A Neural Network Study of the Phase Transitions of the 2D Antiferromagnetic q-State Potts Models on the Square Lattice
Abstract The critical phenomena of the 2D antiferromagnetic $q$-state Potts model on the square lattice with $q=2,3,4$ are investigated using the techniques of neural networks (NNs). In particular, an unconventional supervised NN which is trained using no information about the physics of the conside...
Uloženo v:
| Vydáno v: | Progress of theoretical and experimental physics Ročník 2025; číslo 3 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Oxford University Press
01.03.2025
|
| Témata: | |
| ISSN: | 2050-3911, 2050-3911 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Abstract
The critical phenomena of the 2D antiferromagnetic $q$-state Potts model on the square lattice with $q=2,3,4$ are investigated using the techniques of neural networks (NNs). In particular, an unconventional supervised NN which is trained using no information about the physics of the considered systems is employed. In addition, conventional unsupervised autoencoders (AECs) are used in our study as well. Remarkably, whereas the conventional AECs either fail or only work partially to uncover the critical phenomena of the systems associated with $q=3$ and $q=4$ investigated here, our unconventional supervised NN correctly identifies the critical behaviors of all three considered antiferromagnetic $q$-state Potts models. The results obtained in this study suggest convincingly that the applicability of our unconventional supervised NN is broader than one anticipates. In particular, when a new system is studied with our NN, it is likely that it is not necessary to conduct any training, and one only needs to examine whether an appropriate reduced representation of the original raw configurations exists, so that the same already trained NN can be employed to explore the related phase transition efficiently. |
|---|---|
| AbstractList | Abstract
The critical phenomena of the 2D antiferromagnetic $q$-state Potts model on the square lattice with $q=2,3,4$ are investigated using the techniques of neural networks (NNs). In particular, an unconventional supervised NN which is trained using no information about the physics of the considered systems is employed. In addition, conventional unsupervised autoencoders (AECs) are used in our study as well. Remarkably, whereas the conventional AECs either fail or only work partially to uncover the critical phenomena of the systems associated with $q=3$ and $q=4$ investigated here, our unconventional supervised NN correctly identifies the critical behaviors of all three considered antiferromagnetic $q$-state Potts models. The results obtained in this study suggest convincingly that the applicability of our unconventional supervised NN is broader than one anticipates. In particular, when a new system is studied with our NN, it is likely that it is not necessary to conduct any training, and one only needs to examine whether an appropriate reduced representation of the original raw configurations exists, so that the same already trained NN can be employed to explore the related phase transition efficiently. The critical phenomena of the 2D antiferromagnetic \(q\)-state Potts model on the square lattice with \(q=2,3,4\) are investigated using the techniques of neural networks (NNs). In particular, an unconventional supervised NN which is trained using no information about the physics of the considered systems is employed. In addition, conventional unsupervised autoencoders (AECs) are used in our study as well. Remarkably, whereas the conventional AECs either fail or only work partially to uncover the critical phenomena of the systems associated with \(q=3\) and \(q=4\) investigated here, our unconventional supervised NN correctly identifies the critical behaviors of all three considered antiferromagnetic \(q\)-state Potts models. The results obtained in this study suggest convincingly that the applicability of our unconventional supervised NN is broader than one anticipates. In particular, when a new system is studied with our NN, it is likely that it is not necessary to conduct any training, and one only needs to examine whether an appropriate reduced representation of the original raw configurations exists, so that the same already trained NN can be employed to explore the related phase transition efficiently. |
| Author | Tseng, Yuan-Heng Jiang, Fu-Jiun |
| Author_xml | – sequence: 1 givenname: Yuan-Heng surname: Tseng fullname: Tseng, Yuan-Heng – sequence: 2 givenname: Fu-Jiun surname: Jiang fullname: Jiang, Fu-Jiun email: fjjiang@ntnu.edu.tw |
| BookMark | eNp9kMtOwzAQRS0EEqV0xwdYYsGGgO3ESbOsylMqD6llHU2SMU1p7dR2QP17XFokVmzmjjTnzozuCTnURiMhZ5xdcZbH163HNhRQLE4OSE8wyaI45_zwT39MBs4tGGOcZRlLeI98jugzdhaWQfyXsR906rt6Q42ifo70dQ4O6cyCdo1vjHa_A3FDR9o3Cq01K3jX6JuKrqOpBx9cxntHn0yNy2DQP4bpugOLdAI-kHhKjhQsHQ722idvd7ez8UM0ebl_HI8mURWn0kd5BbUCrjApZcKT8HFWsjKvY5ZDmgqZ8hLLukqHlWAC81LVVQ6cIcTBBVLGfXK-29tas-7Q-WJhOqvDySIWcihZJkQSqMsdVVnjnEVVtLZZgd0UnBXbcIttuMU-3IBf7HDTtf-T36I0fnM |
| Cites_doi | 10.1103/PhysRevB.42.2465 10.1103/PhysRevB.99.121104 10.1103/RevModPhys.91.045002 10.7566/JPSJ.86.063001 10.1103/PhysRevE.99.032142 10.1140/epjp/s13360-023-04741-4 10.1093/ptep/ptac173 10.1088/1367-2630/ab8ab410.1088/1367-2630/ab8ab4 10.1103/RevModPhys.54.235 10.1093/ptep/ptab057 10.1016/j.rinp.2023.107264 10.1103/PhysRevE.97.013306 10.1016/j.rinp.2021.105134 10.1103/PhysRevB.96.195145 10.1023/A:1004599121565 10.1093/ptep/ptad096 10.1038/nphys4035 10.3390/condmat8030083 10.1016/j.physrep.2019.03.001 10.1093/ptep/ptae147 10.7566/JPSJ.85.123706 10.1103/PhysRevLett.63.109 10.1038/nphys4037 10.1140/epjb/e2020-100506-5 10.1016/j.aop.2018.02.018 10.1140/epjp/s13360-024-05563-8 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025. Published by Oxford University Press on behalf of the Physical Society of Japan. 2025 2025 The Author(s) 2025. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025. Published by Oxford University Press on behalf of the Physical Society of Japan. 2025 – notice: 2025 The Author(s) 2025. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | TOX AAYXX CITATION 3V. 7XB 88I 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO GNUQQ HCIFZ M2P PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI Q9U |
| DOI | 10.1093/ptep/ptaf034 |
| DatabaseName | Oxford Journals Open Access Collection CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central Basic |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Science Journals (Alumni Edition) ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Basic ProQuest Central Essentials ProQuest Science Journals ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 2050-3911 |
| ExternalDocumentID | 10_1093_ptep_ptaf034 10.1093/ptep/ptaf034 |
| GroupedDBID | .I3 0R~ 4.4 5VS 88I AAFWJ AAMVS AAPXW AAVAP ABEJV ABGNP ABPTD ABUWG ABXVV ACGFS ADHZD AENEX AENZO AFKRA AFPKN AIBLX ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL AZQEC BAYMD BENPR CCPQU CIDKT DWQXO D~K EBS EJD ER. GNUQQ GROUPED_DOAJ H13 HCIFZ IAO ISR ITC KQ8 KSI M2P M~E O9- OAWHX OJQWA OK1 PEELM PHGZM PHGZT PIMPY PUEGO ROL RXO TOX ~D7 AAYXX AFFHD CITATION 3V. 7XB 8FK PKEHL PQEST PQQKQ PQUKI Q9U |
| ID | FETCH-LOGICAL-c365t-9cadfa1fe4b54140417b0b9d309a662561bebdc68c202e9bfdc9a10ea3fa1a553 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001460536400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2050-3911 |
| IngestDate | Wed Oct 08 14:30:59 EDT 2025 Sat Nov 29 07:38:35 EST 2025 Mon Sep 15 00:04:26 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | Funded by SCOAP3 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c365t-9cadfa1fe4b54140417b0b9d309a662561bebdc68c202e9bfdc9a10ea3fa1a553 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/3258507224?pq-origsite=%requestingapplication% |
| PQID | 3258507224 |
| PQPubID | 7121340 |
| ParticipantIDs | proquest_journals_3258507224 crossref_primary_10_1093_ptep_ptaf034 oup_primary_10_1093_ptep_ptaf034 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-03-01 |
| PublicationDateYYYYMMDD | 2025-03-01 |
| PublicationDate_xml | – month: 03 year: 2025 text: 2025-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Progress of theoretical and experimental physics |
| PublicationYear | 2025 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | Tseng (2025081811311724300_bib22) 2023; 138 Mehta (2025081811311724300_bib14) 2019; 810 Peng (2025081811311724300_bib21) 2023; 2023 Dong (2025081811311724300_bib8) 2019; 99 Carleo (2025081811311724300_bib15) 2019; 91 Ohtsuki (2025081811311724300_bib1) 2016; 85 Tseng (2025081811311724300_bib28) 2024; 139 Tola (2025081811311724300_bib13) 2023; 8 Wang (2025081811311724300_bib18) 1990; 42 Deng (2025081811311724300_bib5) 2017; 96 Jiang (2025081811311724300_bib26) 2024; 2024 Tan (2025081811311724300_bib10) 2020; 22 Zhang (2025081811311724300_bib9) 2019; 99 Ferreira (2025081811311724300_bib19) 1999; 96 Chollet (2025081811311724300_bib24) 2015 van Nieuwenburg (2025081811311724300_bib4) 2017; 13 Alexandrou (2025081811311724300_bib11) 2020; 93 Wu (2025081811311724300_bib16) 1982; 54 Li (2025081811311724300_bib6) 2018; 391 Ch’ng (2025081811311724300_bib7) 2018; 97 Wang (2025081811311724300_bib17) 1989; 63 Carrasquilla (2025081811311724300_bib3) 2017; 13 Fukushima (2025081811311724300_bib12) 2021; 2021 Tseng (2025081811311724300_bib27) 2022; 33 Tseng (2025081811311724300_bib23) 2024; 56 Tseng (2025081811311724300_bib20) 2023; 2023 Tanaka (2025081811311724300_bib2) 2017; 86 Abadi (2025081811311724300_bib25) 2015 |
| References_xml | – volume: 42 start-page: 2465 year: 1990 ident: 2025081811311724300_bib18 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.42.2465 – volume: 99 start-page: 121104(R) year: 2019 ident: 2025081811311724300_bib8 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.121104 – volume: 91 start-page: 045002 year: 2019 ident: 2025081811311724300_bib15 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.91.045002 – volume: 86 start-page: 063001 year: 2017 ident: 2025081811311724300_bib2 publication-title: J. Phys. Soc. Jpn. doi: 10.7566/JPSJ.86.063001 – volume: 99 start-page: 032142 year: 2019 ident: 2025081811311724300_bib9 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.99.032142 – volume: 138 start-page: 1118 year: 2023 ident: 2025081811311724300_bib22 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-023-04741-4 – volume: 2023 start-page: 013A03 year: 2023 ident: 2025081811311724300_bib20 publication-title: Prog. Theor. Exp. Phys. doi: 10.1093/ptep/ptac173 – volume: 22 start-page: 063016 year: 2020 ident: 2025081811311724300_bib10 publication-title: New J. Phys. doi: 10.1088/1367-2630/ab8ab410.1088/1367-2630/ab8ab4 – volume: 54 start-page: 235 year: 1982 ident: 2025081811311724300_bib16 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.54.235 – volume: 2021 start-page: 061A01 year: 2021 ident: 2025081811311724300_bib12 publication-title: Prog. Theor. Exp. Phys. doi: 10.1093/ptep/ptab057 – volume: 56 start-page: 107264 year: 2024 ident: 2025081811311724300_bib23 publication-title: Res. Phys. doi: 10.1016/j.rinp.2023.107264 – volume: 97 start-page: 013306 year: 2018 ident: 2025081811311724300_bib7 publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.97.013306 – volume: 33 start-page: 105134 year: 2022 ident: 2025081811311724300_bib27 publication-title: Res. Phys. doi: 10.1016/j.rinp.2021.105134 – volume: 96 start-page: 195145 year: 2017 ident: 2025081811311724300_bib5 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.96.195145 – volume: 96 start-page: 461 year: 1999 ident: 2025081811311724300_bib19 publication-title: J. Stat. Phys. doi: 10.1023/A:1004599121565 – volume: 2023 start-page: 073A03 year: 2023 ident: 2025081811311724300_bib21 publication-title: Prog. Theor. Exp. Phys. doi: 10.1093/ptep/ptad096 – volume: 13 start-page: 431 year: 2017 ident: 2025081811311724300_bib3 publication-title: Nat. Phys. doi: 10.1038/nphys4035 – volume: 8 start-page: 83 year: 2023 ident: 2025081811311724300_bib13 publication-title: Condens. Matter doi: 10.3390/condmat8030083 – volume: 810 start-page: 1 year: 2019 ident: 2025081811311724300_bib14 publication-title: Phys. Rep. doi: 10.1016/j.physrep.2019.03.001 – volume: 2024 start-page: 103A02 year: 2024 ident: 2025081811311724300_bib26 publication-title: Prog. Theor. Exp. Phys. doi: 10.1093/ptep/ptae147 – volume: 85 start-page: 123706 year: 2016 ident: 2025081811311724300_bib1 publication-title: J. Phys. Soc. Jpn. doi: 10.7566/JPSJ.85.123706 – volume: 63 start-page: 109 year: 1989 ident: 2025081811311724300_bib17 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.63.109 – volume: 13 start-page: 435 year: 2017 ident: 2025081811311724300_bib4 publication-title: Nat. Phys. doi: 10.1038/nphys4037 – volume: 93 start-page: 226 year: 2020 ident: 2025081811311724300_bib11 publication-title: Eur. Phys. J. B doi: 10.1140/epjb/e2020-100506-5 – volume-title: Keras year: 2015 ident: 2025081811311724300_bib24 – volume: 391 start-page: 312 year: 2018 ident: 2025081811311724300_bib6 publication-title: Ann. Phys. doi: 10.1016/j.aop.2018.02.018 – year: 2015 ident: 2025081811311724300_bib25 article-title: TensorFlow: Large-scale machine learning on heterogeneous systems – volume: 139 start-page: 776 year: 2024 ident: 2025081811311724300_bib28 publication-title: Eur. Phys. J. Plus doi: 10.1140/epjp/s13360-024-05563-8 |
| SSID | ssj0001077041 |
| Score | 2.3230932 |
| Snippet | Abstract
The critical phenomena of the 2D antiferromagnetic $q$-state Potts model on the square lattice with $q=2,3,4$ are investigated using the techniques of... The critical phenomena of the 2D antiferromagnetic $q$-state Potts model on the square lattice with $q=2,3,4$ are investigated using the techniques of neural... The critical phenomena of the 2D antiferromagnetic \(q\)-state Potts model on the square lattice with \(q=2,3,4\) are investigated using the techniques of... |
| SourceID | proquest crossref oup |
| SourceType | Aggregation Database Index Database Publisher |
| SubjectTerms | Critical phenomena Neural networks |
| Title | A Neural Network Study of the Phase Transitions of the 2D Antiferromagnetic q-State Potts Models on the Square Lattice |
| URI | https://www.proquest.com/docview/3258507224 |
| Volume | 2025 |
| WOSCitedRecordID | wos001460536400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2050-3911 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001077041 issn: 2050-3911 databaseCode: DOA dateStart: 20130101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2050-3911 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001077041 issn: 2050-3911 databaseCode: M~E dateStart: 20120101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 2050-3911 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001077041 issn: 2050-3911 databaseCode: TOX dateStart: 20120101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2050-3911 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001077041 issn: 2050-3911 databaseCode: BENPR dateStart: 20120101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2050-3911 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001077041 issn: 2050-3911 databaseCode: PIMPY dateStart: 20120101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 2050-3911 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001077041 issn: 2050-3911 databaseCode: M2P dateStart: 20120101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest – providerCode: PRVIAO databaseName: SCOAP3 Journals customDbUrl: eissn: 2050-3911 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001077041 issn: 2050-3911 databaseCode: ER. dateStart: 20140101 isFulltext: true titleUrlDefault: https://scoap3.org/ providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics) |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA5uBy_u4rgMOegxmDZt055k3FDQsbjAeCpJm6ig7cy0Cv57X9IU8aIHL4U2CZR8L--9JF_yIbQfSgZJbRCRAoyFBHGhiYxjSSBWJIGnlRf4rdgEHw7j0ShJ3YJb7WiVnU-0jrqocrNGfsh8SGwph4hzNJ4QoxpldledhMYsmofMxjOUrms__V5joZxTK17p0xDcDQxsx32HefzhuFFjeAhNWfAjKv046da5Zhtvzpf_-6craMllmnjQmsYqmlHlGlp2WSd2Y7peRx8DbG7ogKrDlhKODbfwE1caQ3KI02eIc9iGtJbd1RX4p3hgmEZqOq3exFNpTkPiCbHZK06rpqmxEVp7hQalbXA3AXNU-Eo0hnC3gR7Oz-5PLohTYyA5i8KGJLkotAD4Ammkw6FfuaQyKRhNRASzqMiTShZ5FOc-9VUidZEnwqNKMGglwpBtormyKtUWwrHHGZMADlciKDgTPAy1p7TgPNFRTnvooEMjG7eXbmTtZjnLDGqZQ62HMED1R5XdDqTMjc46-0Zo-_fiHbToG71fyznbRXPN9F3toYX8o3mpp300f3w2TG_7dh7ft6YH39LL6_QR3u5vRl8Lv-Pd |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB1VLRJcWj7FlgI-sEdrHduJ4wOqVpRVqy6rlSjS3oKd2IAEye4mFPVP9Td2nA9VvcCpBy652CMl8cubsfPsB_AutgKLWpnQAsFCZVp4atPUUswVWkbeRZJ3ZhNqsUhXK73cgethL0yQVQ6c2BJ1UeVhjXwiOBa2TGHGOV5vaHCNCn9XBwuNDhbn7uoPTtnq92cnOL5jzmcfLz6c0t5VgOYiiRuqc1N4g7chbbDAZjJSllldCKZNgrOBJLLOFnmS5pxxp60vcm0i5ozAKBMHlwik_D0ZThYLUkG-vF3TYUqx1iyTsxjpDYmk19ozLSbrxq3xYjwT8k4WvLOzbkgFbX6bHfxvb-Yx7PeVNJl20H8CO658Cgd9VU16zqqfweWUhBNIsOuik7yToJ28IpUnWPyS5XfM46RN2Z16bWjgJ2QalFRuu61-mW9l2O1JNrStzsmyapqaBCO5nxhQtgGfN_i5OTI3TRAUPocv9_L0L2C3rEr3EkgaKSEsgkE5IwsljIpjHzlvlNI-ydkIxsPoZ-vuUJGsEwOILKAk61EyAoLQ-EeXowEUWc8-dXaLiMO_N7-Fh6cXn-bZ_Gxx_goe8eBt3OrrjmC32f52r-FBftn8qLdvWqAT-Hrf-LkBpIM9nw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Neural+Network+Study+of+the+Phase+Transitions+of+the+2D+Antiferromagnetic+q-State+Potts+Models+on+the+Square+Lattice&rft.jtitle=Progress+of+theoretical+and+experimental+physics&rft.au=Tseng%2C+Yuan-Heng&rft.au=Jiang%2C+Fu-Jiun&rft.date=2025-03-01&rft.pub=Oxford+University+Press&rft.issn=2050-3911&rft.eissn=2050-3911&rft.volume=2025&rft.issue=3&rft_id=info:doi/10.1093%2Fptep%2Fptaf034 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-3911&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-3911&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-3911&client=summon |