UMrE-THDaONaf_VvAObzpSN
CitedBy_id crossref_primary_10_1016_j_jfranklin_2024_107200
crossref_primary_10_3390_sym15030674
Cites_doi 10.1007/s00500-004-0363-x
10.1016/j.asoc.2016.11.047
10.1016/j.ins.2020.08.083
10.1109/CEC48606.2020.9185901
10.1039/D0RA04199H
10.1109/TCBB.2012.53
10.1007/s00330-020-06829-2
10.1109/ACCESS.2020.2978090
10.1016/j.bbe.2018.02.005
10.1109/TEVC.2022.3220747
10.1007/s00521-015-1920-1
10.1016/j.swevo.2023.101236
10.1007/s40747-021-00356-3
10.1007/978-3-030-39105-8
10.1109/TEVC.2015.2504420
10.1109/ACCESS.2021.3052960
10.1080/21642583.2019.1708830
10.3389/fpubh.2020.00357
10.1016/j.comnet.2020.107168
10.1016/j.knosys.2022.108457
10.1109/EMS.2014.28
10.1007/978-3-030-53956-6_27
10.1007/s10462-015-9428-8
10.1007/s10288-022-00516-2
10.1038/s41598-021-02731-z
10.1155/2020/4706576
10.1109/TCYB.2021.3061152
10.1016/j.eswa.2020.113188
10.1016/j.engappai.2021.104216
10.1109/ACCESS.2021.3075547
10.1016/j.patcog.2020.107804
10.1016/j.swevo.2011.02.002
10.1109/ICCSE51940.2021.9569597
10.1186/s41044-016-0014-0
10.1007/s00521-021-06099-z
10.1016/j.eswa.2022.119421
10.1007/s40747-022-00676-y
10.1016/j.knosys.2021.107218
10.1016/j.asoc.2021.107302
10.1007/978-3-642-21515-5_36
10.1007/s40747-022-00763-0
10.1016/j.eswa.2014.10.044
10.1016/j.eswa.2018.08.051
10.1016/j.asoc.2018.04.033
10.1007/978-1-4615-5589-6
10.1109/ACCESS.2020.3005687
10.1109/TPAMI.2004.105
10.1016/j.media.2021.102048
10.1177/0954411920987964
10.1016/j.knosys.2021.106924
10.1016/j.advengsoft.2013.12.007
10.1002/widm.1240
10.1007/s10115-011-0463-8
10.1016/j.patcog.2021.108110
10.1016/j.knosys.2015.12.022
10.1016/j.asoc.2013.09.018
10.1016/j.knosys.2020.106020
10.1007/s40747-022-00734-5
10.3390/sym13122368
10.1109/4235.771163
10.1007/s40747-021-00452-4
10.1007/s00500-018-3331-6
10.1016/j.asoc.2021.107942
10.1109/TPAMI.2005.159
10.1016/j.neucom.2015.06.083
10.3390/sym13071291
10.1016/j.cnsns.2012.05.010
10.1016/j.ijhydene.2020.12.107
10.1016/j.ipm.2021.102854
10.1109/LGRS.2014.2337320
10.1016/j.chaos.2020.110027
10.1038/scientificamerican0792-66
10.1016/j.trac.2020.116045
10.1016/j.knosys.2020.106553
10.1016/j.enconman.2019.112461
10.1155/2021/5556780
10.1016/j.engappai.2018.04.018
10.1038/s41698-022-00274-8
10.1007/s40747-021-00384-z
10.1016/j.patrec.2006.09.003
10.1007/s00521-022-07203-7
10.1109/CEC.2016.7744404
10.1016/j.eswa.2020.113981
10.24963/ijcai.2020/348
10.1007/s40747-021-00401-1
10.1109/TCYB.2014.2322602
10.1080/00031305.1992.10475879
10.1016/j.advengsoft.2015.01.010
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SC
7SR
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
H8D
HCIFZ
JG9
JQ2
L6V
L7M
L~C
L~D
M7S
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
DOI 10.3390/sym15020316
DatabaseName CrossRef
Computer and Information Systems Abstracts
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One
Coronavirus Research Database
ProQuest Central Korea
Aerospace Database
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
Aerospace Database
Engineered Materials Abstracts
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Engineering Database
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Solid State and Superconductivity Abstracts
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 2073-8994
ExternalDocumentID A752149534
10_3390_sym15020316
GeographicLocations China
Germany
GeographicLocations_xml – name: China
– name: Germany
GroupedDBID 5VS
8FE
8FG
AADQD
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
E3Z
ESX
GX1
HCIFZ
IAO
ITC
J9A
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
PTHSS
TR2
TUS
7SC
7SR
7U5
8BQ
8FD
ABUWG
AZQEC
COVID
DWQXO
H8D
JG9
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c365t-a8e4ebef70c85cce36b74e191fd64ae00b88de32d75d5775fc770f9cfa4db0c63
IEDL.DBID M7S
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000939956900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2073-8994
IngestDate Fri Jul 25 11:43:40 EDT 2025
Tue Nov 11 10:08:15 EST 2025
Tue Nov 04 17:47:41 EST 2025
Tue Nov 18 22:39:03 EST 2025
Sat Nov 29 07:15:53 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-a8e4ebef70c85cce36b74e191fd64ae00b88de32d75d5775fc770f9cfa4db0c63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4313-8312
0000-0002-6762-1528
0000-0003-2021-2097
OpenAccessLink https://www.proquest.com/docview/2779638087?pq-origsite=%requestingapplication%
PQID 2779638087
PQPubID 2032326
ParticipantIDs proquest_journals_2779638087
gale_infotracmisc_A752149534
gale_infotracacademiconefile_A752149534
crossref_primary_10_3390_sym15020316
crossref_citationtrail_10_3390_sym15020316
PublicationCentury 2000
PublicationDate 20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 20230101
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Symmetry (Basel)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Li (ref_94) 2022; 8
ref_93
Xu (ref_31) 2022; 8
Cheng (ref_90) 2014; 45
Fu (ref_11) 2020; 205
Yuan (ref_102) 2021; 9
ref_95
Guyon (ref_19) 2003; 3
ref_15
Mirjalili (ref_97) 2016; 27
Liu (ref_91) 2005; 9
Too (ref_1) 2021; 212
Kamiran (ref_8) 2012; 33
Altman (ref_79) 1992; 46
Zhao (ref_28) 2020; 8
ref_20
Mirjalili (ref_98) 2015; 83
ref_29
Shaban (ref_63) 2021; 119
Wang (ref_73) 2021; 2021
Zheng (ref_14) 2020; 2020
Alasadi (ref_6) 2017; 12
Xue (ref_51) 2015; 20
Oh (ref_25) 2004; 26
Li (ref_16) 2021; 113
Chen (ref_107) 2020; 30
ref_78
Luengo (ref_5) 2016; 1
Li (ref_57) 2021; 106
ref_77
Liu (ref_65) 2021; 235
Hamdi (ref_41) 2018; 38
Zhang (ref_74) 2020; 35
Zhang (ref_67) 2021; 220
Suganthan (ref_80) 2005; 2005005
ref_83
Kamath (ref_45) 2012; 9
ref_82
ref_81
Zhou (ref_53) 2021; 547
ref_89
Song (ref_56) 2021; 52
Frawley (ref_2) 1992; 13
ref_86
ref_85
Park (ref_24) 2015; 42
ref_84
Holland (ref_96) 1992; 267
Xu (ref_33) 2021; 8
Jangir (ref_58) 2018; 72
Djemame (ref_37) 2019; 23
Jin (ref_35) 2020; 8
Mishra (ref_7) 2020; 132
Gad (ref_69) 2022; 34
Jadhav (ref_47) 2018; 69
Braik (ref_50) 2022; 243
Tuerxun (ref_68) 2021; 9
Iwendi (ref_108) 2020; 8
Shen (ref_10) 2021; 8
Hosseini (ref_38) 2020; 173
Sathiyabhama (ref_59) 2021; 33
Galatro (ref_12) 2021; 101
Maleki (ref_52) 2021; 164
ref_60
Karaboga (ref_88) 2009; 214
Dey (ref_62) 2021; 11
Euchi (ref_42) 2022; 20
Xue (ref_21) 2014; 18
ref_64
Zhao (ref_27) 2021; 71
Chen (ref_32) 2022; 8
Derrac (ref_105) 2011; 1
Ghamisi (ref_48) 2014; 12
Ma (ref_72) 2022; 59
Song (ref_18) 2023; 77
Wu (ref_71) 2023; 215
Emary (ref_36) 2016; 172
ref_34
Zhu (ref_66) 2021; 46
Peng (ref_23) 2005; 27
Shan (ref_76) 2005; 20
Zhu (ref_92) 2017; 51
ref_30
Wang (ref_49) 2007; 28
Ribeiro (ref_61) 2020; 139
Arora (ref_100) 2019; 116
Moghaddasi (ref_40) 2020; 147
ref_39
Mirjalili (ref_103) 2014; 69
Gandomi (ref_4) 2012; 17
Xue (ref_54) 2021; 227
Kashef (ref_13) 2018; 8
ref_104
Mirjalili (ref_99) 2016; 96
ref_46
Song (ref_55) 2021; 112
ref_44
ref_43
Xue (ref_70) 2020; 8
Du (ref_26) 2020; 200
ref_101
Sayed (ref_106) 2020; 10
Kuang (ref_75) 2014; 31
ref_3
Diao (ref_22) 2015; 44
Tsamardinos (ref_17) 2022; 6
ref_9
Yao (ref_87) 1999; 3
References_xml – volume: 9
  start-page: 448
  year: 2005
  ident: ref_91
  article-title: A fuzzy adaptive differential evolution algorithm
  publication-title: Soft Comput.
  doi: 10.1007/s00500-004-0363-x
– volume: 51
  start-page: 294
  year: 2017
  ident: ref_92
  article-title: Optimal foraging algorithm for global optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.11.047
– volume: 547
  start-page: 841
  year: 2021
  ident: ref_53
  article-title: A problem-specific non-dominated sorting genetic algorithm for supervised feature selection
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2020.08.083
– ident: ref_86
  doi: 10.1109/CEC48606.2020.9185901
– volume: 10
  start-page: 19790
  year: 2020
  ident: ref_106
  article-title: Nature as a treasure trove of potential anti-SARS-CoV drug leads: A structural/mechanistic rationale
  publication-title: RSC Adv.
  doi: 10.1039/D0RA04199H
– volume: 9
  start-page: 1387
  year: 2012
  ident: ref_45
  article-title: An evolutionary algorithm approach for feature generation from sequence data and its application to DNA splice site prediction
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform.
  doi: 10.1109/TCBB.2012.53
– volume: 30
  start-page: 4893
  year: 2020
  ident: ref_107
  article-title: A diagnostic model for coronavirus disease 2019 (COVID-19) based on radiological semantic and clinical features: A multi-center study
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-020-06829-2
– volume: 8
  start-page: 44111
  year: 2020
  ident: ref_28
  article-title: Cloud shape classification system based on multi-channel cnn and improved fdm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2978090
– volume: 31
  start-page: 1502
  year: 2014
  ident: ref_75
  article-title: Artificial bee colony algorithm based on self-adaptive Tent chaos search
  publication-title: Control Theory Appl.
– volume: 38
  start-page: 362
  year: 2018
  ident: ref_41
  article-title: Accurate prediction of continuous blood glucose based on support vector regression and differential evolution algorithm
  publication-title: Biocybern. Biomed. Eng.
  doi: 10.1016/j.bbe.2018.02.005
– ident: ref_30
  doi: 10.1109/TEVC.2022.3220747
– volume: 27
  start-page: 1053
  year: 2016
  ident: ref_97
  article-title: Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1920-1
– volume: 77
  start-page: 101236
  year: 2023
  ident: ref_18
  article-title: RL-GA: A reinforcement learning-based genetic algorithm for electromagnetic detection satellite scheduling problem
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2023.101236
– volume: 8
  start-page: 287
  year: 2021
  ident: ref_33
  article-title: Feature selection using self-information and entropy-based uncertainty measure for fuzzy neighborhood rough set
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-021-00356-3
– ident: ref_9
  doi: 10.1007/978-3-030-39105-8
– ident: ref_77
– volume: 20
  start-page: 606
  year: 2015
  ident: ref_51
  article-title: A survey on evolutionary computation approaches to feature selection
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2504420
– volume: 9
  start-page: 16623
  year: 2021
  ident: ref_102
  article-title: DMPPT control of photovoltaic microgrid based on improved sparrow search algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3052960
– volume: 8
  start-page: 22
  year: 2020
  ident: ref_70
  article-title: A novel swarm intelligence optimization approach: Sparrow search algorithm
  publication-title: Syst. Sci. Control Eng.
  doi: 10.1080/21642583.2019.1708830
– ident: ref_83
– volume: 8
  start-page: 357
  year: 2020
  ident: ref_108
  article-title: COVID-19 patient health prediction using boosted random forest algorithm
  publication-title: Front. Public Health
  doi: 10.3389/fpubh.2020.00357
– volume: 13
  start-page: 57
  year: 1992
  ident: ref_2
  article-title: Knowledge discovery in databases: An overview
  publication-title: AI Mag.
– volume: 173
  start-page: 107168
  year: 2020
  ident: ref_38
  article-title: New hybrid method for attack detection using combination of evolutionary algorithms, SVM, and ANN
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2020.107168
– volume: 243
  start-page: 108457
  year: 2022
  ident: ref_50
  article-title: White Shark Optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2022.108457
– ident: ref_46
  doi: 10.1109/EMS.2014.28
– ident: ref_78
  doi: 10.1007/978-3-030-53956-6_27
– volume: 44
  start-page: 311
  year: 2015
  ident: ref_22
  article-title: Nature inspired feature selection meta-heuristics
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-015-9428-8
– volume: 20
  start-page: 351
  year: 2022
  ident: ref_42
  article-title: Home health care routing and scheduling problems: A literature review
  publication-title: 4OR
  doi: 10.1007/s10288-022-00516-2
– volume: 2005005
  start-page: 2005
  year: 2005
  ident: ref_80
  article-title: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization
  publication-title: KanGAL Rep.
– volume: 11
  start-page: 24065
  year: 2021
  ident: ref_62
  article-title: MRFGRO: A hybrid meta-heuristic feature selection method for screening COVID-19 using deep features
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-02731-z
– volume: 2020
  start-page: 4706576
  year: 2020
  ident: ref_14
  article-title: A full stage data augmentation method in deep convolutional neural network for natural image classification
  publication-title: Discrete Dyn. Nat. Soc.
  doi: 10.1155/2020/4706576
– volume: 52
  start-page: 9573
  year: 2021
  ident: ref_56
  article-title: A fast hybrid feature selection based on correlation-guided clustering and particle swarm optimization for high-dimensional data
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2021.3061152
– volume: 147
  start-page: 113188
  year: 2020
  ident: ref_40
  article-title: A hybrid algorithm based on particle filter and genetic algorithm for target tracking
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113188
– volume: 101
  start-page: 104216
  year: 2021
  ident: ref_12
  article-title: Supervised feature selection techniques in network intrusion detection: A critical review
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2021.104216
– volume: 9
  start-page: 69307
  year: 2021
  ident: ref_68
  article-title: Fault diagnosis of wind turbines based on a support vector machine optimized by the sparrow search algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3075547
– volume: 112
  start-page: 107804
  year: 2021
  ident: ref_55
  article-title: Feature selection using bare-bones particle swarm optimization with mutual information
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107804
– volume: 1
  start-page: 3
  year: 2011
  ident: ref_105
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– volume: 20
  start-page: 179
  year: 2005
  ident: ref_76
  article-title: Chaotic optimization algorithm based on Tent map
  publication-title: Control Decis.
– ident: ref_60
  doi: 10.1109/ICCSE51940.2021.9569597
– volume: 1
  start-page: 9
  year: 2016
  ident: ref_5
  article-title: Big data preprocessing: Methods and prospects
  publication-title: Big Data Anal.
  doi: 10.1186/s41044-016-0014-0
– ident: ref_44
– volume: 33
  start-page: 14583
  year: 2021
  ident: ref_59
  article-title: A novel feature selection framework based on grey wolf optimizer for mammogram image analysis
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-06099-z
– volume: 215
  start-page: 119421
  year: 2023
  ident: ref_71
  article-title: An improved sparrow search algorithm based on quantum computations and multi-strategy enhancement
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.119421
– volume: 8
  start-page: 3333
  year: 2022
  ident: ref_32
  article-title: Software defect prediction based on nested-stacking and heterogeneous feature selection
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-022-00676-y
– volume: 227
  start-page: 107218
  year: 2021
  ident: ref_54
  article-title: Adaptive crossover operator based multi-objective binary genetic algorithm for feature selection in classification
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.107218
– volume: 106
  start-page: 107302
  year: 2021
  ident: ref_57
  article-title: Improved binary particle swarm optimization for feature selection with new initialization and search space reduction strategies
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107302
– volume: 214
  start-page: 108
  year: 2009
  ident: ref_88
  article-title: A comparative study of artificial bee colony algorithm
  publication-title: Appl. Math. Comput.
– ident: ref_101
  doi: 10.1007/978-3-642-21515-5_36
– volume: 8
  start-page: 5309
  year: 2022
  ident: ref_31
  article-title: Online group streaming feature selection using entropy-based uncertainty measures for fuzzy neighborhood rough sets
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-022-00763-0
– volume: 42
  start-page: 2336
  year: 2015
  ident: ref_24
  article-title: Sequential random k-nearest neighbor feature selection for high-dimensional data
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.10.044
– ident: ref_81
– ident: ref_89
– ident: ref_64
– volume: 116
  start-page: 147
  year: 2019
  ident: ref_100
  article-title: Binary butterfly optimization approaches for feature selection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.08.051
– volume: 69
  start-page: 541
  year: 2018
  ident: ref_47
  article-title: Information gain directed genetic algorithm wrapper feature selection for credit rating
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.04.033
– ident: ref_3
  doi: 10.1007/978-1-4615-5589-6
– ident: ref_95
– volume: 8
  start-page: 123649
  year: 2020
  ident: ref_35
  article-title: Deep facial diagnosis: Deep transfer learning from face recognition to facial diagnosis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3005687
– volume: 35
  start-page: 893
  year: 2020
  ident: ref_74
  article-title: Gravitational search algorithm based on improved Tent chaos
  publication-title: Control Decis.
– volume: 26
  start-page: 1424
  year: 2004
  ident: ref_25
  article-title: Hybrid genetic algorithms for feature selection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2004.105
– volume: 71
  start-page: 102048
  year: 2021
  ident: ref_27
  article-title: Faster Mean-shift: GPU-accelerated clustering for cosine embedding-based cell segmentation and tracking
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102048
– volume: 3
  start-page: 1157
  year: 2003
  ident: ref_19
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 235
  start-page: 459
  year: 2021
  ident: ref_65
  article-title: An optimal brain tumor detection by convolutional neural network and enhanced sparrow search algorithm
  publication-title: Proc. Inst. Mech. Eng. Part H J. Eng. Med.
  doi: 10.1177/0954411920987964
– volume: 220
  start-page: 106924
  year: 2021
  ident: ref_67
  article-title: A stochastic configuration network based on chaotic sparrow search algorithm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.106924
– volume: 69
  start-page: 46
  year: 2014
  ident: ref_103
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– ident: ref_84
– volume: 8
  start-page: e1240
  year: 2018
  ident: ref_13
  article-title: Multilabel feature selection: A comprehensive review and guiding experiments
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1240
– volume: 33
  start-page: 1
  year: 2012
  ident: ref_8
  article-title: Data preprocessing techniques for classification without discrimination
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-011-0463-8
– volume: 119
  start-page: 108110
  year: 2021
  ident: ref_63
  article-title: Accurate detection of COVID-19 patients based on distance biased Naïve Bayes (DBNB) classification strategy
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.108110
– ident: ref_104
– volume: 96
  start-page: 120
  year: 2016
  ident: ref_99
  article-title: SCA: A sine cosine algorithm for solving optimization problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.12.022
– volume: 18
  start-page: 261
  year: 2014
  ident: ref_21
  article-title: Particle swarm optimisation for feature selection in classification: Novel initialisation and updating mechanisms
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.09.018
– volume: 200
  start-page: 106020
  year: 2020
  ident: ref_26
  article-title: Joint imbalanced classification and feature selection for hospital readmissions
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106020
– volume: 8
  start-page: 2051
  year: 2022
  ident: ref_94
  article-title: Self-adaptive opposition-based differential evolution with subpopulation strategy for numerical and engineering optimization problems
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-022-00734-5
– ident: ref_29
  doi: 10.3390/sym13122368
– volume: 3
  start-page: 82
  year: 1999
  ident: ref_87
  article-title: Evolutionary programming made faster
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.771163
– volume: 8
  start-page: 2769
  year: 2021
  ident: ref_10
  article-title: Two-stage improved Grey Wolf optimization algorithm for feature selection on high-dimensional classification
  publication-title: Complex Intell. Syst.
  doi: 10.1007/s40747-021-00452-4
– volume: 23
  start-page: 6921
  year: 2019
  ident: ref_37
  article-title: Solving reverse emergence with quantum PSO application to image processing
  publication-title: Soft Comput.
  doi: 10.1007/s00500-018-3331-6
– volume: 12
  start-page: 4102
  year: 2017
  ident: ref_6
  article-title: Review of data preprocessing techniques in data mining
  publication-title: J. Eng. Appl. Sci.
– volume: 113
  start-page: 107942
  year: 2021
  ident: ref_16
  article-title: A dual opposition-based learning for differential evolution with protective mechanism for engineering optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107942
– volume: 27
  start-page: 1226
  year: 2005
  ident: ref_23
  article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2005.159
– volume: 172
  start-page: 371
  year: 2016
  ident: ref_36
  article-title: Binary grey wolf optimization approaches for feature selection
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.06.083
– ident: ref_15
  doi: 10.3390/sym13071291
– volume: 17
  start-page: 4831
  year: 2012
  ident: ref_4
  article-title: Krill herd: A new bio-inspired optimization algorithm
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2012.05.010
– ident: ref_82
– volume: 46
  start-page: 9541
  year: 2021
  ident: ref_66
  article-title: Optimal parameter identification of PEMFC stacks using Adaptive Sparrow Search Algorithm
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.12.107
– volume: 59
  start-page: 102854
  year: 2022
  ident: ref_72
  article-title: Enhancing sparrow search algorithm via multi-strategies for continuous optimization problems
  publication-title: Inf. Process. Manag.
  doi: 10.1016/j.ipm.2021.102854
– volume: 12
  start-page: 309
  year: 2014
  ident: ref_48
  article-title: Feature selection based on hybridization of genetic algorithm and particle swarm optimization
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2014.2337320
– volume: 139
  start-page: 110027
  year: 2020
  ident: ref_61
  article-title: Forecasting Brazilian and American COVID-19 cases based on artificial intelligence coupled with climatic exogenous variables
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2020.110027
– volume: 267
  start-page: 66
  year: 1992
  ident: ref_96
  article-title: Genetic algorithms
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0792-66
– volume: 132
  start-page: 116045
  year: 2020
  ident: ref_7
  article-title: New data preprocessing trends based on ensemble of multiple preprocessing techniques
  publication-title: TrAC Trends Anal. Chem.
  doi: 10.1016/j.trac.2020.116045
– volume: 212
  start-page: 106553
  year: 2021
  ident: ref_1
  article-title: A hyper learning binary dragonfly algorithm for feature selection: A COVID-19 case study
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106553
– volume: 205
  start-page: 112461
  year: 2020
  ident: ref_11
  article-title: A composite framework coupling multiple feature selection, compound prediction models and novel hybrid swarm optimizer-based synchronization optimization strategy for multi-step ahead short-term wind speed forecasting
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2019.112461
– volume: 2021
  start-page: 5556780
  year: 2021
  ident: ref_73
  article-title: Research on economic optimization of microgrid cluster based on chaos sparrow search algorithm
  publication-title: Comput. Intell. Neurosci.
  doi: 10.1155/2021/5556780
– volume: 72
  start-page: 449
  year: 2018
  ident: ref_58
  article-title: A new non-dominated sorting grey wolf optimizer (NS-GWO) algorithm: Development and application to solve engineering designs and economic constrained emission dispatch problem with integration of wind power
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2018.04.018
– volume: 6
  start-page: 38
  year: 2022
  ident: ref_17
  article-title: Just Add Data: Automated predictive modeling for knowledge discovery and feature selection
  publication-title: NPJ Precis. Oncol.
  doi: 10.1038/s41698-022-00274-8
– ident: ref_34
  doi: 10.1007/s40747-021-00384-z
– volume: 28
  start-page: 459
  year: 2007
  ident: ref_49
  article-title: Feature selection based on rough sets and particle swarm optimization
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2006.09.003
– volume: 34
  start-page: 15705
  year: 2022
  ident: ref_69
  article-title: An improved binary sparrow search algorithm for feature selection in data classification
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-07203-7
– ident: ref_93
  doi: 10.1109/CEC.2016.7744404
– volume: 164
  start-page: 113981
  year: 2021
  ident: ref_52
  article-title: A k-NN method for lung cancer prognosis with the use of a genetic algorithm for feature selection
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113981
– ident: ref_85
– ident: ref_20
  doi: 10.24963/ijcai.2020/348
– ident: ref_39
  doi: 10.1007/s40747-021-00401-1
– ident: ref_43
– volume: 45
  start-page: 191
  year: 2014
  ident: ref_90
  article-title: A competitive swarm optimizer for large scale optimization
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2014.2322602
– volume: 46
  start-page: 175
  year: 1992
  ident: ref_79
  article-title: An introduction to kernel and nearest-neighbor nonparametric regression
  publication-title: Am. Stat.
  doi: 10.1080/00031305.1992.10475879
– volume: 83
  start-page: 80
  year: 2015
  ident: ref_98
  article-title: The ant lion optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2015.01.010
SSID ssj0000505460
Score 2.2740076
Snippet The “Curse of Dimensionality” induced by the rapid development of information science might have a negative impact when dealing with big datasets, and it also...
The "Curse of Dimensionality" induced by the rapid development of information science might have a negative impact when dealing with big datasets, and it also...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 316
SubjectTerms Algorithms
Analysis
Asymmetry
Case studies
Classification
Coronaviruses
COVID-19
Data mining
Datasets
Feature selection
Genetic algorithms
Heuristic
Information science
Methods
Neural networks
Optimization techniques
Parameter identification
Performance evaluation
Search algorithms
Viral diseases
Title A Tent Lévy Flying Sparrow Search Algorithm for Wrapper-Based Feature Selection: A COVID-19 Case Study
URI https://www.proquest.com/docview/2779638087
Volume 15
WOSCitedRecordID wos000939956900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: M7S
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: BENPR
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2073-8994
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000505460
  issn: 2073-8994
  databaseCode: PIMPY
  dateStart: 20090301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5cAFKA-xpVQ-VOIhWXUTv5YLSpddUQmWFS1QTpFjOwVpu02TbaW98H_4HfwxZhJvYaWKC5cc4pFj6ZuXJ_MgZEdqa1RwffDcBGciKRQrpHNMK--tKWzBrWmHTejx2Bwf9ycx4NbEtMqlTmwVtT9zGCPfTbRGXuFGv67OGU6Nwr-rcYTGTbKOXRL22tS9w6sYC05pE4p3ZXkp3O53m8UpeEAJcLJaMUTXq-PWxozu_u_p7pE70bukWccOG-RGmN0nG1F-G_o8Npl-8YCcZPQI7A199-vn5YKOpljtRA-rtiUj7XKQaTY9gW_Mv51S8Gzpl9pWVajZPtg9T9F1vKgDkE7bZK7ZK5rRwYfPB2_YXp8OgIZiiuLiIfk0Gh4N3rI4dIG5VMk5syYIALbU3BkALaSq0CLAra70StjAeWGMD2nitfRSa1k6rXnZd6UVvuBOpY_I2uxsFh4TaoX0qXAJD-AnJMEVoC1g6xSYwJVS2h55uUQgd7EjOQ7GmOZwM0G48r_g6pGdK-Kqa8RxPdkzhDJH8YS9nI1VBnAibHSVZxr8FcypFT2ytUIJYuVWl5dI51Gsm_wPzJv_Xn5CbuNc-i5Ws0XW5vVFeEpuucv596beJuv7w_Hk43bLrfj8MYR3k4P3k6-_AfkR9i0
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL0qBYlugPIQAwW8KOIhWTWOHSdICIUpo446DEgdoLvg2E6LNJ2GZFo0n8SGn-DHuM6jMFLFrgvWvrLs-Pj42LkPgE2pdBQ6E6NyE4wKnoU0k8ZQFVqro0xnTEd1sQk1Hkf7-_GHFfjZxcJ4t8qOE2uitsfGv5FvcaU8VlikXhffqK8a5f-udiU0GljsusV3vLJVr4bbuL6POR-8nfR3aFtVgJoglHOqIydw5LliJsJRuSDMlHB4bcltKLRjLIsi6wJulbRSKZkbpVgem1wLmzETBtjvJbiMMoLHtavg3tmbjq8KJ0LWhAEGQcy2qsURKi6OOydcOvjOp__6TBtc_9--xg241qpnkjRwX4cVN7sJ6y0_VeRpm0T72S04SMgEz1My-vXjdEEGUx_NRfaKOuUkaXysSTI9wDnND48IKnfyudRF4Ur6Bs91S7w0Pikdmk5rZ7XZS5KQ_vtPw236IiZ9tCHeBXNxGz5eyITvwOrseObuAtFC2kAYzhzqIO5MhmyIXQcIcpNLqXvwvFvx1LQZ133hj2mKNy8Pj_QvePRg88y4aBKNnG_2xEMn9fSDfRndRlHgiHwirzRRqMe8z7DowcaSJdKGWW7ukJW2tFWlf2B179_Nj-DqzuTdKB0Nx7v3YY2j8mvepTZgdV6euAdwxZzOv1blw3qHEPhy0SD8DTtBUfg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJcCuUhlrbgQxEPKVrj2HGCVKGwy4pVy7ISpZRTcGynIG23IdkW7U_iL3DljzHOo7BSxa0Hzh5ZdvzNzGdnHgDbQqowsDpC5sapx1kaeKnQ2pOBMSpMVUpVWDWbkONxeHgYTVbgZ5sL48IqW5tYGWpzot0beY9J6bBCQ9nLmrCIyWD4Mv_muQ5S7k9r206jhsiuXXzH61u5MxrgWT9ibPh6v__GazoMeNoPxNxToeW4i0xSHeIKrR-kklu8wmQm4MpSmoahsT4zUhghpci0lDSLdKa4SakOfJz3CqwiJeesA6uT0dvJp_MXHtcjjge0Tgr0_Yj2ysUx8i-GehQsucGLnUHl4YY3_udvcxPWGl5N4loR1mHFzm7BemO5SvKkKa_99DYcxWQfPS3Z-_XjbEGGU5fnRd7nVTFKUkdfk3h6hHuafzkmyOnJx0LluS28V-jxDXGk-bSwKDqtwthmL0hM-u8ORgPveUT6KENccObiDny4lA3fhc7sZGbvAVFcGJ9rRi0yJGZ1inYSp_YR_joTQnXhWXv6iW5qsbuWINME72QOKslfUOnC9rlwXpcguVjssYNR4gwTzqVVk1-BK3IlvpJYIlNz0cS8C5tLkmhQ9PJwi7KkMWhl8gdi9_89_BCuIfaSvdF4dwOuM6SE9YPVJnTmxandgqv6bP61LB406kLg82Wj8DfjMFwu
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Tent+L%C3%A9vy+Flying+Sparrow+Search+Algorithm+for+Wrapper-Based+Feature+Selection%3A+A+COVID-19+Case+Study&rft.jtitle=Symmetry+%28Basel%29&rft.au=Yang%2C+Qinwen&rft.au=Gao%2C+Yuelin&rft.au=Song%2C+Yanjie&rft.date=2023-01-01&rft.issn=2073-8994&rft.eissn=2073-8994&rft.volume=15&rft.issue=2&rft.spage=316&rft_id=info:doi/10.3390%2Fsym15020316&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_sym15020316
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon