New Identities and Equation Solutions Involving k-Oresme and k-Oresme–Lucas Sequences

Number sequences are among the research areas of interest in both number theory and linear algebra. In particular, the study of matrix representations of recursive sequences is important in revealing the structural properties of these sequences. In this study, the relationships between the elements...

Full description

Saved in:
Bibliographic Details
Published in:Mathematics (Basel) Vol. 13; no. 14; p. 2321
Main Author: Demirtürk, Bahar
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.07.2025
Subjects:
ISSN:2227-7390, 2227-7390
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Number sequences are among the research areas of interest in both number theory and linear algebra. In particular, the study of matrix representations of recursive sequences is important in revealing the structural properties of these sequences. In this study, the relationships between the elements of the k-Fibonacci and k-Oresme sequences were analyzed using matrix algebra through matrix structures created by connecting the characteristic equations and roots of these sequences. In this context, using the properties of these matrices, the identities An2−An+1An−1=k−2n, An2−AnAn−1+1k2An−12=k−2n, and Bn2−BnBn−1+1k2Bn−12=−(k2−4)k−2n, and some generalizations such as Bn+m2−(k2−4)An−tBn+mAt+m−(k2−4)k2t−2nAt+m2=k−2m−2tBn−t2, At+m2−Bt−nAn+mAt+m+k2n−2tAn+m2=k−2n−2mAt−n2, and more were derived, where m,n,t∈ℤ and t≠n. In addition to this, the solution pairs of the algebraic equations x2−Bpxy+k−2py2=k−2qAp2, x2−(k2−4)Apxy−(k2−4)k−2py2=k−2qBp2, and x2−Bpxy+k−2py2=−(k2−4)k−2qAp2 are presented, where Ap and Bp are k-Oresme and k-Oresme–Lucas numbers, respectively.
AbstractList Number sequences are among the research areas of interest in both number theory and linear algebra. In particular, the study of matrix representations of recursive sequences is important in revealing the structural properties of these sequences. In this study, the relationships between the elements of the k-Fibonacci and k-Oresme sequences were analyzed using matrix algebra through matrix structures created by connecting the characteristic equations and roots of these sequences. In this context, using the properties of these matrices, the identities An2−An+1An−1=k−2n, An2−AnAn−1+1k2An−12=k−2n, and Bn2−BnBn−1+1k2Bn−12=−(k2−4)k−2n, and some generalizations such as Bn+m2−(k2−4)An−tBn+mAt+m−(k2−4)k2t−2nAt+m2=k−2m−2tBn−t2, At+m2−Bt−nAn+mAt+m+k2n−2tAn+m2=k−2n−2mAt−n2, and more were derived, where m,n,t∈ℤ and t≠n. In addition to this, the solution pairs of the algebraic equations x2−Bpxy+k−2py2=k−2qAp2, x2−(k2−4)Apxy−(k2−4)k−2py2=k−2qBp2, and x2−Bpxy+k−2py2=−(k2−4)k−2qAp2 are presented, where Ap and Bp are k-Oresme and k-Oresme–Lucas numbers, respectively.
Number sequences are among the research areas of interest in both number theory and linear algebra. In particular, the study of matrix representations of recursive sequences is important in revealing the structural properties of these sequences. In this study, the relationships between the elements of the k-Fibonacci and k-Oresme sequences were analyzed using matrix algebra through matrix structures created by connecting the characteristic equations and roots of these sequences. In this context, using the properties of these matrices, the identities A[sub.n] [sup.2]−A[sub.n+1]A[sub.n−1]=k[sup.−2n], A[sub.n] [sup.2]−A[sub.n]A[sub.n−1]+1/k2A[sub.n−1] [sup.2]=k[sup.−2n], and B[sub.n] [sup.2]−B[sub.n]B[sub.n−1]+1/k2B[sub.n−1] [sup.2]=−(k[sup.2]−4)k[sup.−2n], and some generalizations such as B[sub.n+m] [sup.2]−(k[sup.2]−4)A[sub.n−t]B[sub.n+m]A[sub.t+m]−(k[sup.2]−4)k[sup.2t−2n]A[sub.t+m] [sup.2]=k[sup.−2m−2t]B[sub.n−t] [sup.2], A[sub.t+m] [sup.2]−B[sub.t−n]A[sub.n+m]A[sub.t+m]+k[sup.2n−2t]A[sub.n+m] [sup.2]=k[sup.−2n−2m]A[sub.t−n] [sup.2], and more were derived, where m,n,t∈ℤ and t≠n. In addition to this, the solution pairs of the algebraic equations x[sup.2]−B[sub.p]xy+k[sup.−2p]y[sup.2]=k[sup.−2q]A[sub.p] [sup.2], x[sup.2]−(k[sup.2]−4)A[sub.p]xy−(k[sup.2]−4)k[sup.−2p]y[sup.2]=k[sup.−2q]B[sub.p] [sup.2], and x[sup.2]−B[sub.p]xy+k[sup.−2p]y[sup.2]=−(k[sup.2]−4)k[sup.−2q]A[sub.p] [sup.2] are presented, where A[sub.p] and B[sub.p] are k-Oresme and k-Oresme–Lucas numbers, respectively.
Number sequences are among the research areas of interest in both number theory and linear algebra. In particular, the study of matrix representations of recursive sequences is important in revealing the structural properties of these sequences. In this study, the relationships between the elements of the k-Fibonacci and k-Oresme sequences were analyzed using matrix algebra through matrix structures created by connecting the characteristic equations and roots of these sequences. In this context, using the properties of these matrices, the identities An2−An+1An−1=k−2n , An2−AnAn−1+ 1k2 An−12=k−2n , and Bn2−BnBn−1+ 1k2 Bn−12=− ( k2−4 ) k−2n , and some generalizations such as Bn+m2− ( k2−4 ) An−tBn+mAt+m− ( k2−4 ) k2t−2nAt+m2=k−2m−2tBn−t2 , At+m2−Bt−nAn+mAt+m+k2n−2tAn+m2=k−2n−2mAt−n2 , and more were derived, where m,n,t∈ℤ and t≠n . In addition to this, the solution pairs of the algebraic equations x2−Bpxy+k−2py2=k−2qAp2 , x2− ( k2−4 ) Apxy− ( k2−4 ) k−2py2=k−2qBp2 , and x2−Bpxy+k−2py2=− ( k2−4 ) k−2qAp2 are presented, where Ap and Bp are k-Oresme and k-Oresme–Lucas numbers, respectively.
Audience Academic
Author Demirtürk, Bahar
Author_xml – sequence: 1
  givenname: Bahar
  orcidid: 0000-0002-5911-5190
  surname: Demirtürk
  fullname: Demirtürk, Bahar
BookMark eNpNUc1OGzEQthBITYFbH2ClXrvgn_Xu-hghWiJF5UARR2vWng0OiZ3Yu6DeeAfekCfBIaXCtuT5-ebTzHxfyaEPHgn5xuiZEIqer2G4Z4JVXHB2QCac86ZscuLwk_2FnKa0pPkoJtpKTcjdb3wqZhb94AaHqQBvi8vtCIMLvrgJq3FnpGLmH8Pq0flF8VBeR0xrfEd-OK_PL_PRQCpucDuiN5hOyFEPq4Sn__5jcvvz8s_FVTm__jW7mM5LI2o5lEBNU0HbAqeKK9Exa6DDWiJwKZntWmgFB9XXnWyqlmPdy5xsEGrLq5p14pjM9rw2wFJvoltD_KsDOP0eCHGhIQ7OrFBzRi2lRgrVm8oyVIw2lPddJ3nbqYplru97rk0MeYw06GUYo8_ta8FFfnmPMqPO9qgFZFLn-zBEMPlaXDuTNeldjk_zdlVb13RX8GNfYGJIKWL_v01G9U46_Vk68Qacso1J
Cites_doi 10.1007/s10665-024-10350-6
10.46793/KgJMat2405.747SL
10.1080/00150517.1975.12430693
10.1080/00150517.1990.12429516
10.1080/00029890.1961.11989696
10.1109/IV64223.2024.00014
10.1007/978-0-306-48517-6_10
10.3390/sym16111407
10.1002/9781118033067
10.1016/j.chaos.2006.09.022
10.3934/mbe.2023092
10.20944/preprints202402.0910.v1
10.1080/00150517.2017.12427733
10.1080/00150517.1965.12431416
10.3390/math9070789
10.1080/00150517.2019.12427646
10.1080/00207390903236426
10.9734/ajarr/2023/v17i10532
10.1080/00150517.1997.12428995
10.1007/978-1-4757-4330-2
10.3390/sym17050697
10.1007/b98892
10.3390/math12081156
10.3390/axioms14010014
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.3390/math13142321
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
CrossRef


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2227-7390
ExternalDocumentID oai_doaj_org_article_210d00c539fc4d1e910702fbb528b941
A849986605
10_3390_math13142321
GroupedDBID -~X
5VS
85S
8FE
8FG
AADQD
AAFWJ
AAYXX
ABDBF
ABJCF
ABPPZ
ABUWG
ACIPV
ACIWK
ADBBV
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
ITC
K6V
K7-
KQ8
L6V
M7S
MODMG
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
PTHSS
RNS
3V.
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
M0N
P62
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c365t-a0c74a88a209293b1dcabe65ea2551db8a832a9f6b57482e6f565e7ea6d2461b3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001536063300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2227-7390
IngestDate Fri Oct 03 12:43:26 EDT 2025
Fri Jul 25 18:48:00 EDT 2025
Tue Nov 04 18:09:52 EST 2025
Sat Nov 29 07:16:08 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-a0c74a88a209293b1dcabe65ea2551db8a832a9f6b57482e6f565e7ea6d2461b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5911-5190
OpenAccessLink https://doaj.org/article/210d00c539fc4d1e910702fbb528b941
PQID 3233232225
PQPubID 2032364
ParticipantIDs doaj_primary_oai_doaj_org_article_210d00c539fc4d1e910702fbb528b941
proquest_journals_3233232225
gale_infotracacademiconefile_A849986605
crossref_primary_10_3390_math13142321
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Mathematics (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Spreafico (ref_24) 2024; 9
Kilic (ref_38) 2010; 94
Falcon (ref_9) 2007; 32
ref_14
ref_13
ref_12
Liana (ref_19) 2024; 48
Keskin (ref_39) 2013; 111
ref_11
ref_33
ref_10
ref_32
ref_30
Goy (ref_17) 2019; 57
Cook (ref_31) 2004; Volume 9
ref_16
(ref_3) 2022; 20
Soykan (ref_18) 2023; 17
Kalman (ref_27) 2003; 76
Melham (ref_37) 1997; 35
ref_25
(ref_21) 2023; 13
ref_23
Vivek (ref_7) 2024; 145
(ref_20) 2023; 120
Keskin (ref_34) 2009; 41
Horadam (ref_15) 1961; 68
ref_29
Jones (ref_35) 1975; 13
Bergum (ref_28) 1996; Volume 6
ref_8
Soeini (ref_2) 2012; 7
Bhattacharyya (ref_4) 2017; 3
ref_5
Boman (ref_1) 2017; 55
Kimberling (ref_36) 1990; 28
Horadam (ref_26) 1965; 3
ref_6
(ref_22) 2024; 14
References_xml – volume: 111
  start-page: 161
  year: 2013
  ident: ref_39
  article-title: Solutions of some Diophantine equations using generalized Fibonacci and Lucas sequences
  publication-title: Ars Comb.
– ident: ref_32
– volume: 145
  start-page: 1
  year: 2024
  ident: ref_7
  article-title: Solution of linear and nonlinear singular value problems using operational matrix of integration of Fibonacci wavelets
  publication-title: J. Eng. Math.
  doi: 10.1007/s10665-024-10350-6
– volume: 48
  start-page: 747
  year: 2024
  ident: ref_19
  article-title: Oresme hybrid numbers and hybrationals
  publication-title: Kragujev. J. Math.
  doi: 10.46793/KgJMat2405.747SL
– ident: ref_11
– volume: 13
  start-page: 84
  year: 1975
  ident: ref_35
  article-title: Diophantine representation of the Fibonacci numbers
  publication-title: Fibonacci Q.
  doi: 10.1080/00150517.1975.12430693
– volume: 7
  start-page: 268
  year: 2012
  ident: ref_2
  article-title: Using Fibonacci numbers to forecast the stock market
  publication-title: Int. J. Manag. Sci. Eng. Manag.
– ident: ref_16
– volume: 28
  start-page: 22
  year: 1990
  ident: ref_36
  article-title: Fibonacci hyperbolas
  publication-title: Fibonacci Q.
  doi: 10.1080/00150517.1990.12429516
– volume: 68
  start-page: 455
  year: 1961
  ident: ref_15
  article-title: A generalized Fibonacci sequence
  publication-title: Amer. Math. Mon.
  doi: 10.1080/00029890.1961.11989696
– volume: 13
  start-page: 41
  year: 2023
  ident: ref_21
  article-title: On some derivatives of k-Oresme polynomials
  publication-title: Bull. Int. Math. Virtual Inst.
– volume: 9
  start-page: 68
  year: 2024
  ident: ref_24
  article-title: On generalized Oresme numbers and the Fibonacci fundamental system
  publication-title: Rev. Sergip. Mat. Educ. Mat.
– ident: ref_6
  doi: 10.1109/IV64223.2024.00014
– ident: ref_23
– volume: Volume 9
  start-page: 87
  year: 2004
  ident: ref_31
  article-title: Some sums related to sums of Oresme numbers
  publication-title: Proceedings of the Tenth International Research Conference on Fibonacci Numbers and Their Applications
  doi: 10.1007/978-0-306-48517-6_10
– volume: 94
  start-page: 459
  year: 2010
  ident: ref_38
  article-title: Conics characterizing the generalized Fibonacci and Lucas sequences with indices in arithmetic progressions
  publication-title: Ars Comb.
– volume: 3
  start-page: 1
  year: 2017
  ident: ref_4
  article-title: Complexity analysis of a lossless data compression algorithm using Fibonacci sequence
  publication-title: Int. J. Inf. Technol. (IJIT)
– ident: ref_33
  doi: 10.3390/sym16111407
– ident: ref_10
  doi: 10.1002/9781118033067
– ident: ref_8
– volume: 32
  start-page: 1615
  year: 2007
  ident: ref_9
  article-title: On the Fibonacci k-numbers
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/j.chaos.2006.09.022
– volume: 20
  start-page: 1993
  year: 2022
  ident: ref_3
  article-title: Error detection and correction for coding theory on k-order Gaussian Fibonacci matrices
  publication-title: Math. Biosci. Eng.
  doi: 10.3934/mbe.2023092
– ident: ref_14
  doi: 10.20944/preprints202402.0910.v1
– volume: 55
  start-page: 30
  year: 2017
  ident: ref_1
  article-title: Why do Fibonacci numbers appear in patterns of growth in nature?
  publication-title: Fibonacci Q.
  doi: 10.1080/00150517.2017.12427733
– volume: 3
  start-page: 161
  year: 1965
  ident: ref_26
  article-title: Basic Properties of a Certain Generalized Sequence of Numbers
  publication-title: Fibonacci Q.
  doi: 10.1080/00150517.1965.12431416
– ident: ref_5
  doi: 10.3390/math9070789
– volume: 57
  start-page: 238
  year: 2019
  ident: ref_17
  article-title: On Oresme numbers and their connection with Fibonacci and Pell numbers
  publication-title: Fibonacci Q.
  doi: 10.1080/00150517.2019.12427646
– volume: 41
  start-page: 379
  year: 2009
  ident: ref_34
  article-title: Some new Fibonacci and Lucas identities by matrix methods
  publication-title: Int. J. Math. Educ. Sci. Technol.
  doi: 10.1080/00207390903236426
– volume: 17
  start-page: 41
  year: 2023
  ident: ref_18
  article-title: On the norms of Toeplitz matrices with the generalized Oresme numbers
  publication-title: Asian J. Adv. Res. Rep.
  doi: 10.9734/ajarr/2023/v17i10532
– volume: 35
  start-page: 248
  year: 1997
  ident: ref_37
  article-title: Conics which characterize certain Lucas sequences
  publication-title: Fibonacci Q.
  doi: 10.1080/00150517.1997.12428995
– ident: ref_29
  doi: 10.1007/978-1-4757-4330-2
– ident: ref_25
  doi: 10.3390/sym17050697
– volume: 76
  start-page: 167
  year: 2003
  ident: ref_27
  article-title: The Fibonacci numbers—Exposed
  publication-title: Math. Mag.
– volume: Volume 6
  start-page: 389
  year: 1996
  ident: ref_28
  article-title: Algorithmic manipulation of Fibonacci identities
  publication-title: Applications of Fibonacci Numbers
– volume: 14
  start-page: 1288
  year: 2024
  ident: ref_22
  article-title: On Oresme numbers and their geometric interpretations
  publication-title: J. Inst. Sci. Technol.
– ident: ref_30
  doi: 10.1007/b98892
– ident: ref_13
  doi: 10.3390/math12081156
– ident: ref_12
  doi: 10.3390/axioms14010014
– volume: 120
  start-page: 1
  year: 2023
  ident: ref_20
  article-title: On some k-Oresme hybrid numbers
  publication-title: Util. Math.
RelatedPersons Oresme, Nicole
RelatedPersons_xml – fullname: Oresme, Nicole
SSID ssj0000913849
Score 2.2959006
Snippet Number sequences are among the research areas of interest in both number theory and linear algebra. In particular, the study of matrix representations of...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 2321
SubjectTerms Algebra
Algorithms
Data compression
Eigenvalues
Eigenvectors
generalized Fibonacci sequences
Identities
k-Oresme sequences
Linear algebra
Mathematicians
Matrix algebra
Matrix representation
Number theory
Numbers
Numerical analysis
Oresme, Nicole
Polynomials
Sequences
solutions of algebraic equations
SummonAdditionalLinks – databaseName: Publicly Available Content Database
  dbid: PIMPY
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB7RLYdyKD8tYqFUPoA4WRsnjuOcqoJaUaktKwGinCz_pSBEtt1dOPcd-oY8CTOJs8CBnipFkZI4kZWxx_ONZ74BeOF8KX0Qgscmr7mspOWuyjz3XlTCaRWaxnbFJqrTU312Vk9TevQihVUOOrFT1D3bM8VtoxKehJknj_mkyAs8CKvsXVxyqiFFe62poMYarBPxVj6C9enRyfTzyudCHJha1n38e4Fof4JW4RdRCNqtFP-sTB2B___UdLf2HN6_3V4_gM1kg7L9ftA8hDuxfQT3TlYErost-ITKj6UkXsTSzLaBHVz2tOBs5UpjRy1qN3JJsG_8HQL377FrOVz8uro-pqJq7P0QsL0NHw8PPrx5y1MNBu4LVS65zTzKT2ubZ2hIFU4Eb11UZbSIRURw2qJKsHWjXFlJnUfVoIUYq2hVIKY6VzyGUTtr4xNgXroQZOkblVkZ8VTqGuGZ9l7pgC-O4eXw_81FT7VhEKKQnMzfchrDaxLOqg0RZHc3ZvNzk-abQSQbssyXRd14GUREq6jK8sa5MteulviRVyRaQ9N4ObfepmwE7CoRYpl9HCe1Vgj2xrAziNak-b0wfyT59ObHz2Ajp4rBXYDvDoyW8x_xOdz1P5dfF_PdNEB_Ay0d-Nw
  priority: 102
  providerName: ProQuest
Title New Identities and Equation Solutions Involving k-Oresme and k-Oresme–Lucas Sequences
URI https://www.proquest.com/docview/3233232225
https://doaj.org/article/210d00c539fc4d1e910702fbb528b941
Volume 13
WOSCitedRecordID wos001536063300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M~E
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: K7-
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: M7S
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: BENPR
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2227-7390
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913849
  issn: 2227-7390
  databaseCode: PIMPY
  dateStart: 20130301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB5VpQc4IGhBLJSVD604WY1jxz_HFm1FBd2uaBHlZPkvKkIE2F04It6BN-RJGDvZ1XJAXJAiS0kcaTQTj-ezx98AHPjQiBAZo6mtDRVKOOpVFWgITDGvZWxbV4pNqOlUX1-b2Uapr5wT1tMD94o7QkgSqyo03LRBRJZwelNV3Xrf1NqbcmS9rpTZAFPFBxvGtTB9pjtHXH-E8d8N4yzvS7I_5qBC1f83h1xmmdN7cHcID8lxL9Z92ErdLtw5X3OrLvbgLfolMpyvRZhLXBfJ5EvP2E3Wq1zkrEPHk1cLyAd6gZj6Yyo9Vze_fvx8leudkctVLvUDeHM6uXr-gg7lEWjgsllSVwVUrdaurjDG4Z7F4HySTXIIE1j02uFodaaVvlFC10m2GLwllZyMmUTO84ew3X3q0iMgQfgYRRNaWTmRsGm0QeSkQ5A64ocjOFwpzH7uWTAsooesWLup2BGcZG2u-2Tu6vIALWoHi9p_WXQEz7ItbB5hy7kLbjgogKJmrip7jIY1WiIOG8H-ylx2GHoLy2uOV4axj_-HNE_gdp1L_pYM3X3YXs6_pqewE74t3y_mY7h1MpnOXo_L34ftS0XHOX30MrffJ_h-dnY-e_cbuLDjgA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VggQ98F91oYAPVJysxrHjOAeECrTqarcLEkX0ZvyXUiGybbKAuPEOvAcPxZMwzs8CB7j1gBRFiuNYTvzl88x4PAPw0LpMOM8YDWVaUJELQ22eOOocy5lV0pelaZNN5LOZOjoqXq7A92EvTHSrHDixJWo_d9FGvs1TjkfUTp6cntGYNSqurg4pNDpYTMKXz6iyNY_Hz3F8t9J0b_fw2T7tswpQx2W2oCZx2COlTJqgaMAt887YILNgULpm3iqDIDdFKW2WC5UGWaLME_JgpI-x1yzHdi_ARcGVjC5kk5wubToxxqYSRedfz3mRbKPU-Y5xFldD2R8zX5sg4G_TQDu37V37377KdbjaS9Fkp4P9DVgJ1U1YO1iGoG1uwRukb9JvQz4JDTGVJ7tnXWBzsjQGknGF_ByNKuQ9fVGH5kNoaw4XP75-m8a0cOTV4HJ-G16fy5utw2o1r8IGECes9yJzpUyMCHjKVIEKpnJOKo8PjmBrGGF92gUL0ahkRSTo35Ewgqdx-Jd1YojvtmBeH-ueMTTq4j5JXMaL0gnPAsp1eZKW1mapsoXARh5F8OhIRIvaONPvp8CuxpBeegeRWCiJ6uoINgfw6J6hGv0LOXf-ffsBXN4_PJjq6Xg2uQtX0pj_uHVX3oTVRf0x3INL7tPipKnvtz8DgbfnjbOf0sRI8Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NbtQwEB6VFiE48I9YKOADFado49hx7ANChXbFqu2yEiDKyfgvUCGybbKAuPEOvA2Pw5Mwzs8CB7j1gBRFSuJYTvz588x4PANw37qcO09pEspMJbzgJrFF6hLnaEGtFL4sTZtsopjN5OGhmq_B92EvTHSrHDixJWq_cNFGPmYZwyNqJ-Oyd4uY70weHZ8kMYNUXGkd0ml0ENkLXz6j-tY8nO5gX29l2WT3xZOnSZ9hIHFM5MvEpA5bJ6XJUhQTmKXeGRtEHgxK2tRbaRDwRpXC5gWXWRAlyj-hCEb4GIfNMqz3DGygSM5Q8duYTw_mr1cWnhhxU3LVedszptIxyqDvKKNxbZT-MQ-26QL-Nim0M93k0v_8jy7DxV6-JtvdgLgCa6G6ChcOVsFpm2vwComd9BuUj0JDTOXJ7kkX8pyszIRkWiFzR3MLeZ88q0PzIbQlh4sfX7_tx4Rx5PngjH4dXp7Kl92A9WpRhZtAHLfe89yVIjU84CmXClVP6ZyQHl8cwdbQ2_q4CyOiUf2KqNC_o2IEjyMUVmVi8O_2xqJ-q3su0ail-zR1OVOl454GlPiKNCutzTNpFcdKHkQg6UhRy9o40--0wKbGYF96G1GppEBFdgSbA5B0z12N_oWiW_9-fA_OIbz0_nS2dxvOZzExcuvHvAnry_pjuANn3aflUVPf7UcGgTenDbSfFqpTcg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=New+Identities+and+Equation+Solutions+Involving+k-Oresme+and+k-Oresme%E2%80%93Lucas+Sequences&rft.jtitle=Mathematics+%28Basel%29&rft.au=Demirt%C3%BCrk%2C+Bahar&rft.date=2025-07-01&rft.issn=2227-7390&rft.eissn=2227-7390&rft.volume=13&rft.issue=14&rft.spage=2321&rft_id=info:doi/10.3390%2Fmath13142321&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_math13142321
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-7390&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-7390&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-7390&client=summon