A Neural Network Study of the Phase Transitions of the 2D Antiferromagnetic q-State Potts Models on the Square Lattice

Abstract The critical phenomena of the 2D antiferromagnetic $q$-state Potts model on the square lattice with $q=2,3,4$ are investigated using the techniques of neural networks (NNs). In particular, an unconventional supervised NN which is trained using no information about the physics of the conside...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Progress of theoretical and experimental physics Ročník 2025; číslo 3
Hlavní autoři: Tseng, Yuan-Heng, Jiang, Fu-Jiun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Oxford University Press 01.03.2025
Témata:
ISSN:2050-3911, 2050-3911
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Abstract The critical phenomena of the 2D antiferromagnetic $q$-state Potts model on the square lattice with $q=2,3,4$ are investigated using the techniques of neural networks (NNs). In particular, an unconventional supervised NN which is trained using no information about the physics of the considered systems is employed. In addition, conventional unsupervised autoencoders (AECs) are used in our study as well. Remarkably, whereas the conventional AECs either fail or only work partially to uncover the critical phenomena of the systems associated with $q=3$ and $q=4$ investigated here, our unconventional supervised NN correctly identifies the critical behaviors of all three considered antiferromagnetic $q$-state Potts models. The results obtained in this study suggest convincingly that the applicability of our unconventional supervised NN is broader than one anticipates. In particular, when a new system is studied with our NN, it is likely that it is not necessary to conduct any training, and one only needs to examine whether an appropriate reduced representation of the original raw configurations exists, so that the same already trained NN can be employed to explore the related phase transition efficiently.
AbstractList Abstract The critical phenomena of the 2D antiferromagnetic $q$-state Potts model on the square lattice with $q=2,3,4$ are investigated using the techniques of neural networks (NNs). In particular, an unconventional supervised NN which is trained using no information about the physics of the considered systems is employed. In addition, conventional unsupervised autoencoders (AECs) are used in our study as well. Remarkably, whereas the conventional AECs either fail or only work partially to uncover the critical phenomena of the systems associated with $q=3$ and $q=4$ investigated here, our unconventional supervised NN correctly identifies the critical behaviors of all three considered antiferromagnetic $q$-state Potts models. The results obtained in this study suggest convincingly that the applicability of our unconventional supervised NN is broader than one anticipates. In particular, when a new system is studied with our NN, it is likely that it is not necessary to conduct any training, and one only needs to examine whether an appropriate reduced representation of the original raw configurations exists, so that the same already trained NN can be employed to explore the related phase transition efficiently.
The critical phenomena of the 2D antiferromagnetic \(q\)-state Potts model on the square lattice with \(q=2,3,4\) are investigated using the techniques of neural networks (NNs). In particular, an unconventional supervised NN which is trained using no information about the physics of the considered systems is employed. In addition, conventional unsupervised autoencoders (AECs) are used in our study as well. Remarkably, whereas the conventional AECs either fail or only work partially to uncover the critical phenomena of the systems associated with \(q=3\) and \(q=4\) investigated here, our unconventional supervised NN correctly identifies the critical behaviors of all three considered antiferromagnetic \(q\)-state Potts models. The results obtained in this study suggest convincingly that the applicability of our unconventional supervised NN is broader than one anticipates. In particular, when a new system is studied with our NN, it is likely that it is not necessary to conduct any training, and one only needs to examine whether an appropriate reduced representation of the original raw configurations exists, so that the same already trained NN can be employed to explore the related phase transition efficiently.
Author Tseng, Yuan-Heng
Jiang, Fu-Jiun
Author_xml – sequence: 1
  givenname: Yuan-Heng
  surname: Tseng
  fullname: Tseng, Yuan-Heng
– sequence: 2
  givenname: Fu-Jiun
  surname: Jiang
  fullname: Jiang, Fu-Jiun
  email: fjjiang@ntnu.edu.tw
BookMark eNp9kMtOwzAQRS0EEqV0xwdYYsGGgO3ESbOsylMqD6llHU2SMU1p7dR2QP17XFokVmzmjjTnzozuCTnURiMhZ5xdcZbH163HNhRQLE4OSE8wyaI45_zwT39MBs4tGGOcZRlLeI98jugzdhaWQfyXsR906rt6Q42ifo70dQ4O6cyCdo1vjHa_A3FDR9o3Cq01K3jX6JuKrqOpBx9cxntHn0yNy2DQP4bpugOLdAI-kHhKjhQsHQ722idvd7ez8UM0ebl_HI8mURWn0kd5BbUCrjApZcKT8HFWsjKvY5ZDmgqZ8hLLukqHlWAC81LVVQ6cIcTBBVLGfXK-29tas-7Q-WJhOqvDySIWcihZJkQSqMsdVVnjnEVVtLZZgd0UnBXbcIttuMU-3IBf7HDTtf-T36I0fnM
Cites_doi 10.1103/PhysRevB.42.2465
10.1103/PhysRevB.99.121104
10.1103/RevModPhys.91.045002
10.7566/JPSJ.86.063001
10.1103/PhysRevE.99.032142
10.1140/epjp/s13360-023-04741-4
10.1093/ptep/ptac173
10.1088/1367-2630/ab8ab410.1088/1367-2630/ab8ab4
10.1103/RevModPhys.54.235
10.1093/ptep/ptab057
10.1016/j.rinp.2023.107264
10.1103/PhysRevE.97.013306
10.1016/j.rinp.2021.105134
10.1103/PhysRevB.96.195145
10.1023/A:1004599121565
10.1093/ptep/ptad096
10.1038/nphys4035
10.3390/condmat8030083
10.1016/j.physrep.2019.03.001
10.1093/ptep/ptae147
10.7566/JPSJ.85.123706
10.1103/PhysRevLett.63.109
10.1038/nphys4037
10.1140/epjb/e2020-100506-5
10.1016/j.aop.2018.02.018
10.1140/epjp/s13360-024-05563-8
ContentType Journal Article
Copyright The Author(s) 2025. Published by Oxford University Press on behalf of the Physical Society of Japan. 2025
2025 The Author(s) 2025. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025. Published by Oxford University Press on behalf of the Physical Society of Japan. 2025
– notice: 2025 The Author(s) 2025. Published by Oxford University Press on behalf of the Physical Society of Japan. This work is published under https://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID TOX
AAYXX
CITATION
3V.
7XB
88I
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
GNUQQ
HCIFZ
M2P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
DOI 10.1093/ptep/ptaf034
DatabaseName Oxford Journals Open Access Collection
CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Science Journals (Alumni Edition)
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Basic
ProQuest Central Essentials
ProQuest Science Journals
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 2050-3911
ExternalDocumentID 10_1093_ptep_ptaf034
10.1093/ptep/ptaf034
GroupedDBID .I3
0R~
4.4
5VS
88I
AAFWJ
AAMVS
AAPXW
AAVAP
ABEJV
ABGNP
ABPTD
ABUWG
ABXVV
ACGFS
ADHZD
AENEX
AENZO
AFKRA
AFPKN
AIBLX
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
AZQEC
BAYMD
BENPR
CCPQU
CIDKT
DWQXO
D~K
EBS
EJD
ER.
GNUQQ
GROUPED_DOAJ
H13
HCIFZ
IAO
ISR
ITC
KQ8
KSI
M2P
M~E
O9-
OAWHX
OJQWA
OK1
PEELM
PHGZM
PHGZT
PIMPY
PUEGO
ROL
RXO
TOX
~D7
AAYXX
AFFHD
CITATION
3V.
7XB
8FK
PKEHL
PQEST
PQQKQ
PQUKI
Q9U
ID FETCH-LOGICAL-c365t-9cadfa1fe4b54140417b0b9d309a662561bebdc68c202e9bfdc9a10ea3fa1a553
IEDL.DBID M2P
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001460536400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2050-3911
IngestDate Wed Oct 08 14:30:59 EDT 2025
Sat Nov 29 07:38:35 EST 2025
Mon Sep 15 00:04:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License Funded by SCOAP3
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-9cadfa1fe4b54140417b0b9d309a662561bebdc68c202e9bfdc9a10ea3fa1a553
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/3258507224?pq-origsite=%requestingapplication%
PQID 3258507224
PQPubID 7121340
ParticipantIDs proquest_journals_3258507224
crossref_primary_10_1093_ptep_ptaf034
oup_primary_10_1093_ptep_ptaf034
PublicationCentury 2000
PublicationDate 2025-03-01
PublicationDateYYYYMMDD 2025-03-01
PublicationDate_xml – month: 03
  year: 2025
  text: 2025-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Progress of theoretical and experimental physics
PublicationYear 2025
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Tseng (2025081811311724300_bib22) 2023; 138
Mehta (2025081811311724300_bib14) 2019; 810
Peng (2025081811311724300_bib21) 2023; 2023
Dong (2025081811311724300_bib8) 2019; 99
Carleo (2025081811311724300_bib15) 2019; 91
Ohtsuki (2025081811311724300_bib1) 2016; 85
Tseng (2025081811311724300_bib28) 2024; 139
Tola (2025081811311724300_bib13) 2023; 8
Wang (2025081811311724300_bib18) 1990; 42
Deng (2025081811311724300_bib5) 2017; 96
Jiang (2025081811311724300_bib26) 2024; 2024
Tan (2025081811311724300_bib10) 2020; 22
Zhang (2025081811311724300_bib9) 2019; 99
Ferreira (2025081811311724300_bib19) 1999; 96
Chollet (2025081811311724300_bib24)  2015
van Nieuwenburg (2025081811311724300_bib4) 2017; 13
Alexandrou (2025081811311724300_bib11) 2020; 93
Wu (2025081811311724300_bib16) 1982; 54
Li (2025081811311724300_bib6) 2018; 391
Ch’ng (2025081811311724300_bib7) 2018; 97
Wang (2025081811311724300_bib17) 1989; 63
Carrasquilla (2025081811311724300_bib3) 2017; 13
Fukushima (2025081811311724300_bib12) 2021; 2021
Tseng (2025081811311724300_bib27) 2022; 33
Tseng (2025081811311724300_bib23) 2024; 56
Tseng (2025081811311724300_bib20) 2023; 2023
Tanaka (2025081811311724300_bib2) 2017; 86
Abadi (2025081811311724300_bib25) 2015
References_xml – volume: 42
  start-page: 2465
  year: 1990
  ident: 2025081811311724300_bib18
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.42.2465
– volume: 99
  start-page: 121104(R)
  year: 2019
  ident: 2025081811311724300_bib8
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.121104
– volume: 91
  start-page: 045002
  year: 2019
  ident: 2025081811311724300_bib15
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.91.045002
– volume: 86
  start-page: 063001
  year: 2017
  ident: 2025081811311724300_bib2
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.7566/JPSJ.86.063001
– volume: 99
  start-page: 032142
  year: 2019
  ident: 2025081811311724300_bib9
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.99.032142
– volume: 138
  start-page: 1118
  year: 2023
  ident: 2025081811311724300_bib22
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-023-04741-4
– volume: 2023
  start-page: 013A03
  year: 2023
  ident: 2025081811311724300_bib20
  publication-title: Prog. Theor. Exp. Phys.
  doi: 10.1093/ptep/ptac173
– volume: 22
  start-page: 063016
  year: 2020
  ident: 2025081811311724300_bib10
  publication-title: New J. Phys.
  doi: 10.1088/1367-2630/ab8ab410.1088/1367-2630/ab8ab4
– volume: 54
  start-page: 235
  year: 1982
  ident: 2025081811311724300_bib16
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.54.235
– volume: 2021
  start-page: 061A01
  year: 2021
  ident: 2025081811311724300_bib12
  publication-title: Prog. Theor. Exp. Phys.
  doi: 10.1093/ptep/ptab057
– volume: 56
  start-page: 107264
  year: 2024
  ident: 2025081811311724300_bib23
  publication-title: Res. Phys.
  doi: 10.1016/j.rinp.2023.107264
– volume: 97
  start-page: 013306
  year: 2018
  ident: 2025081811311724300_bib7
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.97.013306
– volume: 33
  start-page: 105134
  year: 2022
  ident: 2025081811311724300_bib27
  publication-title: Res. Phys.
  doi: 10.1016/j.rinp.2021.105134
– volume: 96
  start-page: 195145
  year: 2017
  ident: 2025081811311724300_bib5
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.96.195145
– volume: 96
  start-page: 461
  year: 1999
  ident: 2025081811311724300_bib19
  publication-title: J. Stat. Phys.
  doi: 10.1023/A:1004599121565
– volume: 2023
  start-page: 073A03
  year: 2023
  ident: 2025081811311724300_bib21
  publication-title: Prog. Theor. Exp. Phys.
  doi: 10.1093/ptep/ptad096
– volume: 13
  start-page: 431
  year: 2017
  ident: 2025081811311724300_bib3
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4035
– volume: 8
  start-page: 83
  year: 2023
  ident: 2025081811311724300_bib13
  publication-title: Condens. Matter
  doi: 10.3390/condmat8030083
– volume: 810
  start-page: 1
  year: 2019
  ident: 2025081811311724300_bib14
  publication-title: Phys. Rep.
  doi: 10.1016/j.physrep.2019.03.001
– volume: 2024
  start-page: 103A02
  year: 2024
  ident: 2025081811311724300_bib26
  publication-title: Prog. Theor. Exp. Phys.
  doi: 10.1093/ptep/ptae147
– volume: 85
  start-page: 123706
  year: 2016
  ident: 2025081811311724300_bib1
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.7566/JPSJ.85.123706
– volume: 63
  start-page: 109
  year: 1989
  ident: 2025081811311724300_bib17
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.63.109
– volume: 13
  start-page: 435
  year: 2017
  ident: 2025081811311724300_bib4
  publication-title: Nat. Phys.
  doi: 10.1038/nphys4037
– volume: 93
  start-page: 226
  year: 2020
  ident: 2025081811311724300_bib11
  publication-title: Eur. Phys. J. B
  doi: 10.1140/epjb/e2020-100506-5
– volume-title: Keras
  year:  2015
  ident: 2025081811311724300_bib24
– volume: 391
  start-page: 312
  year: 2018
  ident: 2025081811311724300_bib6
  publication-title: Ann. Phys.
  doi: 10.1016/j.aop.2018.02.018
– year: 2015
  ident: 2025081811311724300_bib25
  article-title: TensorFlow: Large-scale machine learning on heterogeneous systems
– volume: 139
  start-page: 776
  year: 2024
  ident: 2025081811311724300_bib28
  publication-title: Eur. Phys. J. Plus
  doi: 10.1140/epjp/s13360-024-05563-8
SSID ssj0001077041
Score 2.3231869
Snippet Abstract The critical phenomena of the 2D antiferromagnetic $q$-state Potts model on the square lattice with $q=2,3,4$ are investigated using the techniques of...
The critical phenomena of the 2D antiferromagnetic $q$-state Potts model on the square lattice with $q=2,3,4$ are investigated using the techniques of neural...
The critical phenomena of the 2D antiferromagnetic \(q\)-state Potts model on the square lattice with \(q=2,3,4\) are investigated using the techniques of...
SourceID proquest
crossref
oup
SourceType Aggregation Database
Index Database
Publisher
SubjectTerms Critical phenomena
Neural networks
Title A Neural Network Study of the Phase Transitions of the 2D Antiferromagnetic q-State Potts Models on the Square Lattice
URI https://www.proquest.com/docview/3258507224
Volume 2025
WOSCitedRecordID wos001460536400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2050-3911
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001077041
  issn: 2050-3911
  databaseCode: DOA
  dateStart: 20130101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2050-3911
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001077041
  issn: 2050-3911
  databaseCode: M~E
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 2050-3911
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001077041
  issn: 2050-3911
  databaseCode: TOX
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2050-3911
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001077041
  issn: 2050-3911
  databaseCode: BENPR
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2050-3911
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001077041
  issn: 2050-3911
  databaseCode: PIMPY
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 2050-3911
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001077041
  issn: 2050-3911
  databaseCode: M2P
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
– providerCode: PRVIAO
  databaseName: SCOAP3 Revistas
  customDbUrl:
  eissn: 2050-3911
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001077041
  issn: 2050-3911
  databaseCode: ER.
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://scoap3.org/
  providerName: SCOAP3 (Sponsoring Consortium for Open Access Publishing in Particle Physics)
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JS8QwFA5uBy_u4jrkoMdg2nQ9ybihoGNxYzyVbFVB25lpFfz3vqQp4kUPXgptklL6Xt73JfmSh9BeogJNQ-ETmYQRCYRmJEmUJFLGWgRShcxuj364jAeDZDhMMzfhVjtZZRcTbaBWlTRz5AfMB2JLY0Ccw9GYmKxRZnXVpdCYRrPAbDwj6brys-85FhrH1Cav9GkI4QY6ttO-wzj-YNToEVx4QVnwA5V-7HTrQrPFm7PF_37pElpwTBP3W9dYRlO6XEGLjnVi16frVfTRx-aEDqg6aCXh2GgLP3FVYCCHOHsGnMMW0lp1V1fgn-C-URrpyaR640-l2Q2Jx8SyV5xVTVNjk2jtFRqUtsHtGNxR40veGMHdGro_O707PicuGwORLAobkkquCu4VOhAmdTj811hQkSpGUx7BKCryhBZKRon0qa9TUSiZco9qzqAVD0O2jmbKqtQbCEcmrADXoEzxwIO3AH5S8AsNwOHRQm-i_c4a-ag9dCNvF8tZbqyWO6ttIgym-qPKTmek3PXOOv-20Nbvxdto3jf5fq3mbAfNNJN3vYvm5EfzUk96aPbodJDd9Ow4vmddD55lF1fZI9zdXQ-_AEYg5Ms
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB1VLRJcaPkShRZ8oEerjp3PA6pWlKpVl9VKFNRb8FcKEiS7m9Cqf6q_kRknUdULnHrgkovtSIlf3oydN34A73IXe5EYyW2epDw2XvE8d5Zbm3kTW5eoUB79dZrNZvn5eTFfg5uxFoZklSMnBqJ2jaU98n0lMbEVGUacg8WSk2sU_V0dLTR6WJz66ytcsrXvTw5xfvekPPp49uGYD64C3Ko06Xhhtat0VPnYkAW2iKPMCFM4JQqd4mogjYw3zqa5lUL6wlTOFjoSXiscpRNyiUDK34jpZDGSCsr57Z6OyDIRzDKlSJDekEgGrb0o1P6i8wu86Eqo-E4UvFNZN4aCEN-ONv-3N7MFj4dMmk166D-BNV8_hc0hq2YDZ7XP4HLC6AQS7DrrJe-MtJPXrKkYJr9s_h3jOAshu1evjQ3ykE1ISeVXq-aXvqip2pMtecjO2bzpupaRkdxPHFCHAZ-X-Ll5NtUdCQqfw5d7efoXsF43tX8JLCXaxFxKKKfjCO-C-YFA3HsMjJGo_DbsjbNfLvpDRcpeDKBKQkk5oGQbGELjH112RlCUA_u05S0iXv29-S08PD77NC2nJ7PT1_BIkrdx0NftwHq3-u134YG97H60qzcB6Ay-3Td-_gAw7D6N
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Neural+Network+Study+of+the+Phase+Transitions+of+the+2D+Antiferromagnetic+q-State+Potts+Models+on+the+Square+Lattice&rft.jtitle=Progress+of+theoretical+and+experimental+physics&rft.au=Tseng%2C+Yuan-Heng&rft.au=Jiang%2C+Fu-Jiun&rft.date=2025-03-01&rft.pub=Oxford+University+Press&rft.issn=2050-3911&rft.eissn=2050-3911&rft.volume=2025&rft.issue=3&rft_id=info:doi/10.1093%2Fptep%2Fptaf034
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2050-3911&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2050-3911&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2050-3911&client=summon