Learning answer set programs with aggregates via sampling and genetic programming

The goal of inductive logic programming is to learn a logic program that models the examples provided as input. The search space of the possible programs is constrained by a language bias, which defines the atoms and literals allowed in rules. Answer set programming is a powerful formalism to repres...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Machine learning Jg. 114; H. 7; S. 148
1. Verfasser: Azzolini, Damiano
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Springer US 01.07.2025
Springer Nature B.V
Schlagworte:
ISSN:0885-6125, 1573-0565
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The goal of inductive logic programming is to learn a logic program that models the examples provided as input. The search space of the possible programs is constrained by a language bias, which defines the atoms and literals allowed in rules. Answer set programming is a powerful formalism to represent complex combinatorial domains, also thanks to syntactic constructs such as aggregates. However, learning answer set programs from data is challenging, and often existing tools do not support the specification of aggregates in the language bias. In this paper, we introduce GENTIANS, a tool based on a genetic algorithm to learn answer set programs possibly with aggregates, arithmetic, and comparison operators, from examples. Empirical results, also against an existing solver, show that GENTIANS is able to provide accurate solutions even when the search space contains millions of clauses. Additionally, experiments on noisy datasets show the effectiveness of our approach.
AbstractList The goal of inductive logic programming is to learn a logic program that models the examples provided as input. The search space of the possible programs is constrained by a language bias, which defines the atoms and literals allowed in rules. Answer set programming is a powerful formalism to represent complex combinatorial domains, also thanks to syntactic constructs such as aggregates. However, learning answer set programs from data is challenging, and often existing tools do not support the specification of aggregates in the language bias. In this paper, we introduce GENTIANS, a tool based on a genetic algorithm to learn answer set programs possibly with aggregates, arithmetic, and comparison operators, from examples. Empirical results, also against an existing solver, show that GENTIANS is able to provide accurate solutions even when the search space contains millions of clauses. Additionally, experiments on noisy datasets show the effectiveness of our approach.
ArticleNumber 148
Author Azzolini, Damiano
Author_xml – sequence: 1
  givenname: Damiano
  orcidid: 0000-0002-7133-2673
  surname: Azzolini
  fullname: Azzolini, Damiano
  email: damiano.azzolini@unife.it
  organization: Department of Environmental and Prevention Sciences, University of Ferrara
BookMark eNp9kMtKAzEUhoNUsK2-gKsB16MnSXNbSvEGBRG6D5mZzJjSydQktfj2RkcRXHR14PB_5_LN0MQP3iJ0ieEaA4ibiEGpRQmElcCFhFKcoClmgpbAOJugKUjJSo4JO0OzGDcAQLjkU_SysiZ457vC-HiwoYg2FbswdMH0sTi49FqYrgu2M8nG4t2ZIpp-tx2Bpuist8nVv0Sf--fotDXbaC9-6hyt7-_Wy8dy9fzwtLxdlTXlLJVKEtFK3pBKGlLLilQMMIVmoTBV1FS1AmqBGc4wF21TWcmVsIoQtcAEWzpHV-PYvPptb2PSm2EffN6oKQFO84ec5JQcU3UYYgy21bVLJrnBp2DcVmPQX_706E9nf_rbnxYZJf_QXXC9CR_HITpCMYd9Z8PfVUeoT9u3hIM
CitedBy_id crossref_primary_10_1016_j_knosys_2025_113906
crossref_primary_10_1016_j_ijar_2025_109497
Cites_doi 10.1007/978-3-642-21295-6_9
10.1609/aaai.v34i03.5678
10.1016/0743-1066(94)90035-3
10.1007/s11831-023-09922-z
10.1145/3377929.3398099
10.1007/978-3-319-23708-4_3
10.1613/jair.1.13507
10.1017/S1471068418000054
10.1007/s10994-023-06320-1
10.1007/s10994-014-5471-y
10.1007/s10994-020-05945-w
10.1613/jair.5714
10.1016/j.artint.2018.03.005
10.1023/A:1022699322624
10.1016/B978-0-12-821986-7.00013-5
10.1201/9781003338192
10.1007/978-3-319-11558-0_22
10.1007/3-540-44673-7_7
10.1039/D2DD00003B
10.1007/978-3-642-31951-8_12
10.1007/978-3-540-78652-8
10.24963/ijcai.2020/243
10.1017/S1471068413000689
10.1007/s13218-018-0545-9
10.1007/978-3-662-44923-3_3
10.1162/evco_a_00278
10.1007/s10994-020-05934-z
10.1007/978-3-642-01929-6_7
10.1016/B978-0-08-050684-5.50008-2
10.1007/s12040-009-0022-9
10.24963/kr.2022/48
10.1007/978-3-540-30227-8_19
10.1023/A:1022643204877
ContentType Journal Article
Copyright The Author(s) 2025
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2025
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10994-025-06780-7
DatabaseName Springer Nature OA Free Journals (ODIN)
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-0565
ExternalDocumentID 10_1007_s10994_025_06780_7
GrantInformation_xml – fundername: Università degli Studi di Ferrara
GroupedDBID -~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
29M
2J2
2JN
2JY
2KG
2KM
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABIVO
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADIMF
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BENPR
BGNMA
BSONS
C6C
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
N9A
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P2P
P9O
PF-
PT4
QM1
QN7
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TAE
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
VC2
W23
W48
WH7
WIP
WK8
YLTOR
Z45
Z8Z
ZMTXR
-Y2
.4S
1SB
2.D
28-
2P1
2VQ
5QI
6TJ
88I
8AO
8FE
8FG
AAEWM
AAOBN
AARHV
AAYTO
AAYXX
ABQSL
ABRTQ
ABULA
ABUWG
ACBXY
ADHKG
ADMLS
AEBTG
AEFIE
AEKMD
AFEXP
AFFHD
AFGCZ
AFKRA
AGQPQ
AJBLW
AMVHM
ARCSS
AZQEC
BBWZM
BDATZ
BGLVJ
BPHCQ
CAG
CCPQU
CITATION
COF
DWQXO
EJD
FINBP
FSGXE
GNUQQ
H13
I-F
ITG
ITH
K6V
K7-
KOW
M2P
MVM
N2Q
NDZJH
O9-
OVD
P62
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
Q2X
QF4
QO4
R4E
RNI
RZC
RZE
S26
S28
SCJ
SCLPG
T16
TEORI
TUS
UZXMN
VFIZW
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c365t-9827f86d2b8a2c8b2b50130d491393abc903e05a65167fdbe8697e92294121e3
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001491527700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-6125
IngestDate Wed Nov 05 09:32:14 EST 2025
Tue Nov 18 22:31:47 EST 2025
Sat Nov 29 07:34:58 EST 2025
Thu Jul 10 08:13:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Inductive logic programming
Answer set programming
Genetic programming
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-9827f86d2b8a2c8b2b50130d491393abc903e05a65167fdbe8697e92294121e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-7133-2673
OpenAccessLink https://link.springer.com/10.1007/s10994-025-06780-7
PQID 3206300062
PQPubID 54194
ParticipantIDs proquest_journals_3206300062
crossref_citationtrail_10_1007_s10994_025_06780_7
crossref_primary_10_1007_s10994_025_06780_7
springer_journals_10_1007_s10994_025_06780_7
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Machine learning
PublicationTitleAbbrev Mach Learn
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References A Guven (6780_CR21) 2009; 118
6780_CR40
6780_CR41
6780_CR20
X-S Yang (6780_CR45) 2021
6780_CR22
6780_CR44
M Gebser (6780_CR18) 2009
6780_CR23
6780_CR24
SH Muggleton (6780_CR28) 2015; 100
M Alviano (6780_CR1) 2018; 32
6780_CR27
L De Raedt (6780_CR12) 2008
S Bragaglia (6780_CR5) 2015
M Virgolin (6780_CR43) 2021; 29
JR Quinlan (6780_CR34) 1990; 5
E Bellodi (6780_CR4) 2015; 15
JR Quinlan (6780_CR33) 1986; 1
T Eiter (6780_CR14) 2009
D Corapi (6780_CR7) 2012
D Athakravi (6780_CR3) 2014
M Gebser (6780_CR17) 2019; 19
6780_CR32
6780_CR11
A Cropper (6780_CR9) 2022; 74
A Nigam (6780_CR30) 2022; 1
6780_CR36
J Shapiro (6780_CR38) 2001
6780_CR16
S Muggleton (6780_CR29) 1994; 19
L De Raedt (6780_CR13) 2011
D Angelis (6780_CR2) 2023; 30
6780_CR19
JR Quinlan (6780_CR35) 1993
R Evans (6780_CR15) 2018; 61
L Sterling (6780_CR42) 1994
M Law (6780_CR25) 2014
6780_CR8
H Shindo (6780_CR39) 2023; 112
6780_CR6
M Law (6780_CR26) 2018; 259
A Cropper (6780_CR10) 2021; 110
F Riguzzi (6780_CR37) 2022
S Patsantzis (6780_CR31) 2021; 110
References_xml – start-page: 40
  volume-title: Reasoning web semantic technologies for information systems, 5th international summer school
  year: 2009
  ident: 6780_CR14
– start-page: 47
  volume-title: Inductive logic programming
  year: 2011
  ident: 6780_CR13
  doi: 10.1007/978-3-642-21295-6_9
– ident: 6780_CR24
  doi: 10.1609/aaai.v34i03.5678
– ident: 6780_CR8
– volume: 19
  start-page: 629
  year: 1994
  ident: 6780_CR29
  publication-title: Journal of Logic Programming
  doi: 10.1016/0743-1066(94)90035-3
– volume: 30
  start-page: 3845
  issue: 6
  year: 2023
  ident: 6780_CR2
  publication-title: Archives of Computational Methods in Engineering
  doi: 10.1007/s11831-023-09922-z
– ident: 6780_CR32
– ident: 6780_CR11
– ident: 6780_CR6
  doi: 10.1145/3377929.3398099
– start-page: 33
  volume-title: Inductive logic programming
  year: 2015
  ident: 6780_CR5
  doi: 10.1007/978-3-319-23708-4_3
– volume: 74
  start-page: 765
  year: 2022
  ident: 6780_CR9
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.1.13507
– volume: 19
  start-page: 27
  issue: 1
  year: 2019
  ident: 6780_CR17
  publication-title: Theory and Practice of Logic Programming
  doi: 10.1017/S1471068418000054
– volume: 112
  start-page: 1465
  issue: 5
  year: 2023
  ident: 6780_CR39
  publication-title: Machine Learning
  doi: 10.1007/s10994-023-06320-1
– volume: 100
  start-page: 49
  issue: 1
  year: 2015
  ident: 6780_CR28
  publication-title: Machine Learning
  doi: 10.1007/s10994-014-5471-y
– volume: 110
  start-page: 755
  issue: 4
  year: 2021
  ident: 6780_CR31
  publication-title: Machine Learning
  doi: 10.1007/s10994-020-05945-w
– volume: 61
  start-page: 1
  year: 2018
  ident: 6780_CR15
  publication-title: Journal of Artificial Intelligence Research
  doi: 10.1613/jair.5714
– volume: 259
  start-page: 110
  year: 2018
  ident: 6780_CR26
  publication-title: Artificial Intelligence
  doi: 10.1016/j.artint.2018.03.005
– ident: 6780_CR23
– volume: 5
  start-page: 239
  issue: 3
  year: 1990
  ident: 6780_CR34
  publication-title: Machine Learning
  doi: 10.1023/A:1022699322624
– start-page: 91
  volume-title: Nature-inspired optimization algorithms
  year: 2021
  ident: 6780_CR45
  doi: 10.1016/B978-0-12-821986-7.00013-5
– ident: 6780_CR27
– volume-title: Foundations of probabilistic logic programming languages, semantics, inference and learning
  year: 2022
  ident: 6780_CR37
  doi: 10.1201/9781003338192
– start-page: 311
  volume-title: Logics in artificial intelligence
  year: 2014
  ident: 6780_CR25
  doi: 10.1007/978-3-319-11558-0_22
– start-page: 146
  volume-title: Machine learning and its applications: Advanced lectures
  year: 2001
  ident: 6780_CR38
  doi: 10.1007/3-540-44673-7_7
– ident: 6780_CR19
– volume: 1
  start-page: 390
  year: 2022
  ident: 6780_CR30
  publication-title: Digital Discovery
  doi: 10.1039/D2DD00003B
– start-page: 91
  volume-title: Inductive logic programming
  year: 2012
  ident: 6780_CR7
  doi: 10.1007/978-3-642-31951-8_12
– start-page: 1
  volume-title: Probabilistic inductive logic programming: Theory and applications
  year: 2008
  ident: 6780_CR12
  doi: 10.1007/978-3-540-78652-8
– ident: 6780_CR44
  doi: 10.24963/ijcai.2020/243
– volume: 15
  start-page: 169
  issue: 2
  year: 2015
  ident: 6780_CR4
  publication-title: Theory and Practice of Logic Programming
  doi: 10.1017/S1471068413000689
– volume-title: C4.5: Programs for machine learning
  year: 1993
  ident: 6780_CR35
– ident: 6780_CR36
– volume: 32
  start-page: 119
  issue: 2
  year: 2018
  ident: 6780_CR1
  publication-title: KI-Künstliche Intelligenz
  doi: 10.1007/s13218-018-0545-9
– start-page: 31
  volume-title: Inductive logic programming
  year: 2014
  ident: 6780_CR3
  doi: 10.1007/978-3-662-44923-3_3
– volume-title: The art of Prolog: Advanced programming techniques
  year: 1994
  ident: 6780_CR42
– volume: 29
  start-page: 211
  issue: 2
  year: 2021
  ident: 6780_CR43
  publication-title: Evolutionary Compututation
  doi: 10.1162/evco_a_00278
– volume: 110
  start-page: 801
  issue: 4
  year: 2021
  ident: 6780_CR10
  publication-title: Machine Learning
  doi: 10.1007/s10994-020-05934-z
– start-page: 71
  volume-title: Integration of AI and OR techniques in constraint programming for combinatorial optimization problems
  year: 2009
  ident: 6780_CR18
  doi: 10.1007/978-3-642-01929-6_7
– ident: 6780_CR20
  doi: 10.1016/B978-0-08-050684-5.50008-2
– volume: 118
  start-page: 137
  year: 2009
  ident: 6780_CR21
  publication-title: Journal of Earth System Science
  doi: 10.1007/s12040-009-0022-9
– ident: 6780_CR41
– ident: 6780_CR22
– ident: 6780_CR40
  doi: 10.24963/kr.2022/48
– ident: 6780_CR16
  doi: 10.1007/978-3-540-30227-8_19
– volume: 1
  start-page: 81
  issue: 1
  year: 1986
  ident: 6780_CR33
  publication-title: Machine Learning
  doi: 10.1023/A:1022643204877
SSID ssj0002686
Score 2.475351
Snippet The goal of inductive logic programming is to learn a logic program that models the examples provided as input. The search space of the possible programs is...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 148
SubjectTerms Aggregates
Artificial Intelligence
Bias
Combinatorial analysis
Computer Science
Control
Declarative programming
Genetic algorithms
Language
Logic programming
Logic programs
Machine Learning
Mathematical programming
Mechatronics
Natural Language Processing (NLP)
Robotics
Simulation and Modeling
Variables
Title Learning answer set programs with aggregates via sampling and genetic programming
URI https://link.springer.com/article/10.1007/s10994-025-06780-7
https://www.proquest.com/docview/3206300062
Volume 114
WOSCitedRecordID wos001491527700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1573-0565
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002686
  issn: 0885-6125
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFH_o9ODF-YnTKTl400KbNElzFHF4kKE4ZLeSpOkY6JS1zn_fJEs3FRX0VvJFecn7SN57vwdwSrhOdWkZUFqxGKVakEhJZb9KTXhJC6uzPc7sDe_3s-FQ3IaksKqJdm9ckl5Sf0h28zC2mEZOwsYRX4U16tBm3B39_mEhfzHz9R0t-9DI6e-QKvP9Gp_V0dLG_OIW9dqm1_7ff27BZrAu0cX8OGzDipnsQLup3IACI-_CXYBVHSGrqd5sT2VqFEK1KuTeZpEc2Zu4e2Or0GwsUSVd6LmfUCB76FzuYzPjybbvwaB3Nbi8jkJxhUgTRutIZJiXGSuwyiTWmcKKOidmkTqcUCKVFjExMZWMJoyXhTIZE9wIjEWa4MSQfWhNnifmAJA1QRLJTMGUNRUKTZQQXHCr93RmaKmTDiQNiXMdgMdd_YvHfAmZ7EiWW5LlnmQ578DZYs7LHHbj19HdZufywIJVTrCHE4sZ7sB5s1PL7p9XO_zb8CPYwH6zXQhvF1r19NUcw7qe1eNqeuKP5juqZdvx
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90Cvri_MTp1Dz4poU1aZPmUcQxcQ7FIXsrSZrKQKesdf77Jlm6qaigbyVflEvuI7m73wEcE6YilRsGFEYsBpHiJJBCmq9cEZbHmdHZDme2y3q9ZDDgNz4prKii3SuXpJPUH5LdHIwtjgMrYVsBW4SlyJbZsXf0u_uZ_MXU1Xc07BMHVn_7VJnv1_isjuY25he3qNM27fr__nMd1rx1ic6mx2EDFvRoE-pV5QbkGXkLbj2s6gMymurN9BS6RD5Uq0D2bRaJB3MTt29sBZoMBSqEDT13EzJkDp3NfaxmPJn2bei3L_rnncAXVwgUoXEZ8ASzPKEZlonAKpFYxtaJmUUWJ5QIqXiL6FYsaBxSlmdSJ5QzzTHmUYhDTXagNnoe6V1AxgQJBdUZlcZUyBSRnDPOjN5TiY5zFTYgrEicKg88butfPKZzyGRLstSQLHUkS1kDTmZzXqawG7-OblY7l3oWLFKCHZxYi-IGnFY7Ne_-ebW9vw0_gpVO_7qbdi97V_uwit3G23DeJtTK8as-gGU1KYfF-NAd03cCXd7V
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS8MwED_8QnzxW5yfefBNy9akSZpHUYeijKlD9laSNB2CVrFV_32TrN2mqCC-lSQXyuUud0nufgdwQLiOdGYVUNptMYi0IIGSyn5lmvCMptZme5zZK97pxP2-6E5k8fto9_pJcpjT4FCa8rL5nGbNicQ3D2mLaeB221bAp2E2sicZF9R1c3s32osx87UerSrRwNnyKm3m-zk-m6axv_nlidRbnvbS__95GRYrrxMdD8VkBaZMvgpLdUUHVCn4GlxXcKsDZC3Yu-0pTImqEK4CuTtbJAf2hO7u3gr0di9RIV1IuidIkRVGlxNZUzza9nXotc96J-dBVXQh0ITRMhAx5lnMUqxiiXWssKLucTONHH4okUqLFjEtKhkNGc9SZWImuBEYiyjEoSEbMJM_5WYTkHVNQslMypR1IVJNlBBccGsPdWxopsMGhDW7E10Bkru6GA_JGErZsSyxLEs8yxLegMMRzfMQjuPX0Tv1KiaVahYJwR5mrMVwA47qVRt3_zzb1t-G78N897SdXF10LrdhAft1d1G-OzBTvryaXZjTb-V98bLnJfYDb8jnuQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+answer+set+programs+with+aggregates+via+sampling+and+genetic+programming&rft.jtitle=Machine+learning&rft.au=Azzolini%2C+Damiano&rft.date=2025-07-01&rft.pub=Springer+US&rft.issn=0885-6125&rft.eissn=1573-0565&rft.volume=114&rft.issue=7&rft_id=info:doi/10.1007%2Fs10994-025-06780-7&rft.externalDocID=10_1007_s10994_025_06780_7
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-6125&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-6125&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-6125&client=summon