A Tent Lévy Flying Sparrow Search Algorithm for Wrapper-Based Feature Selection: A COVID-19 Case Study
The “Curse of Dimensionality” induced by the rapid development of information science might have a negative impact when dealing with big datasets, and it also makes the problems of symmetry and asymmetry increasingly prominent. Feature selection (FS) can eliminate irrelevant information in big data...
Gespeichert in:
| Veröffentlicht in: | Symmetry (Basel) Jg. 15; H. 2; S. 316 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.01.2023
|
| Schlagworte: | |
| ISSN: | 2073-8994, 2073-8994 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The “Curse of Dimensionality” induced by the rapid development of information science might have a negative impact when dealing with big datasets, and it also makes the problems of symmetry and asymmetry increasingly prominent. Feature selection (FS) can eliminate irrelevant information in big data and improve accuracy. As a recently proposed algorithm, the Sparrow Search Algorithm (SSA) shows its advantages in the FS tasks because of its superior performance. However, SSA is more subject to the population’s poor diversity and falls into a local optimum. Regarding this issue, we propose a variant of the SSA called the Tent Lévy Flying Sparrow Search Algorithm (TFSSA) to select the best subset of features in the wrapper-based method for classification purposes. After the performance results are evaluated on the CEC2020 test suite, TFSSA is used to select the best feature combination to maximize classification accuracy and simultaneously minimize the number of selected features. To evaluate the proposed TFSSA, we have conducted experiments on twenty-one datasets from the UCI repository to compare with nine algorithms in the literature. Nine metrics are used to evaluate and compare these algorithms’ performance properly. Furthermore, the method is also used on the coronavirus disease (COVID-19) dataset, and its classification accuracy and the average number of feature selections are 93.47% and 2.1, respectively, reaching the best. The experimental results and comparison in all datasets demonstrate the effectiveness of our new algorithm, TFSSA, compared with other wrapper-based algorithms. |
|---|---|
| AbstractList | The “Curse of Dimensionality” induced by the rapid development of information science might have a negative impact when dealing with big datasets, and it also makes the problems of symmetry and asymmetry increasingly prominent. Feature selection (FS) can eliminate irrelevant information in big data and improve accuracy. As a recently proposed algorithm, the Sparrow Search Algorithm (SSA) shows its advantages in the FS tasks because of its superior performance. However, SSA is more subject to the population’s poor diversity and falls into a local optimum. Regarding this issue, we propose a variant of the SSA called the Tent Lévy Flying Sparrow Search Algorithm (TFSSA) to select the best subset of features in the wrapper-based method for classification purposes. After the performance results are evaluated on the CEC2020 test suite, TFSSA is used to select the best feature combination to maximize classification accuracy and simultaneously minimize the number of selected features. To evaluate the proposed TFSSA, we have conducted experiments on twenty-one datasets from the UCI repository to compare with nine algorithms in the literature. Nine metrics are used to evaluate and compare these algorithms’ performance properly. Furthermore, the method is also used on the coronavirus disease (COVID-19) dataset, and its classification accuracy and the average number of feature selections are 93.47% and 2.1, respectively, reaching the best. The experimental results and comparison in all datasets demonstrate the effectiveness of our new algorithm, TFSSA, compared with other wrapper-based algorithms. |
| Audience | Academic |
| Author | Gao, Yuelin Song, Yanjie Yang, Qinwen |
| Author_xml | – sequence: 1 givenname: Qinwen orcidid: 0000-0002-6762-1528 surname: Yang fullname: Yang, Qinwen – sequence: 2 givenname: Yuelin orcidid: 0000-0003-2021-2097 surname: Gao fullname: Gao, Yuelin – sequence: 3 givenname: Yanjie orcidid: 0000-0002-4313-8312 surname: Song fullname: Song, Yanjie |
| BookMark | eNptkdtKxDAQhoMoeLzyBQJeSjVpmqb1rq6uCgterIfLkk0na6RtapJV-kg-hy9mRMEDzlzMMHz__DCzjdZ72wNC-5QcMVaSYz92lJOUMJqvoa2UCJYUZZmt_-g30Z73jyQGJzzLyRZaVvgG-oBnb6_PI562o-mXeD5I5-wLnoN06gFX7dI6Ex46rK3D904OA7jkVHpo8BRkWDmIaAsqGNuf4ApPru-uzhJa4klk8DysmnEXbWjZetj7qjvodnp-M7lMZtcXV5NqliiW85DIAjJYgBZEFVwpYPlCZEBLqps8k0DIoigaYGkjeMOF4FoJQXSptMyaBVE520EHn3sHZ59W4EP9aFeuj5Z1KkSZs4IU4ptayhZq02sbnFSd8aquBE9pVnKWReroHypmA51R8fjaxPkvweGnQDnrvQNdD8500o01JfXHj-ofP4o0_UMrE-THDaONaf_VvAObzpSN |
| CitedBy_id | crossref_primary_10_1016_j_jfranklin_2024_107200 crossref_primary_10_3390_sym15030674 |
| Cites_doi | 10.1007/s00500-004-0363-x 10.1016/j.asoc.2016.11.047 10.1016/j.ins.2020.08.083 10.1109/CEC48606.2020.9185901 10.1039/D0RA04199H 10.1109/TCBB.2012.53 10.1007/s00330-020-06829-2 10.1109/ACCESS.2020.2978090 10.1016/j.bbe.2018.02.005 10.1109/TEVC.2022.3220747 10.1007/s00521-015-1920-1 10.1016/j.swevo.2023.101236 10.1007/s40747-021-00356-3 10.1007/978-3-030-39105-8 10.1109/TEVC.2015.2504420 10.1109/ACCESS.2021.3052960 10.1080/21642583.2019.1708830 10.3389/fpubh.2020.00357 10.1016/j.comnet.2020.107168 10.1016/j.knosys.2022.108457 10.1109/EMS.2014.28 10.1007/978-3-030-53956-6_27 10.1007/s10462-015-9428-8 10.1007/s10288-022-00516-2 10.1038/s41598-021-02731-z 10.1155/2020/4706576 10.1109/TCYB.2021.3061152 10.1016/j.eswa.2020.113188 10.1016/j.engappai.2021.104216 10.1109/ACCESS.2021.3075547 10.1016/j.patcog.2020.107804 10.1016/j.swevo.2011.02.002 10.1109/ICCSE51940.2021.9569597 10.1186/s41044-016-0014-0 10.1007/s00521-021-06099-z 10.1016/j.eswa.2022.119421 10.1007/s40747-022-00676-y 10.1016/j.knosys.2021.107218 10.1016/j.asoc.2021.107302 10.1007/978-3-642-21515-5_36 10.1007/s40747-022-00763-0 10.1016/j.eswa.2014.10.044 10.1016/j.eswa.2018.08.051 10.1016/j.asoc.2018.04.033 10.1007/978-1-4615-5589-6 10.1109/ACCESS.2020.3005687 10.1109/TPAMI.2004.105 10.1016/j.media.2021.102048 10.1177/0954411920987964 10.1016/j.knosys.2021.106924 10.1016/j.advengsoft.2013.12.007 10.1002/widm.1240 10.1007/s10115-011-0463-8 10.1016/j.patcog.2021.108110 10.1016/j.knosys.2015.12.022 10.1016/j.asoc.2013.09.018 10.1016/j.knosys.2020.106020 10.1007/s40747-022-00734-5 10.3390/sym13122368 10.1109/4235.771163 10.1007/s40747-021-00452-4 10.1007/s00500-018-3331-6 10.1016/j.asoc.2021.107942 10.1109/TPAMI.2005.159 10.1016/j.neucom.2015.06.083 10.3390/sym13071291 10.1016/j.cnsns.2012.05.010 10.1016/j.ijhydene.2020.12.107 10.1016/j.ipm.2021.102854 10.1109/LGRS.2014.2337320 10.1016/j.chaos.2020.110027 10.1038/scientificamerican0792-66 10.1016/j.trac.2020.116045 10.1016/j.knosys.2020.106553 10.1016/j.enconman.2019.112461 10.1155/2021/5556780 10.1016/j.engappai.2018.04.018 10.1038/s41698-022-00274-8 10.1007/s40747-021-00384-z 10.1016/j.patrec.2006.09.003 10.1007/s00521-022-07203-7 10.1109/CEC.2016.7744404 10.1016/j.eswa.2020.113981 10.24963/ijcai.2020/348 10.1007/s40747-021-00401-1 10.1109/TCYB.2014.2322602 10.1080/00031305.1992.10475879 10.1016/j.advengsoft.2015.01.010 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 7SR 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU COVID DWQXO H8D HCIFZ JG9 JQ2 L6V L7M L~C L~D M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.3390/sym15020316 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Coronavirus Research Database ProQuest Central Aerospace Database SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database Engineered Materials Abstracts ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2073-8994 |
| ExternalDocumentID | A752149534 10_3390_sym15020316 |
| GeographicLocations | China Germany |
| GeographicLocations_xml | – name: China – name: Germany |
| GroupedDBID | 5VS 8FE 8FG AADQD AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV BENPR BGLVJ CCPQU CITATION E3Z ESX GX1 HCIFZ IAO ITC J9A KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7SC 7SR 7U5 8BQ 8FD ABUWG AZQEC COVID DWQXO H8D JG9 JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c365t-a8e4ebef70c85cce36b74e191fd64ae00b88de32d75d5775fc770f9cfa4db0c63 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000939956900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2073-8994 |
| IngestDate | Fri Jul 25 11:43:40 EDT 2025 Tue Nov 11 10:08:15 EST 2025 Tue Nov 04 17:47:41 EST 2025 Tue Nov 18 22:39:03 EST 2025 Sat Nov 29 07:15:53 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c365t-a8e4ebef70c85cce36b74e191fd64ae00b88de32d75d5775fc770f9cfa4db0c63 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4313-8312 0000-0002-6762-1528 0000-0003-2021-2097 |
| OpenAccessLink | https://www.proquest.com/docview/2779638087?pq-origsite=%requestingapplication% |
| PQID | 2779638087 |
| PQPubID | 2032326 |
| ParticipantIDs | proquest_journals_2779638087 gale_infotracmisc_A752149534 gale_infotracacademiconefile_A752149534 crossref_primary_10_3390_sym15020316 crossref_citationtrail_10_3390_sym15020316 |
| PublicationCentury | 2000 |
| PublicationDate | 20230101 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 20230101 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Symmetry (Basel) |
| PublicationYear | 2023 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Li (ref_94) 2022; 8 ref_93 Xu (ref_31) 2022; 8 Cheng (ref_90) 2014; 45 Fu (ref_11) 2020; 205 Yuan (ref_102) 2021; 9 ref_95 Guyon (ref_19) 2003; 3 ref_15 Mirjalili (ref_97) 2016; 27 Liu (ref_91) 2005; 9 Too (ref_1) 2021; 212 Kamiran (ref_8) 2012; 33 Altman (ref_79) 1992; 46 Zhao (ref_28) 2020; 8 ref_20 Mirjalili (ref_98) 2015; 83 ref_29 Shaban (ref_63) 2021; 119 Wang (ref_73) 2021; 2021 Zheng (ref_14) 2020; 2020 Alasadi (ref_6) 2017; 12 Xue (ref_51) 2015; 20 Oh (ref_25) 2004; 26 Li (ref_16) 2021; 113 Chen (ref_107) 2020; 30 ref_78 Luengo (ref_5) 2016; 1 Li (ref_57) 2021; 106 ref_77 Liu (ref_65) 2021; 235 Hamdi (ref_41) 2018; 38 Zhang (ref_74) 2020; 35 Zhang (ref_67) 2021; 220 Suganthan (ref_80) 2005; 2005005 ref_83 Kamath (ref_45) 2012; 9 ref_82 ref_81 Zhou (ref_53) 2021; 547 ref_89 Song (ref_56) 2021; 52 Frawley (ref_2) 1992; 13 ref_86 ref_85 Park (ref_24) 2015; 42 ref_84 Holland (ref_96) 1992; 267 Xu (ref_33) 2021; 8 Jangir (ref_58) 2018; 72 Djemame (ref_37) 2019; 23 Jin (ref_35) 2020; 8 Mishra (ref_7) 2020; 132 Gad (ref_69) 2022; 34 Jadhav (ref_47) 2018; 69 Braik (ref_50) 2022; 243 Tuerxun (ref_68) 2021; 9 Iwendi (ref_108) 2020; 8 Shen (ref_10) 2021; 8 Hosseini (ref_38) 2020; 173 Sathiyabhama (ref_59) 2021; 33 Galatro (ref_12) 2021; 101 Maleki (ref_52) 2021; 164 ref_60 Karaboga (ref_88) 2009; 214 Dey (ref_62) 2021; 11 Euchi (ref_42) 2022; 20 Xue (ref_21) 2014; 18 ref_64 Zhao (ref_27) 2021; 71 Chen (ref_32) 2022; 8 Derrac (ref_105) 2011; 1 Ghamisi (ref_48) 2014; 12 Ma (ref_72) 2022; 59 Song (ref_18) 2023; 77 Wu (ref_71) 2023; 215 Emary (ref_36) 2016; 172 ref_34 Zhu (ref_66) 2021; 46 Peng (ref_23) 2005; 27 Shan (ref_76) 2005; 20 Zhu (ref_92) 2017; 51 ref_30 Wang (ref_49) 2007; 28 Ribeiro (ref_61) 2020; 139 Arora (ref_100) 2019; 116 Moghaddasi (ref_40) 2020; 147 ref_39 Mirjalili (ref_103) 2014; 69 Gandomi (ref_4) 2012; 17 Xue (ref_54) 2021; 227 Kashef (ref_13) 2018; 8 ref_104 Mirjalili (ref_99) 2016; 96 ref_46 Song (ref_55) 2021; 112 ref_44 ref_43 Xue (ref_70) 2020; 8 Du (ref_26) 2020; 200 ref_101 Sayed (ref_106) 2020; 10 Kuang (ref_75) 2014; 31 ref_3 Diao (ref_22) 2015; 44 Tsamardinos (ref_17) 2022; 6 ref_9 Yao (ref_87) 1999; 3 |
| References_xml | – volume: 9 start-page: 448 year: 2005 ident: ref_91 article-title: A fuzzy adaptive differential evolution algorithm publication-title: Soft Comput. doi: 10.1007/s00500-004-0363-x – volume: 51 start-page: 294 year: 2017 ident: ref_92 article-title: Optimal foraging algorithm for global optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2016.11.047 – volume: 547 start-page: 841 year: 2021 ident: ref_53 article-title: A problem-specific non-dominated sorting genetic algorithm for supervised feature selection publication-title: Inf. Sci. doi: 10.1016/j.ins.2020.08.083 – ident: ref_86 doi: 10.1109/CEC48606.2020.9185901 – volume: 10 start-page: 19790 year: 2020 ident: ref_106 article-title: Nature as a treasure trove of potential anti-SARS-CoV drug leads: A structural/mechanistic rationale publication-title: RSC Adv. doi: 10.1039/D0RA04199H – volume: 9 start-page: 1387 year: 2012 ident: ref_45 article-title: An evolutionary algorithm approach for feature generation from sequence data and its application to DNA splice site prediction publication-title: IEEE/ACM Trans. Comput. Biol. Bioinform. doi: 10.1109/TCBB.2012.53 – volume: 30 start-page: 4893 year: 2020 ident: ref_107 article-title: A diagnostic model for coronavirus disease 2019 (COVID-19) based on radiological semantic and clinical features: A multi-center study publication-title: Eur. Radiol. doi: 10.1007/s00330-020-06829-2 – volume: 8 start-page: 44111 year: 2020 ident: ref_28 article-title: Cloud shape classification system based on multi-channel cnn and improved fdm publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2978090 – volume: 31 start-page: 1502 year: 2014 ident: ref_75 article-title: Artificial bee colony algorithm based on self-adaptive Tent chaos search publication-title: Control Theory Appl. – volume: 38 start-page: 362 year: 2018 ident: ref_41 article-title: Accurate prediction of continuous blood glucose based on support vector regression and differential evolution algorithm publication-title: Biocybern. Biomed. Eng. doi: 10.1016/j.bbe.2018.02.005 – ident: ref_30 doi: 10.1109/TEVC.2022.3220747 – volume: 27 start-page: 1053 year: 2016 ident: ref_97 article-title: Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1920-1 – volume: 77 start-page: 101236 year: 2023 ident: ref_18 article-title: RL-GA: A reinforcement learning-based genetic algorithm for electromagnetic detection satellite scheduling problem publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2023.101236 – volume: 8 start-page: 287 year: 2021 ident: ref_33 article-title: Feature selection using self-information and entropy-based uncertainty measure for fuzzy neighborhood rough set publication-title: Complex Intell. Syst. doi: 10.1007/s40747-021-00356-3 – ident: ref_9 doi: 10.1007/978-3-030-39105-8 – ident: ref_77 – volume: 20 start-page: 606 year: 2015 ident: ref_51 article-title: A survey on evolutionary computation approaches to feature selection publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2015.2504420 – volume: 9 start-page: 16623 year: 2021 ident: ref_102 article-title: DMPPT control of photovoltaic microgrid based on improved sparrow search algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3052960 – volume: 8 start-page: 22 year: 2020 ident: ref_70 article-title: A novel swarm intelligence optimization approach: Sparrow search algorithm publication-title: Syst. Sci. Control Eng. doi: 10.1080/21642583.2019.1708830 – ident: ref_83 – volume: 8 start-page: 357 year: 2020 ident: ref_108 article-title: COVID-19 patient health prediction using boosted random forest algorithm publication-title: Front. Public Health doi: 10.3389/fpubh.2020.00357 – volume: 13 start-page: 57 year: 1992 ident: ref_2 article-title: Knowledge discovery in databases: An overview publication-title: AI Mag. – volume: 173 start-page: 107168 year: 2020 ident: ref_38 article-title: New hybrid method for attack detection using combination of evolutionary algorithms, SVM, and ANN publication-title: Comput. Netw. doi: 10.1016/j.comnet.2020.107168 – volume: 243 start-page: 108457 year: 2022 ident: ref_50 article-title: White Shark Optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.108457 – ident: ref_46 doi: 10.1109/EMS.2014.28 – ident: ref_78 doi: 10.1007/978-3-030-53956-6_27 – volume: 44 start-page: 311 year: 2015 ident: ref_22 article-title: Nature inspired feature selection meta-heuristics publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-015-9428-8 – volume: 20 start-page: 351 year: 2022 ident: ref_42 article-title: Home health care routing and scheduling problems: A literature review publication-title: 4OR doi: 10.1007/s10288-022-00516-2 – volume: 2005005 start-page: 2005 year: 2005 ident: ref_80 article-title: Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization publication-title: KanGAL Rep. – volume: 11 start-page: 24065 year: 2021 ident: ref_62 article-title: MRFGRO: A hybrid meta-heuristic feature selection method for screening COVID-19 using deep features publication-title: Sci. Rep. doi: 10.1038/s41598-021-02731-z – volume: 2020 start-page: 4706576 year: 2020 ident: ref_14 article-title: A full stage data augmentation method in deep convolutional neural network for natural image classification publication-title: Discrete Dyn. Nat. Soc. doi: 10.1155/2020/4706576 – volume: 52 start-page: 9573 year: 2021 ident: ref_56 article-title: A fast hybrid feature selection based on correlation-guided clustering and particle swarm optimization for high-dimensional data publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2021.3061152 – volume: 147 start-page: 113188 year: 2020 ident: ref_40 article-title: A hybrid algorithm based on particle filter and genetic algorithm for target tracking publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113188 – volume: 101 start-page: 104216 year: 2021 ident: ref_12 article-title: Supervised feature selection techniques in network intrusion detection: A critical review publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2021.104216 – volume: 9 start-page: 69307 year: 2021 ident: ref_68 article-title: Fault diagnosis of wind turbines based on a support vector machine optimized by the sparrow search algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3075547 – volume: 112 start-page: 107804 year: 2021 ident: ref_55 article-title: Feature selection using bare-bones particle swarm optimization with mutual information publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107804 – volume: 1 start-page: 3 year: 2011 ident: ref_105 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – volume: 20 start-page: 179 year: 2005 ident: ref_76 article-title: Chaotic optimization algorithm based on Tent map publication-title: Control Decis. – ident: ref_60 doi: 10.1109/ICCSE51940.2021.9569597 – volume: 1 start-page: 9 year: 2016 ident: ref_5 article-title: Big data preprocessing: Methods and prospects publication-title: Big Data Anal. doi: 10.1186/s41044-016-0014-0 – ident: ref_44 – volume: 33 start-page: 14583 year: 2021 ident: ref_59 article-title: A novel feature selection framework based on grey wolf optimizer for mammogram image analysis publication-title: Neural Comput. Appl. doi: 10.1007/s00521-021-06099-z – volume: 215 start-page: 119421 year: 2023 ident: ref_71 article-title: An improved sparrow search algorithm based on quantum computations and multi-strategy enhancement publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.119421 – volume: 8 start-page: 3333 year: 2022 ident: ref_32 article-title: Software defect prediction based on nested-stacking and heterogeneous feature selection publication-title: Complex Intell. Syst. doi: 10.1007/s40747-022-00676-y – volume: 227 start-page: 107218 year: 2021 ident: ref_54 article-title: Adaptive crossover operator based multi-objective binary genetic algorithm for feature selection in classification publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.107218 – volume: 106 start-page: 107302 year: 2021 ident: ref_57 article-title: Improved binary particle swarm optimization for feature selection with new initialization and search space reduction strategies publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107302 – volume: 214 start-page: 108 year: 2009 ident: ref_88 article-title: A comparative study of artificial bee colony algorithm publication-title: Appl. Math. Comput. – ident: ref_101 doi: 10.1007/978-3-642-21515-5_36 – volume: 8 start-page: 5309 year: 2022 ident: ref_31 article-title: Online group streaming feature selection using entropy-based uncertainty measures for fuzzy neighborhood rough sets publication-title: Complex Intell. Syst. doi: 10.1007/s40747-022-00763-0 – volume: 42 start-page: 2336 year: 2015 ident: ref_24 article-title: Sequential random k-nearest neighbor feature selection for high-dimensional data publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.10.044 – ident: ref_81 – ident: ref_89 – ident: ref_64 – volume: 116 start-page: 147 year: 2019 ident: ref_100 article-title: Binary butterfly optimization approaches for feature selection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.08.051 – volume: 69 start-page: 541 year: 2018 ident: ref_47 article-title: Information gain directed genetic algorithm wrapper feature selection for credit rating publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.04.033 – ident: ref_3 doi: 10.1007/978-1-4615-5589-6 – ident: ref_95 – volume: 8 start-page: 123649 year: 2020 ident: ref_35 article-title: Deep facial diagnosis: Deep transfer learning from face recognition to facial diagnosis publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3005687 – volume: 35 start-page: 893 year: 2020 ident: ref_74 article-title: Gravitational search algorithm based on improved Tent chaos publication-title: Control Decis. – volume: 26 start-page: 1424 year: 2004 ident: ref_25 article-title: Hybrid genetic algorithms for feature selection publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2004.105 – volume: 71 start-page: 102048 year: 2021 ident: ref_27 article-title: Faster Mean-shift: GPU-accelerated clustering for cosine embedding-based cell segmentation and tracking publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102048 – volume: 3 start-page: 1157 year: 2003 ident: ref_19 article-title: An introduction to variable and feature selection publication-title: J. Mach. Learn. Res. – volume: 235 start-page: 459 year: 2021 ident: ref_65 article-title: An optimal brain tumor detection by convolutional neural network and enhanced sparrow search algorithm publication-title: Proc. Inst. Mech. Eng. Part H J. Eng. Med. doi: 10.1177/0954411920987964 – volume: 220 start-page: 106924 year: 2021 ident: ref_67 article-title: A stochastic configuration network based on chaotic sparrow search algorithm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2021.106924 – volume: 69 start-page: 46 year: 2014 ident: ref_103 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – ident: ref_84 – volume: 8 start-page: e1240 year: 2018 ident: ref_13 article-title: Multilabel feature selection: A comprehensive review and guiding experiments publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov. doi: 10.1002/widm.1240 – volume: 33 start-page: 1 year: 2012 ident: ref_8 article-title: Data preprocessing techniques for classification without discrimination publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-011-0463-8 – volume: 119 start-page: 108110 year: 2021 ident: ref_63 article-title: Accurate detection of COVID-19 patients based on distance biased Naïve Bayes (DBNB) classification strategy publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.108110 – ident: ref_104 – volume: 96 start-page: 120 year: 2016 ident: ref_99 article-title: SCA: A sine cosine algorithm for solving optimization problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.12.022 – volume: 18 start-page: 261 year: 2014 ident: ref_21 article-title: Particle swarm optimisation for feature selection in classification: Novel initialisation and updating mechanisms publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2013.09.018 – volume: 200 start-page: 106020 year: 2020 ident: ref_26 article-title: Joint imbalanced classification and feature selection for hospital readmissions publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106020 – volume: 8 start-page: 2051 year: 2022 ident: ref_94 article-title: Self-adaptive opposition-based differential evolution with subpopulation strategy for numerical and engineering optimization problems publication-title: Complex Intell. Syst. doi: 10.1007/s40747-022-00734-5 – ident: ref_29 doi: 10.3390/sym13122368 – volume: 3 start-page: 82 year: 1999 ident: ref_87 article-title: Evolutionary programming made faster publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.771163 – volume: 8 start-page: 2769 year: 2021 ident: ref_10 article-title: Two-stage improved Grey Wolf optimization algorithm for feature selection on high-dimensional classification publication-title: Complex Intell. Syst. doi: 10.1007/s40747-021-00452-4 – volume: 23 start-page: 6921 year: 2019 ident: ref_37 article-title: Solving reverse emergence with quantum PSO application to image processing publication-title: Soft Comput. doi: 10.1007/s00500-018-3331-6 – volume: 12 start-page: 4102 year: 2017 ident: ref_6 article-title: Review of data preprocessing techniques in data mining publication-title: J. Eng. Appl. Sci. – volume: 113 start-page: 107942 year: 2021 ident: ref_16 article-title: A dual opposition-based learning for differential evolution with protective mechanism for engineering optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107942 – volume: 27 start-page: 1226 year: 2005 ident: ref_23 article-title: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2005.159 – volume: 172 start-page: 371 year: 2016 ident: ref_36 article-title: Binary grey wolf optimization approaches for feature selection publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.06.083 – ident: ref_15 doi: 10.3390/sym13071291 – volume: 17 start-page: 4831 year: 2012 ident: ref_4 article-title: Krill herd: A new bio-inspired optimization algorithm publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2012.05.010 – ident: ref_82 – volume: 46 start-page: 9541 year: 2021 ident: ref_66 article-title: Optimal parameter identification of PEMFC stacks using Adaptive Sparrow Search Algorithm publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2020.12.107 – volume: 59 start-page: 102854 year: 2022 ident: ref_72 article-title: Enhancing sparrow search algorithm via multi-strategies for continuous optimization problems publication-title: Inf. Process. Manag. doi: 10.1016/j.ipm.2021.102854 – volume: 12 start-page: 309 year: 2014 ident: ref_48 article-title: Feature selection based on hybridization of genetic algorithm and particle swarm optimization publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2014.2337320 – volume: 139 start-page: 110027 year: 2020 ident: ref_61 article-title: Forecasting Brazilian and American COVID-19 cases based on artificial intelligence coupled with climatic exogenous variables publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2020.110027 – volume: 267 start-page: 66 year: 1992 ident: ref_96 article-title: Genetic algorithms publication-title: Sci. Am. doi: 10.1038/scientificamerican0792-66 – volume: 132 start-page: 116045 year: 2020 ident: ref_7 article-title: New data preprocessing trends based on ensemble of multiple preprocessing techniques publication-title: TrAC Trends Anal. Chem. doi: 10.1016/j.trac.2020.116045 – volume: 212 start-page: 106553 year: 2021 ident: ref_1 article-title: A hyper learning binary dragonfly algorithm for feature selection: A COVID-19 case study publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2020.106553 – volume: 205 start-page: 112461 year: 2020 ident: ref_11 article-title: A composite framework coupling multiple feature selection, compound prediction models and novel hybrid swarm optimizer-based synchronization optimization strategy for multi-step ahead short-term wind speed forecasting publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2019.112461 – volume: 2021 start-page: 5556780 year: 2021 ident: ref_73 article-title: Research on economic optimization of microgrid cluster based on chaos sparrow search algorithm publication-title: Comput. Intell. Neurosci. doi: 10.1155/2021/5556780 – volume: 72 start-page: 449 year: 2018 ident: ref_58 article-title: A new non-dominated sorting grey wolf optimizer (NS-GWO) algorithm: Development and application to solve engineering designs and economic constrained emission dispatch problem with integration of wind power publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2018.04.018 – volume: 6 start-page: 38 year: 2022 ident: ref_17 article-title: Just Add Data: Automated predictive modeling for knowledge discovery and feature selection publication-title: NPJ Precis. Oncol. doi: 10.1038/s41698-022-00274-8 – ident: ref_34 doi: 10.1007/s40747-021-00384-z – volume: 28 start-page: 459 year: 2007 ident: ref_49 article-title: Feature selection based on rough sets and particle swarm optimization publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2006.09.003 – volume: 34 start-page: 15705 year: 2022 ident: ref_69 article-title: An improved binary sparrow search algorithm for feature selection in data classification publication-title: Neural Comput. Appl. doi: 10.1007/s00521-022-07203-7 – ident: ref_93 doi: 10.1109/CEC.2016.7744404 – volume: 164 start-page: 113981 year: 2021 ident: ref_52 article-title: A k-NN method for lung cancer prognosis with the use of a genetic algorithm for feature selection publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113981 – ident: ref_85 – ident: ref_20 doi: 10.24963/ijcai.2020/348 – ident: ref_39 doi: 10.1007/s40747-021-00401-1 – ident: ref_43 – volume: 45 start-page: 191 year: 2014 ident: ref_90 article-title: A competitive swarm optimizer for large scale optimization publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2014.2322602 – volume: 46 start-page: 175 year: 1992 ident: ref_79 article-title: An introduction to kernel and nearest-neighbor nonparametric regression publication-title: Am. Stat. doi: 10.1080/00031305.1992.10475879 – volume: 83 start-page: 80 year: 2015 ident: ref_98 article-title: The ant lion optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2015.01.010 |
| SSID | ssj0000505460 |
| Score | 2.2739098 |
| Snippet | The “Curse of Dimensionality” induced by the rapid development of information science might have a negative impact when dealing with big datasets, and it also... The "Curse of Dimensionality" induced by the rapid development of information science might have a negative impact when dealing with big datasets, and it also... |
| SourceID | proquest gale crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 316 |
| SubjectTerms | Algorithms Analysis Asymmetry Case studies Classification Coronaviruses COVID-19 Data mining Datasets Feature selection Genetic algorithms Heuristic Information science Methods Neural networks Optimization techniques Parameter identification Performance evaluation Search algorithms Viral diseases |
| Title | A Tent Lévy Flying Sparrow Search Algorithm for Wrapper-Based Feature Selection: A COVID-19 Case Study |
| URI | https://www.proquest.com/docview/2779638087 |
| Volume | 15 |
| WOSCitedRecordID | wos000939956900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NTttAEF4V6IELLVBEKEV7QGqptMLEa6_DBZk0EUgljQq09GStZ9eAFIKxA1IufZ8-By_GjL0pREJcuPhgj-2Vvpmd351hbBNCX5kU3VRptBaooVKRgs2EJmPXUK4vhWrYhOr1orOzVt8F3EpXVjnZE6uN2lwDxci3m0oRr3iR2stvBE2NouyqG6Exw-aoS8JOVbp3_D_GQlPaZOjVx_J89O63y_EVWkBN5ORwShE9vx1XOqb77rWre88WnHXJ45odFtkbO1xii05-S_7FNZneWmbnMT9BfcO_3_-7G_PugE478eO8asnI6xpkHg_O8R-jiyuOli3_Xeg8t4XYR71nOJmOt4VF0kFVzDXc5TFv__h1-E3stHgbaTiVKI4_sNNu56R9INzQBQF-GIyEjqxEYDPlQRQAWD9MlbTo1WUmlNp6XhpFxvpNowITKBVkoJSXtSDTEjFH6FfY7PB6aFcZV9CkPJ3vWfBlQDlcUCmkWkuo3m2wrxMEEnAdyWkwxiBBz4TgSp7A1UC-mhDndSOO58k-E5QJiSd-C7Q7ZYArokZXSazQXqGaWtlg61OUKFYw_XiCdOLEukweYV57-fFHNk9z6etYzTqbHRW39hN7C3ejy7LYYHP7nV7_50bFrXT928F7_cOj_p8HRf31dw |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggSXQnmIhQI-gHhIUUPixAkSqsKWVVddFqQu0Ftwxk5B2m7TZFu0P4kLf6J_jJk8gJUqbj1w9sTyxJ9nxp4XwGMMfWUyuqZKo7VDGipzMrS5o9nYNezry7BuNqHG42h_P_6wAj-7XBgOq-xkYi2ozRHyG_mmpxRjxY3UVnHscNco9q52LTQaWOzaxXe6slWvh9u0v088b_B20t9x2q4CDvphMHd0ZCWtPFcuRgGi9cNMSUvXltyEUlvXzaLIWN8zKjCBUkGOSrl5jLmWxBTxRvNegstkRnhxHSq49_tNh7vCydBt0gB9P3Y3q8UhWVwenZxwSfGdL_5rnTa4_r_9jRuw1lrPImngvg4rdnYT1lv5VIlnbRHt57fgIBET0qdidPbjdCEGU87mEntFXXJSNDHWIpkeEE_zr4eCLHfxudRFYUvnDel1I9g0PiktkU7rYLXZK5GI_vtPw23nZSz6RCM4BHNxGz5eCMN3YHV2NLN3QSj02A_puxZ9GbCPGlWGmdYS62978KLb8RTbiuvc-GOa0s2L4ZH-BY8enZuOuGgKjZxP9pShk7L4oblQt1kUtCIu5JUmiuwxjhmWPdhYoiSxgcvDHbLSVmxV6R9Y3fv38CO4ujN5N0pHw_HufbjmkeXXvEttwOq8PLEP4Aqezr9V5cP6hAj4ctEg_AVRmFFC |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB6VFCEuQHmogQJ7APGQVnHttddBQsgkREQtIRKllJNZj9cFKU2NnRblJ_EXuPLHmPEDiFRx64GzxyuP95vH7rwAHmDg6TShY6pKjZFkoRKZoM2kYWc35VhfgtWwCT2ZhAcH_eka_GhrYTitstWJlaJOj5HvyHuu1owVJ9S9rEmLmA5HL_KvkidIcaS1HadRQ2THLr_R8a18Ph7SXj903dGrvcFr2UwYkOgF_kKa0CriItMOhj6i9YJEK0tHmCwNlLGOk4Rhaj031X7qa-1nqLWT9TEzihgkPmndC7BOLrlyO7A-Hb-Zfvx9w8Mz4lTg1EWBntd3euXyiPwvl-QoWDGDZxuDysKNrv7P_-YaXGn8ahHVgrABa3Z-HTYazVWKx0177Sc34DASe2Rpxe7P76dLMZpxnZd4l1fNKEWdfS2i2SHxtPh8JMinFx8Kk-e2kC_J4qeCneaTwhLprEpjmz8TkRi83R8P5XZfDIhGcHLm8ia8PxeGb0Fnfjy3myA0uhyh9ByLnvI5eo06wcQYhdW7XXja7n6MTS92Hgkyi-lMxlCJ_4JKlySqJc7rFiRnkz1iGMWsmGgtNE19BX0Rt_iKI02eGmcTqy5srVCSQsHVxy3K4kahlfEfiN3-9-P7cImwF--OJzt34LJLLmF9YbUFnUVxYu_CRTxdfCmLe424CPh03ij8BfnVW3g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Tent+L%C3%A9vy+Flying+Sparrow+Search+Algorithm+for+Wrapper-Based+Feature+Selection%3A+A+COVID-19+Case+Study&rft.jtitle=Symmetry+%28Basel%29&rft.au=Yang%2C+Qinwen&rft.au=Gao%2C+Yuelin&rft.au=Song%2C+Yanjie&rft.date=2023-01-01&rft.pub=MDPI+AG&rft.eissn=2073-8994&rft.volume=15&rft.issue=2&rft.spage=316&rft_id=info:doi/10.3390%2Fsym15020316&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon |