Learning answer set programs with aggregates via sampling and genetic programming
The goal of inductive logic programming is to learn a logic program that models the examples provided as input. The search space of the possible programs is constrained by a language bias, which defines the atoms and literals allowed in rules. Answer set programming is a powerful formalism to repres...
Gespeichert in:
| Veröffentlicht in: | Machine learning Jg. 114; H. 7; S. 148 |
|---|---|
| 1. Verfasser: | |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.07.2025
Springer Nature B.V |
| Schlagworte: | |
| ISSN: | 0885-6125, 1573-0565 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The goal of inductive logic programming is to learn a logic program that models the examples provided as input. The search space of the possible programs is constrained by a language bias, which defines the atoms and literals allowed in rules. Answer set programming is a powerful formalism to represent complex combinatorial domains, also thanks to syntactic constructs such as aggregates. However, learning answer set programs from data is challenging, and often existing tools do not support the specification of aggregates in the language bias. In this paper, we introduce GENTIANS, a tool based on a genetic algorithm to learn answer set programs possibly with aggregates, arithmetic, and comparison operators, from examples. Empirical results, also against an existing solver, show that GENTIANS is able to provide accurate solutions even when the search space contains millions of clauses. Additionally, experiments on noisy datasets show the effectiveness of our approach. |
|---|---|
| AbstractList | The goal of inductive logic programming is to learn a logic program that models the examples provided as input. The search space of the possible programs is constrained by a language bias, which defines the atoms and literals allowed in rules. Answer set programming is a powerful formalism to represent complex combinatorial domains, also thanks to syntactic constructs such as aggregates. However, learning answer set programs from data is challenging, and often existing tools do not support the specification of aggregates in the language bias. In this paper, we introduce GENTIANS, a tool based on a genetic algorithm to learn answer set programs possibly with aggregates, arithmetic, and comparison operators, from examples. Empirical results, also against an existing solver, show that GENTIANS is able to provide accurate solutions even when the search space contains millions of clauses. Additionally, experiments on noisy datasets show the effectiveness of our approach. |
| ArticleNumber | 148 |
| Author | Azzolini, Damiano |
| Author_xml | – sequence: 1 givenname: Damiano orcidid: 0000-0002-7133-2673 surname: Azzolini fullname: Azzolini, Damiano email: damiano.azzolini@unife.it organization: Department of Environmental and Prevention Sciences, University of Ferrara |
| BookMark | eNp9kMtKAzEUhoNUsK2-gKsB16MnSXNbSvEGBRG6D5mZzJjSydQktfj2RkcRXHR14PB_5_LN0MQP3iJ0ieEaA4ibiEGpRQmElcCFhFKcoClmgpbAOJugKUjJSo4JO0OzGDcAQLjkU_SysiZ457vC-HiwoYg2FbswdMH0sTi49FqYrgu2M8nG4t2ZIpp-tx2Bpuist8nVv0Sf--fotDXbaC9-6hyt7-_Wy8dy9fzwtLxdlTXlLJVKEtFK3pBKGlLLilQMMIVmoTBV1FS1AmqBGc4wF21TWcmVsIoQtcAEWzpHV-PYvPptb2PSm2EffN6oKQFO84ec5JQcU3UYYgy21bVLJrnBp2DcVmPQX_706E9nf_rbnxYZJf_QXXC9CR_HITpCMYd9Z8PfVUeoT9u3hIM |
| CitedBy_id | crossref_primary_10_1016_j_knosys_2025_113906 crossref_primary_10_1016_j_ijar_2025_109497 |
| Cites_doi | 10.1007/978-3-642-21295-6_9 10.1609/aaai.v34i03.5678 10.1016/0743-1066(94)90035-3 10.1007/s11831-023-09922-z 10.1145/3377929.3398099 10.1007/978-3-319-23708-4_3 10.1613/jair.1.13507 10.1017/S1471068418000054 10.1007/s10994-023-06320-1 10.1007/s10994-014-5471-y 10.1007/s10994-020-05945-w 10.1613/jair.5714 10.1016/j.artint.2018.03.005 10.1023/A:1022699322624 10.1016/B978-0-12-821986-7.00013-5 10.1201/9781003338192 10.1007/978-3-319-11558-0_22 10.1007/3-540-44673-7_7 10.1039/D2DD00003B 10.1007/978-3-642-31951-8_12 10.1007/978-3-540-78652-8 10.24963/ijcai.2020/243 10.1017/S1471068413000689 10.1007/s13218-018-0545-9 10.1007/978-3-662-44923-3_3 10.1162/evco_a_00278 10.1007/s10994-020-05934-z 10.1007/978-3-642-01929-6_7 10.1016/B978-0-08-050684-5.50008-2 10.1007/s12040-009-0022-9 10.24963/kr.2022/48 10.1007/978-3-540-30227-8_19 10.1023/A:1022643204877 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025 The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: The Author(s) 2025 – notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | C6C AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1007/s10994-025-06780-7 |
| DatabaseName | Springer Nature OA Free Journals (ODIN) CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1573-0565 |
| ExternalDocumentID | 10_1007_s10994_025_06780_7 |
| GrantInformation_xml | – fundername: Università degli Studi di Ferrara |
| GroupedDBID | -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 203 29M 2J2 2JN 2JY 2KG 2KM 2LR 2~H 30V 4.4 406 408 409 40D 40E 5GY 5VS 67Z 6NX 78A 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTV ABHLI ABHQN ABIVO ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACNCT ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADIMF ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN B-. BA0 BENPR BGNMA BSONS C6C CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI ESBYG F5P FEDTE FERAY FFXSO FIGPU FNLPD FRRFC FWDCC GGCAI GGRSB GJIRD GNWQR GQ7 GQ8 GXS HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N9A NB0 NPVJJ NQJWS NU0 O93 O9G O9I O9J OAM P19 P2P P9O PF- PT4 QM1 QN7 QOK QOS R89 R9I RHV RNS ROL RPX RSV S16 S1Z S27 S3B SAP SCO SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TAE TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX VC2 W23 W48 WH7 WIP WK8 YLTOR Z45 Z8Z ZMTXR -Y2 .4S 1SB 2.D 28- 2P1 2VQ 5QI 6TJ 88I 8AO 8FE 8FG AAEWM AAOBN AARHV AAYTO AAYXX ABQSL ABRTQ ABULA ABUWG ACBXY ADHKG ADMLS AEBTG AEFIE AEKMD AFEXP AFFHD AFGCZ AFKRA AGQPQ AJBLW AMVHM ARCSS AZQEC BBWZM BDATZ BGLVJ BPHCQ CAG CCPQU CITATION COF DWQXO EJD FINBP FSGXE GNUQQ H13 I-F ITG ITH K6V K7- KOW M2P MVM N2Q NDZJH O9- OVD P62 PHGZM PHGZT PQGLB PQQKQ PROAC Q2X QF4 QO4 R4E RNI RZC RZE S26 S28 SCJ SCLPG T16 TEORI TUS UZXMN VFIZW 7SC 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c365t-9827f86d2b8a2c8b2b50130d491393abc903e05a65167fdbe8697e92294121e3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 2 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001491527700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-6125 |
| IngestDate | Wed Nov 05 09:32:14 EST 2025 Tue Nov 18 22:31:47 EST 2025 Sat Nov 29 07:34:58 EST 2025 Thu Jul 10 08:13:26 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Inductive logic programming Answer set programming Genetic programming |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c365t-9827f86d2b8a2c8b2b50130d491393abc903e05a65167fdbe8697e92294121e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7133-2673 |
| OpenAccessLink | https://link.springer.com/10.1007/s10994-025-06780-7 |
| PQID | 3206300062 |
| PQPubID | 54194 |
| ParticipantIDs | proquest_journals_3206300062 crossref_citationtrail_10_1007_s10994_025_06780_7 crossref_primary_10_1007_s10994_025_06780_7 springer_journals_10_1007_s10994_025_06780_7 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-07-01 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 07 year: 2025 text: 2025-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: Dordrecht |
| PublicationTitle | Machine learning |
| PublicationTitleAbbrev | Mach Learn |
| PublicationYear | 2025 |
| Publisher | Springer US Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer Nature B.V |
| References | A Guven (6780_CR21) 2009; 118 6780_CR40 6780_CR41 6780_CR20 X-S Yang (6780_CR45) 2021 6780_CR22 6780_CR44 M Gebser (6780_CR18) 2009 6780_CR23 6780_CR24 SH Muggleton (6780_CR28) 2015; 100 M Alviano (6780_CR1) 2018; 32 6780_CR27 L De Raedt (6780_CR12) 2008 S Bragaglia (6780_CR5) 2015 M Virgolin (6780_CR43) 2021; 29 JR Quinlan (6780_CR34) 1990; 5 E Bellodi (6780_CR4) 2015; 15 JR Quinlan (6780_CR33) 1986; 1 T Eiter (6780_CR14) 2009 D Corapi (6780_CR7) 2012 D Athakravi (6780_CR3) 2014 M Gebser (6780_CR17) 2019; 19 6780_CR32 6780_CR11 A Cropper (6780_CR9) 2022; 74 A Nigam (6780_CR30) 2022; 1 6780_CR36 J Shapiro (6780_CR38) 2001 6780_CR16 S Muggleton (6780_CR29) 1994; 19 L De Raedt (6780_CR13) 2011 D Angelis (6780_CR2) 2023; 30 6780_CR19 JR Quinlan (6780_CR35) 1993 R Evans (6780_CR15) 2018; 61 L Sterling (6780_CR42) 1994 M Law (6780_CR25) 2014 6780_CR8 H Shindo (6780_CR39) 2023; 112 6780_CR6 M Law (6780_CR26) 2018; 259 A Cropper (6780_CR10) 2021; 110 F Riguzzi (6780_CR37) 2022 S Patsantzis (6780_CR31) 2021; 110 |
| References_xml | – start-page: 40 volume-title: Reasoning web semantic technologies for information systems, 5th international summer school year: 2009 ident: 6780_CR14 – start-page: 47 volume-title: Inductive logic programming year: 2011 ident: 6780_CR13 doi: 10.1007/978-3-642-21295-6_9 – ident: 6780_CR24 doi: 10.1609/aaai.v34i03.5678 – ident: 6780_CR8 – volume: 19 start-page: 629 year: 1994 ident: 6780_CR29 publication-title: Journal of Logic Programming doi: 10.1016/0743-1066(94)90035-3 – volume: 30 start-page: 3845 issue: 6 year: 2023 ident: 6780_CR2 publication-title: Archives of Computational Methods in Engineering doi: 10.1007/s11831-023-09922-z – ident: 6780_CR32 – ident: 6780_CR11 – ident: 6780_CR6 doi: 10.1145/3377929.3398099 – start-page: 33 volume-title: Inductive logic programming year: 2015 ident: 6780_CR5 doi: 10.1007/978-3-319-23708-4_3 – volume: 74 start-page: 765 year: 2022 ident: 6780_CR9 publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.1.13507 – volume: 19 start-page: 27 issue: 1 year: 2019 ident: 6780_CR17 publication-title: Theory and Practice of Logic Programming doi: 10.1017/S1471068418000054 – volume: 112 start-page: 1465 issue: 5 year: 2023 ident: 6780_CR39 publication-title: Machine Learning doi: 10.1007/s10994-023-06320-1 – volume: 100 start-page: 49 issue: 1 year: 2015 ident: 6780_CR28 publication-title: Machine Learning doi: 10.1007/s10994-014-5471-y – volume: 110 start-page: 755 issue: 4 year: 2021 ident: 6780_CR31 publication-title: Machine Learning doi: 10.1007/s10994-020-05945-w – volume: 61 start-page: 1 year: 2018 ident: 6780_CR15 publication-title: Journal of Artificial Intelligence Research doi: 10.1613/jair.5714 – volume: 259 start-page: 110 year: 2018 ident: 6780_CR26 publication-title: Artificial Intelligence doi: 10.1016/j.artint.2018.03.005 – ident: 6780_CR23 – volume: 5 start-page: 239 issue: 3 year: 1990 ident: 6780_CR34 publication-title: Machine Learning doi: 10.1023/A:1022699322624 – start-page: 91 volume-title: Nature-inspired optimization algorithms year: 2021 ident: 6780_CR45 doi: 10.1016/B978-0-12-821986-7.00013-5 – ident: 6780_CR27 – volume-title: Foundations of probabilistic logic programming languages, semantics, inference and learning year: 2022 ident: 6780_CR37 doi: 10.1201/9781003338192 – start-page: 311 volume-title: Logics in artificial intelligence year: 2014 ident: 6780_CR25 doi: 10.1007/978-3-319-11558-0_22 – start-page: 146 volume-title: Machine learning and its applications: Advanced lectures year: 2001 ident: 6780_CR38 doi: 10.1007/3-540-44673-7_7 – ident: 6780_CR19 – volume: 1 start-page: 390 year: 2022 ident: 6780_CR30 publication-title: Digital Discovery doi: 10.1039/D2DD00003B – start-page: 91 volume-title: Inductive logic programming year: 2012 ident: 6780_CR7 doi: 10.1007/978-3-642-31951-8_12 – start-page: 1 volume-title: Probabilistic inductive logic programming: Theory and applications year: 2008 ident: 6780_CR12 doi: 10.1007/978-3-540-78652-8 – ident: 6780_CR44 doi: 10.24963/ijcai.2020/243 – volume: 15 start-page: 169 issue: 2 year: 2015 ident: 6780_CR4 publication-title: Theory and Practice of Logic Programming doi: 10.1017/S1471068413000689 – volume-title: C4.5: Programs for machine learning year: 1993 ident: 6780_CR35 – ident: 6780_CR36 – volume: 32 start-page: 119 issue: 2 year: 2018 ident: 6780_CR1 publication-title: KI-Künstliche Intelligenz doi: 10.1007/s13218-018-0545-9 – start-page: 31 volume-title: Inductive logic programming year: 2014 ident: 6780_CR3 doi: 10.1007/978-3-662-44923-3_3 – volume-title: The art of Prolog: Advanced programming techniques year: 1994 ident: 6780_CR42 – volume: 29 start-page: 211 issue: 2 year: 2021 ident: 6780_CR43 publication-title: Evolutionary Compututation doi: 10.1162/evco_a_00278 – volume: 110 start-page: 801 issue: 4 year: 2021 ident: 6780_CR10 publication-title: Machine Learning doi: 10.1007/s10994-020-05934-z – start-page: 71 volume-title: Integration of AI and OR techniques in constraint programming for combinatorial optimization problems year: 2009 ident: 6780_CR18 doi: 10.1007/978-3-642-01929-6_7 – ident: 6780_CR20 doi: 10.1016/B978-0-08-050684-5.50008-2 – volume: 118 start-page: 137 year: 2009 ident: 6780_CR21 publication-title: Journal of Earth System Science doi: 10.1007/s12040-009-0022-9 – ident: 6780_CR41 – ident: 6780_CR22 – ident: 6780_CR40 doi: 10.24963/kr.2022/48 – ident: 6780_CR16 doi: 10.1007/978-3-540-30227-8_19 – volume: 1 start-page: 81 issue: 1 year: 1986 ident: 6780_CR33 publication-title: Machine Learning doi: 10.1023/A:1022643204877 |
| SSID | ssj0002686 |
| Score | 2.475351 |
| Snippet | The goal of inductive logic programming is to learn a logic program that models the examples provided as input. The search space of the possible programs is... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 148 |
| SubjectTerms | Aggregates Artificial Intelligence Bias Combinatorial analysis Computer Science Control Declarative programming Genetic algorithms Language Logic programming Logic programs Machine Learning Mathematical programming Mechatronics Natural Language Processing (NLP) Robotics Simulation and Modeling Variables |
| Title | Learning answer set programs with aggregates via sampling and genetic programming |
| URI | https://link.springer.com/article/10.1007/s10994-025-06780-7 https://www.proquest.com/docview/3206300062 |
| Volume | 114 |
| WOSCitedRecordID | wos001491527700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: Springer LINK customDbUrl: eissn: 1573-0565 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002686 issn: 0885-6125 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_o9ODF-YnTKTl400KbNElzFHF4kKE4ZLeSpOkY6JS1zn_fJEs3FRX0VvJFecn7SN57vwdwSrhOdWkZUFqxGKVakEhJZb9KTXhJC6uzPc7sDe_3s-FQ3IaksKqJdm9ckl5Sf0h28zC2mEZOwsYRX4U16tBm3B39_mEhfzHz9R0t-9DI6e-QKvP9Gp_V0dLG_OIW9dqm1_7ff27BZrAu0cX8OGzDipnsQLup3IACI-_CXYBVHSGrqd5sT2VqFEK1KuTeZpEc2Zu4e2Or0GwsUSVd6LmfUCB76FzuYzPjybbvwaB3Nbi8jkJxhUgTRutIZJiXGSuwyiTWmcKKOidmkTqcUCKVFjExMZWMJoyXhTIZE9wIjEWa4MSQfWhNnifmAJA1QRLJTMGUNRUKTZQQXHCr93RmaKmTDiQNiXMdgMdd_YvHfAmZ7EiWW5LlnmQ578DZYs7LHHbj19HdZufywIJVTrCHE4sZ7sB5s1PL7p9XO_zb8CPYwH6zXQhvF1r19NUcw7qe1eNqeuKP5juqZdvx |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90Cvri_MTp1Dz4poU1aZPmUcQxcQ7FIXsrSZrKQKesdf77Jlm6qaigbyVflEvuI7m73wEcE6YilRsGFEYsBpHiJJBCmq9cEZbHmdHZDme2y3q9ZDDgNz4prKii3SuXpJPUH5LdHIwtjgMrYVsBW4SlyJbZsXf0u_uZ_MXU1Xc07BMHVn_7VJnv1_isjuY25he3qNM27fr__nMd1rx1ic6mx2EDFvRoE-pV5QbkGXkLbj2s6gMymurN9BS6RD5Uq0D2bRaJB3MTt29sBZoMBSqEDT13EzJkDp3NfaxmPJn2bei3L_rnncAXVwgUoXEZ8ASzPKEZlonAKpFYxtaJmUUWJ5QIqXiL6FYsaBxSlmdSJ5QzzTHmUYhDTXagNnoe6V1AxgQJBdUZlcZUyBSRnDPOjN5TiY5zFTYgrEicKg88butfPKZzyGRLstSQLHUkS1kDTmZzXqawG7-OblY7l3oWLFKCHZxYi-IGnFY7Ne_-ebW9vw0_gpVO_7qbdi97V_uwit3G23DeJtTK8as-gGU1KYfF-NAd03cCXd7V |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_8QnzxW5yfefBNy9akSZpHUYeijKlD9laSNB2CVrFV_32TrN2mqCC-lSQXyuUud0nufgdwQLiOdGYVUNptMYi0IIGSyn5lmvCMptZme5zZK97pxP2-6E5k8fto9_pJcpjT4FCa8rL5nGbNicQ3D2mLaeB221bAp2E2sicZF9R1c3s32osx87UerSrRwNnyKm3m-zk-m6axv_nlidRbnvbS__95GRYrrxMdD8VkBaZMvgpLdUUHVCn4GlxXcKsDZC3Yu-0pTImqEK4CuTtbJAf2hO7u3gr0di9RIV1IuidIkRVGlxNZUzza9nXotc96J-dBVXQh0ITRMhAx5lnMUqxiiXWssKLucTONHH4okUqLFjEtKhkNGc9SZWImuBEYiyjEoSEbMJM_5WYTkHVNQslMypR1IVJNlBBccGsPdWxopsMGhDW7E10Bkru6GA_JGErZsSyxLEs8yxLegMMRzfMQjuPX0Tv1KiaVahYJwR5mrMVwA47qVRt3_zzb1t-G78N897SdXF10LrdhAft1d1G-OzBTvryaXZjTb-V98bLnJfYDb8jnuQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+answer+set+programs+with+aggregates+via+sampling+and+genetic+programming&rft.jtitle=Machine+learning&rft.au=Azzolini%2C+Damiano&rft.date=2025-07-01&rft.pub=Springer+US&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=114&rft.issue=7&rft_id=info:doi/10.1007%2Fs10994-025-06780-7&rft.externalDocID=10_1007_s10994_025_06780_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon |