First ElGamal Encryption/Decryption Scheme Based on Spiking Neural P Systems with Communication on Request, Weights on Synapses, and Delays in Rules

During the last five years, spiking neural P (SN P) systems have attracted a lot of attention in the field of cryptography since these systems can more efficiently support advanced and complex cryptographic algorithms due to their high computational capabilities. Specifically, these systems can be s...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematics (Basel) Ročník 13; číslo 9; s. 1366
Hlavní autori: Rangel, Irepan, Vázquez, Daniel-Eduardo, Vázquez, Eduardo, Duchen, Gonzalo, Avalos, Juan-Gerardo, Sanchez, Giovanny
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.05.2025
Predmet:
ISSN:2227-7390, 2227-7390
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:During the last five years, spiking neural P (SN P) systems have attracted a lot of attention in the field of cryptography since these systems can more efficiently support advanced and complex cryptographic algorithms due to their high computational capabilities. Specifically, these systems can be seen as a potential solution to efficiently performing asymmetric algorithms, which are more demanding than symmetric systems. This factor becomes critical, especially in resource-constrained single-board computer systems, since many of these systems are currently used to ensure the security of IoT applications in portable systems. In this work, we present for the first time the implementation of an asymmetric encryption algorithm called ElGamal based on spiking neural P systems and their cutting-edge variants. The proposed design involves the encryption and decryption processes. Specifically, we propose the design of a neural network to efficiently perform the extended Euclidean algorithm used in the decryption task. Here, we exert major efforts to create a compact and high-performance circuit to perform the extended Euclidean algorithm since the calculation of this algorithm is the most demanding when the decryption process is required. Finally, we perform several tests to show the computational capabilities of our proposal in comparison to conventional implementations on single-board computer systems. Our results show that the proposed encryption/decryption scheme potentially allows its use to ensure confidentiality, data integrity, and secure authentication, among other applications for resource-constrained embedded systems.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math13091366