A data-driven newsvendor problem: From data to decision

•We identify and conceptualize three levels of data-driven inventory management.•We investigate the impact of the levels on the performance in a newsvendor problem.•We present solution approaches based on Machine Learning for the newsvendor problem.•We compare our methods to well-established approac...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:European journal of operational research Ročník 278; číslo 3; s. 904 - 915
Hlavní autoři: Huber, Jakob, Müller, Sebastian, Fleischmann, Moritz, Stuckenschmidt, Heiner
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.11.2019
Témata:
ISSN:0377-2217, 1872-6860
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •We identify and conceptualize three levels of data-driven inventory management.•We investigate the impact of the levels on the performance in a newsvendor problem.•We present solution approaches based on Machine Learning for the newsvendor problem.•We compare our methods to well-established approaches on a real-world data set.•Data-driven methods outperform their model-based counterparts in most cases. Retailers that offer perishable items are required to make ordering decisions for hundreds of products on a daily basis. This task is non-trivial because the risk of ordering too much or too little is associated with overstocking costs and unsatisfied customers. The well-known newsvendor model captures the essence of this trade-off. Traditionally, this newsvendor problem is solved based on a demand distribution assumption. However, in reality, the true demand distribution is hardly ever known to the decision maker. Instead, large datasets are available that enable the use of empirical distributions. In this paper, we investigate how to exploit this data for making better decisions. We identify three levels on which data can generate value, and we assess their potential. To this end, we present data-driven solution methods based on Machine Learning and Quantile Regression that do not require the assumption of a specific demand distribution. We provide an empirical evaluation of these methods with point-of-sales data for a large German bakery chain. We find that Machine Learning approaches substantially outperform traditional methods if the dataset is large enough. We also find that the benefit of improved forecasting dominates other potential benefits of data-driven solution methods.
AbstractList •We identify and conceptualize three levels of data-driven inventory management.•We investigate the impact of the levels on the performance in a newsvendor problem.•We present solution approaches based on Machine Learning for the newsvendor problem.•We compare our methods to well-established approaches on a real-world data set.•Data-driven methods outperform their model-based counterparts in most cases. Retailers that offer perishable items are required to make ordering decisions for hundreds of products on a daily basis. This task is non-trivial because the risk of ordering too much or too little is associated with overstocking costs and unsatisfied customers. The well-known newsvendor model captures the essence of this trade-off. Traditionally, this newsvendor problem is solved based on a demand distribution assumption. However, in reality, the true demand distribution is hardly ever known to the decision maker. Instead, large datasets are available that enable the use of empirical distributions. In this paper, we investigate how to exploit this data for making better decisions. We identify three levels on which data can generate value, and we assess their potential. To this end, we present data-driven solution methods based on Machine Learning and Quantile Regression that do not require the assumption of a specific demand distribution. We provide an empirical evaluation of these methods with point-of-sales data for a large German bakery chain. We find that Machine Learning approaches substantially outperform traditional methods if the dataset is large enough. We also find that the benefit of improved forecasting dominates other potential benefits of data-driven solution methods.
Author Müller, Sebastian
Fleischmann, Moritz
Huber, Jakob
Stuckenschmidt, Heiner
Author_xml – sequence: 1
  givenname: Jakob
  surname: Huber
  fullname: Huber, Jakob
  email: jakob@informatik.uni-mannheim.de
  organization: Data and Web Science Group, University of Mannheim, B6 26, Mannheim 68159, Germany
– sequence: 2
  givenname: Sebastian
  surname: Müller
  fullname: Müller, Sebastian
  email: s.mueller@bwl.uni-mannheim.de
  organization: Business School, University of Mannheim, Schloss, Mannheim 68131, Germany
– sequence: 3
  givenname: Moritz
  surname: Fleischmann
  fullname: Fleischmann, Moritz
  email: mfleischmann@bwl.uni-mannheim.de
  organization: Business School, University of Mannheim, Schloss, Mannheim 68131, Germany
– sequence: 4
  givenname: Heiner
  surname: Stuckenschmidt
  fullname: Stuckenschmidt, Heiner
  email: heiner@informatik.uni-mannheim.de
  organization: Data and Web Science Group, University of Mannheim, B6 26, Mannheim 68159, Germany
BookMark eNp9kEFLAzEQhYNUsK3-AU_7B3adJLtJVryUYlUoeNFzyCazkKXdlGSp-O9NrScPhQcPhvmGeW9BZmMYkZB7ChUFKh6GCocQKwa0raDO4ldkTpVkpVACZmQOXMqSMSpvyCKlAQBoQ5s5kavCmcmULvojjsWIXym7C7E4xNDtcP9YbGLY_y4VUygcWp98GG_JdW92Ce_-fEk-N88f69dy-_7ytl5tS8tFM5WyrwHbTtVWyd6gVD3rG-uU43muGDOs7YQQHTVGCrCKQ9tJ5bBWUvIWkC-JOt-1MaQUsdfWT2bKH0zR-J2moE8F6EGfCtCnAjTUWTyj7B96iH5v4vdl6OkMYQ519Bh1sh5Hi85HtJN2wV_CfwCOU3ZW
CitedBy_id crossref_primary_10_1016_j_ejor_2025_06_022
crossref_primary_10_1080_17517575_2024_2406008
crossref_primary_10_1109_TFUZZ_2022_3217884
crossref_primary_10_1016_j_ejor_2024_10_045
crossref_primary_10_1287_msom_2022_1086
crossref_primary_10_1016_j_ijpe_2023_109042
crossref_primary_10_1016_j_cie_2021_107545
crossref_primary_10_1016_j_sftr_2025_100884
crossref_primary_10_1002_bse_3971
crossref_primary_10_3390_math12040573
crossref_primary_10_1109_TITS_2024_3392959
crossref_primary_10_1016_j_jclepro_2021_127466
crossref_primary_10_1080_17517575_2023_2284427
crossref_primary_10_1007_s40314_025_03081_6
crossref_primary_10_1287_ijoc_2022_1251
crossref_primary_10_1016_j_jretconser_2025_104222
crossref_primary_10_3390_logistics7040079
crossref_primary_10_1016_j_cor_2021_105641
crossref_primary_10_1016_j_ejor_2022_11_011
crossref_primary_10_1109_TPWRS_2023_3268337
crossref_primary_10_1016_j_cie_2025_111324
crossref_primary_10_1007_s10479_023_05234_4
crossref_primary_10_1287_ijds_2024_0038
crossref_primary_10_1080_00207543_2023_2219343
crossref_primary_10_1007_s10107_021_01724_0
crossref_primary_10_1016_j_eswa_2024_125503
crossref_primary_10_1016_j_ijpe_2020_107828
crossref_primary_10_1016_j_ejor_2024_01_014
crossref_primary_10_1177_10591478251344225
crossref_primary_10_1287_ited_2024_0085
crossref_primary_10_1080_13675567_2020_1803246
crossref_primary_10_1016_j_cor_2024_106905
crossref_primary_10_1016_j_ejor_2021_06_011
crossref_primary_10_1016_j_ijpe_2023_109016
crossref_primary_10_1016_j_cie_2023_109836
crossref_primary_10_1016_j_eswa_2024_123727
crossref_primary_10_1016_j_ijforecast_2020_01_007
crossref_primary_10_1287_ijoo_2022_0086
crossref_primary_10_1016_j_ejor_2022_08_024
crossref_primary_10_2139_ssrn_4212676
crossref_primary_10_1007_s00500_023_09073_0
crossref_primary_10_1109_TPWRS_2020_2975246
crossref_primary_10_1016_j_cie_2025_111038
crossref_primary_10_1016_j_ejor_2021_07_040
crossref_primary_10_1007_s10479_023_05223_7
crossref_primary_10_1007_s43069_021_00079_8
crossref_primary_10_1016_j_eswa_2024_125464
crossref_primary_10_1080_00207543_2025_2537342
crossref_primary_10_1155_2022_5415702
crossref_primary_10_1080_01605682_2025_2491513
crossref_primary_10_1016_j_ejor_2024_12_033
crossref_primary_10_3390_math13071149
crossref_primary_10_1016_j_ejor_2025_07_009
crossref_primary_10_1080_08913811_2025_2488594
crossref_primary_10_1016_j_ejor_2024_01_025
crossref_primary_10_1016_j_fmre_2021_07_013
crossref_primary_10_1007_s13042_022_01521_x
crossref_primary_10_1109_TSMC_2023_3267858
crossref_primary_10_1111_itor_13204
crossref_primary_10_1016_j_sca_2023_100024
crossref_primary_10_1016_j_ejor_2024_04_031
crossref_primary_10_1016_j_ejor_2021_08_013
crossref_primary_10_3390_su12219114
crossref_primary_10_7717_peerj_cs_1416
crossref_primary_10_1080_00207543_2024_2390968
crossref_primary_10_1016_j_orhc_2022_100377
crossref_primary_10_1109_TEM_2024_3411149
crossref_primary_10_1016_j_wasman_2020_07_029
crossref_primary_10_1007_s12351_023_00748_y
crossref_primary_10_1016_j_orhc_2021_100290
crossref_primary_10_3390_pr10040783
crossref_primary_10_1002_mde_3233
crossref_primary_10_1016_j_eswa_2025_126586
crossref_primary_10_1111_poms_13918
crossref_primary_10_1016_j_ejor_2024_01_032
crossref_primary_10_2139_ssrn_4619018
crossref_primary_10_1007_s42488_021_00060_4
crossref_primary_10_1016_j_ejor_2024_10_012
crossref_primary_10_2139_ssrn_3623006
crossref_primary_10_1016_j_cie_2024_110067
crossref_primary_10_1016_j_orl_2025_107296
crossref_primary_10_1177_14707853251315585
crossref_primary_10_1007_s11518_025_5648_x
crossref_primary_10_1109_ACCESS_2024_3510175
crossref_primary_10_1093_imaman_dpae029
crossref_primary_10_1080_24725854_2021_1875520
crossref_primary_10_1007_s10479_024_05990_x
crossref_primary_10_1016_j_ijpe_2021_108157
crossref_primary_10_1007_s11192_021_04060_4
crossref_primary_10_1287_msom_2024_1168
crossref_primary_10_1016_j_omega_2024_103273
crossref_primary_10_1007_s10288_022_00520_6
crossref_primary_10_1016_j_ejor_2024_07_004
crossref_primary_10_1080_00207543_2023_2179350
crossref_primary_10_1016_j_ejor_2024_03_020
Cites_doi 10.1016/0893-6080(91)90009-T
10.1137/S1052623499363220
10.1214/aos/1013203451
10.1016/S0169-2070(97)00044-7
10.1023/A:1010933404324
10.1016/j.eswa.2013.12.011
10.1287/opre.2018.1757
10.1016/j.ejor.2016.07.015
10.1016/S0169-2070(01)00110-8
10.1002/1099-131X(200007)19:4<299::AID-FOR775>3.0.CO;2-V
10.1016/j.cageo.2010.07.005
10.1016/S0927-0507(03)10006-0
10.1287/moor.1070.0272
10.1016/j.dss.2005.01.008
10.1016/j.eswa.2017.01.022
10.1016/0377-2217(95)00134-4
10.1016/j.ijforecast.2006.03.001
10.1108/09600030710840822
10.1057/jors.1976.13
10.1016/j.ejor.2010.11.024
10.1057/jors.1993.141
10.1016/j.ijpe.2011.04.017
10.1287/opre.1050.0238
10.1287/mnsc.47.8.1101.10231
10.1016/j.ejor.2016.06.035
10.1016/j.ejor.2006.02.006
10.1016/j.ejor.2006.12.004
10.1016/j.ijforecast.2011.04.001
10.1287/opre.2015.1422
10.1287/opre.1070.0486
10.1016/j.ijpe.2013.04.039
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.ejor.2019.04.043
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1872-6860
EndPage 915
ExternalDocumentID 10_1016_j_ejor_2019_04_043
S0377221719303807
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
XPP
ZMT
~02
~G-
1OL
29G
41~
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HVGLF
HZ~
R2-
SEW
VH1
WUQ
~HD
ID FETCH-LOGICAL-c365t-7f40e9b84c87fae78f2f5cd8d340e822a29b666b1aa760c8309b78de4877390e3
ISICitedReferencesCount 104
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000472690900014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-2217
IngestDate Sat Nov 29 07:21:12 EST 2025
Tue Nov 18 22:18:45 EST 2025
Fri Feb 23 02:17:45 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Retail
Newsvendor
Quantile regression
Inventory
Machine learning
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c365t-7f40e9b84c87fae78f2f5cd8d340e822a29b666b1aa760c8309b78de4877390e3
PageCount 12
ParticipantIDs crossref_citationtrail_10_1016_j_ejor_2019_04_043
crossref_primary_10_1016_j_ejor_2019_04_043
elsevier_sciencedirect_doi_10_1016_j_ejor_2019_04_043
PublicationCentury 2000
PublicationDate 2019-11-01
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 2019-11-01
  day: 01
PublicationDecade 2010
PublicationTitle European journal of operational research
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Ke, Meng, Finley, Wang, Chen, Ma, Ye, Liu (bib0024) 2017
Oroojlooyjadid, Snyder, Takác (bib0032) 2016
Cannon (bib0010) 2011; 37
Hyndman, Koehler, Snyder, Grose (bib0023) 2002; 18
Conrad (bib0012) 1976; 27
Kleywegt, Shapiro, Homem-de Mello (bib0026) 2002; 12
Sachs, Minner (bib0038) 2014; 149
Trapero, Cardós, Kourentzes (bib0046) 2018; In Press
Crone, Kourentzes (bib0014) 2009
Hyndman, Koehler, Ord, Snyder (bib0022) 2008
Perakis, Roels (bib0033) 2008; 56
Koenker (bib0027) 2005
Levi, Roundy, Shmoys (bib0031) 2007; 32
Qin, Wang, Vakharia, Chen, Seref (bib0036) 2011; 213
Zhang, Patuwo, Hu (bib0048) 1998; 14
Bertsimas, Thiele (bib0007) 2006; 54
Gallego, Moon (bib0016) 1993; 44
R Core Team (bib0037) 2017
Bertsimas, Kallus (bib0006) 2018; forthcoming
Thomassey, Fiordaliso (bib0045) 2006; 42
Barrow, Crone, Kourentzes (bib0002) 2010
Ben-Tal, Ghaoui, Nemirovski (bib0004) 2009
Hyndman, Khandakar (bib0020) 2008; 26
Zhang, Gao (bib0049) 2017; 10634
Shapiro (bib0040) 2003; 10
Kingma, Ba (bib0025) 2015
Takeuchi, Le, Sears, Smola (bib0042) 2006; 7
Prak, Teunter (bib0034) 2018; In Press
Taylor (bib0044) 2007; 178
Breiman (bib0009) 2001; 45
Silver, Pyke, Thomas (bib0041) 2017
Beutel, Minner (bib0008) 2012; 140
Prak, Teunter, Syntetos (bib0035) 2017; 256
Van Woensel, Van Donselaar, Broekmeulen, Fransoo (bib0047) 2007; 37
Carbonneau, Laframboise, Vahidov (bib0011) 2008; 184
Godfrey, Powell (bib0017) 2001; 47
Crone, Hibon, Nikolopoulos (bib0013) 2011; 27
Taylor (bib0043) 2000; 19
Kourentzes, Barrow, Crone (bib0028) 2014; 41
Scarf (bib0039) 1958
Huber, Gossmann, Stuckenschmidt (bib0019) 2017; 76
Bergstra, Bengio (bib0005) 2012; 13
Hyndman, Koehler (bib0021) 2006; 22
Ban, Rudin (bib0001) 2018; 67
Barrow, Kourentzes (bib0003) 2018; 264
Hornik (bib0018) 1991; 4
Levi, Perakis, Uichanco (bib0030) 2015; 63
Friedman (bib0015) 2001; 29
Lau, Lau (bib0029) 1996; 92
Bergstra (10.1016/j.ejor.2019.04.043_bib0005) 2012; 13
Barrow (10.1016/j.ejor.2019.04.043_bib0003) 2018; 264
Kingma (10.1016/j.ejor.2019.04.043_sbref0025) 2015
Kleywegt (10.1016/j.ejor.2019.04.043_bib0026) 2002; 12
Taylor (10.1016/j.ejor.2019.04.043_bib0043) 2000; 19
Barrow (10.1016/j.ejor.2019.04.043_sbref0002) 2010
Shapiro (10.1016/j.ejor.2019.04.043_bib0040) 2003; 10
Trapero (10.1016/j.ejor.2019.04.043_bib0046) 2018; In Press
Bertsimas (10.1016/j.ejor.2019.04.043_bib0007) 2006; 54
Beutel (10.1016/j.ejor.2019.04.043_bib0008) 2012; 140
Hyndman (10.1016/j.ejor.2019.04.043_bib0022) 2008
Takeuchi (10.1016/j.ejor.2019.04.043_bib0042) 2006; 7
Koenker (10.1016/j.ejor.2019.04.043_bib0027) 2005
Kourentzes (10.1016/j.ejor.2019.04.043_bib0028) 2014; 41
Thomassey (10.1016/j.ejor.2019.04.043_bib0045) 2006; 42
Hornik (10.1016/j.ejor.2019.04.043_bib0018) 1991; 4
Hyndman (10.1016/j.ejor.2019.04.043_bib0020) 2008; 26
Crone (10.1016/j.ejor.2019.04.043_bib0013) 2011; 27
Oroojlooyjadid (10.1016/j.ejor.2019.04.043_sbref0032) 2016
Conrad (10.1016/j.ejor.2019.04.043_bib0012) 1976; 27
Crone (10.1016/j.ejor.2019.04.043_sbref0014) 2009
Prak (10.1016/j.ejor.2019.04.043_bib0035) 2017; 256
Perakis (10.1016/j.ejor.2019.04.043_bib0033) 2008; 56
Levi (10.1016/j.ejor.2019.04.043_bib0031) 2007; 32
Zhang (10.1016/j.ejor.2019.04.043_bib0049) 2017; 10634
Sachs (10.1016/j.ejor.2019.04.043_bib0038) 2014; 149
Zhang (10.1016/j.ejor.2019.04.043_bib0048) 1998; 14
Hyndman (10.1016/j.ejor.2019.04.043_bib0021) 2006; 22
Levi (10.1016/j.ejor.2019.04.043_bib0030) 2015; 63
Van Woensel (10.1016/j.ejor.2019.04.043_bib0047) 2007; 37
Huber (10.1016/j.ejor.2019.04.043_bib0019) 2017; 76
Gallego (10.1016/j.ejor.2019.04.043_bib0016) 1993; 44
Carbonneau (10.1016/j.ejor.2019.04.043_bib0011) 2008; 184
Lau (10.1016/j.ejor.2019.04.043_bib0029) 1996; 92
Silver (10.1016/j.ejor.2019.04.043_bib0041) 2017
Bertsimas (10.1016/j.ejor.2019.04.043_bib0006) 2018; forthcoming
Hyndman (10.1016/j.ejor.2019.04.043_bib0023) 2002; 18
Scarf (10.1016/j.ejor.2019.04.043_bib0039) 1958
Prak (10.1016/j.ejor.2019.04.043_bib0034) 2018; In Press
Cannon (10.1016/j.ejor.2019.04.043_bib0010) 2011; 37
Qin (10.1016/j.ejor.2019.04.043_bib0036) 2011; 213
Friedman (10.1016/j.ejor.2019.04.043_bib0015) 2001; 29
Taylor (10.1016/j.ejor.2019.04.043_bib0044) 2007; 178
Ke (10.1016/j.ejor.2019.04.043_bib0024) 2017
Ban (10.1016/j.ejor.2019.04.043_bib0001) 2018; 67
Godfrey (10.1016/j.ejor.2019.04.043_bib0017) 2001; 47
R Core Team (10.1016/j.ejor.2019.04.043_bib0037) 2017
Ben-Tal (10.1016/j.ejor.2019.04.043_bib0004) 2009
Breiman (10.1016/j.ejor.2019.04.043_bib0009) 2001; 45
References_xml – volume: 54
  start-page: 150
  year: 2006
  end-page: 168
  ident: bib0007
  article-title: A robust optimization approach to inventory theory
  publication-title: Operations Research
– volume: 213
  start-page: 361
  year: 2011
  end-page: 374
  ident: bib0036
  article-title: The newsvendor problem: Review and directions for future research
  publication-title: European Journal of Operational Research
– volume: 63
  start-page: 1294
  year: 2015
  end-page: 1306
  ident: bib0030
  article-title: The data-driven newsvendor problem: new bounds and insights
  publication-title: Operations Research
– volume: 10634
  start-page: 912
  year: 2017
  end-page: 921
  ident: bib0049
  article-title: Assessing the performance of deep learning algorithms for newsvendor problem
  publication-title: Proceedings of the ICONIP 2017
– volume: 13
  start-page: 281
  year: 2012
  end-page: 305
  ident: bib0005
  article-title: Random search for hyper-parameter optimization
  publication-title: Journal of Machine Learning Research
– year: 2015
  ident: bib0025
  article-title: Adam: A method for stochastic optimization
  publication-title: Proceedings of the international conference on learning representations 2015
– year: 2017
  ident: bib0041
  article-title: Inventory and production management in supply chains
– volume: 264
  start-page: 967
  year: 2018
  end-page: 977
  ident: bib0003
  article-title: The impact of special days in call arrivals forecasting: a neural network approach to modelling special days
  publication-title: European Journal of Operational Research
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib0009
  article-title: Random forests
  publication-title: Machine Learning
– volume: 56
  start-page: 188
  year: 2008
  end-page: 203
  ident: bib0033
  article-title: Regret in the newsvendor model with partial information
  publication-title: Operations Research
– volume: 7
  start-page: 1231
  year: 2006
  end-page: 1264
  ident: bib0042
  article-title: Nonparametric quantile estimation
  publication-title: Journal of Machine Learning Research
– volume: 42
  start-page: 408
  year: 2006
  end-page: 421
  ident: bib0045
  article-title: A hybrid sales forecasting system based on clustering and decision trees
  publication-title: Decision Support Systems
– volume: In Press
  start-page: 1
  year: 2018
  end-page: 13
  ident: bib0046
  article-title: Empirical safety stock estimation based on kernel and GARCH models
  publication-title: Omega
– year: 2010
  ident: bib0002
  article-title: An evaluation of neural network ensembles and model selection for time series prediction
  publication-title: Proceedings of the 2010 international joint conference on neural networks (IJCNN)
– volume: 76
  start-page: 140
  year: 2017
  end-page: 151
  ident: bib0019
  article-title: Cluster-based hierarchical demand forecasting for perishable goods
  publication-title: Expert Systems with Applications
– start-page: 232
  year: 2009
  end-page: 238
  ident: bib0014
  article-title: Forecasting seasonal time series with multilayer perceptrons-an empirical evaluation of input vector specifications for deterministic seasonality
  publication-title: Proceedings of the 2009 international conference on data mining
– volume: 14
  start-page: 35
  year: 1998
  end-page: 62
  ident: bib0048
  article-title: Forecasting with artificial neural networks: the state of the art
  publication-title: International Journal of Forecasting
– volume: 18
  start-page: 439
  year: 2002
  end-page: 454
  ident: bib0023
  article-title: A state space framework for automatic forecasting using exponential smoothing methods
  publication-title: International Journal of Forecasting
– volume: 10
  start-page: 353
  year: 2003
  end-page: 425
  ident: bib0040
  article-title: Monte carlo sampling methods
  publication-title: Handbooks in operations research and management science
– volume: forthcoming
  year: 2018
  ident: bib0006
  article-title: From predictive to prescriptive analytics
  publication-title: Management Science
– year: 2008
  ident: bib0022
  article-title: Forecasting with exponential smoothing: The state space approach
– year: 2009
  ident: bib0004
  article-title: Robust optimization
– volume: 27
  start-page: 635
  year: 2011
  end-page: 660
  ident: bib0013
  article-title: Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction
  publication-title: International Journal of Forecasting
– volume: 67
  start-page: 90
  year: 2018
  end-page: 108
  ident: bib0001
  article-title: The big data newsvendor: practical insights from machine learning
  publication-title: Operations Research
– volume: 44
  start-page: 825
  year: 1993
  end-page: 834
  ident: bib0016
  article-title: The distribution free newsboy problem: review and extensions
  publication-title: The Journal of the Operational Research Society
– start-page: 201
  year: 1958
  end-page: 209
  ident: bib0039
  article-title: A min-max solution of an inventory problem
  publication-title: Studies in the mathematical theory of inventory and production
– volume: 19
  start-page: 299
  year: 2000
  end-page: 311
  ident: bib0043
  article-title: A quantile regression approach to estimating the distribution of multiperiod returns
  publication-title: The Journal of Forecasting
– volume: 29
  start-page: 1189
  year: 2001
  end-page: 1232
  ident: bib0015
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: The Annals of Statistics
– volume: 4
  start-page: 251
  year: 1991
  end-page: 257
  ident: bib0018
  article-title: Approximation capabilities of multilayer feedforward networks
  publication-title: Neural Networks
– volume: 47
  start-page: 1101
  year: 2001
  end-page: 1112
  ident: bib0017
  article-title: An adaptive, distribution-free algorithm for the newsvendor problem with censored demands, with applications to inventory and distribution
  publication-title: Management Science
– year: 2016
  ident: bib0032
  article-title: Applying deep learning to the newsvendor problem
  publication-title: CoRR
– volume: 149
  start-page: 28
  year: 2014
  end-page: 36
  ident: bib0038
  article-title: The data-driven newsvendor with censored demand observations
  publication-title: International Journal of Production Economics
– volume: 37
  start-page: 704
  year: 2007
  end-page: 718
  ident: bib0047
  article-title: Consumer responses to shelf out-of-stocks of perishable products
  publication-title: International Journal of Physical Distribution & Logistics Management
– volume: 26
  start-page: 1
  year: 2008
  end-page: 22
  ident: bib0020
  article-title: Automatic time series forecasting: the forecast package for R
  publication-title: Journal of Statistical Software
– start-page: 3146
  year: 2017
  end-page: 3154
  ident: bib0024
  article-title: LightGBM: A highly efficient gradient boosting decision tree
  publication-title: Advances in Neural Information Processing Systems 30
– volume: 256
  start-page: 454
  year: 2017
  end-page: 461
  ident: bib0035
  article-title: On the calculation of safety stocks when demand is forecasted
  publication-title: European Journal of Operational Research
– year: 2017
  ident: bib0037
  article-title: R: A language and environment for statistical computing
– volume: 12
  start-page: 479
  year: 2002
  end-page: 502
  ident: bib0026
  article-title: The sample average approximation method for stochastic discrete optimization
  publication-title: SIAM Journal on Optimization
– volume: 41
  start-page: 4235
  year: 2014
  end-page: 4244
  ident: bib0028
  article-title: Neural network ensemble operators for time series forecasting
  publication-title: Expert Systems with Applications
– year: 2005
  ident: bib0027
  article-title: Quantile regression
– volume: 178
  start-page: 154
  year: 2007
  end-page: 167
  ident: bib0044
  article-title: Forecasting daily supermarket sales using exponentially weighted quantile regression
  publication-title: European Journal of Operational Research
– volume: 37
  start-page: 1277
  year: 2011
  end-page: 1284
  ident: bib0010
  article-title: Quantile regression neural networks: Implementation in R and application to precipitation downscaling
  publication-title: Computers and Geosciences
– volume: 27
  start-page: 123
  year: 1976
  end-page: 127
  ident: bib0012
  article-title: Sales data and the estimation of demand
  publication-title: Operational Research Quarterly
– volume: 22
  start-page: 679
  year: 2006
  end-page: 688
  ident: bib0021
  article-title: Another look at measures of forecast accuracy
  publication-title: International journal of forecasting
– volume: In Press
  year: 2018
  ident: bib0034
  article-title: A general method for addressing forecasting uncertainty in inventory models
  publication-title: International Journal of Forecasting
– volume: 140
  start-page: 637
  year: 2012
  end-page: 645
  ident: bib0008
  article-title: Safety stock planning under causal demand forecasting
  publication-title: International Journal of Production Economics
– volume: 184
  start-page: 1140
  year: 2008
  end-page: 1154
  ident: bib0011
  article-title: Application of machine learning techniques for supply chain demand forecasting
  publication-title: European Journal of Operational Research
– volume: 92
  start-page: 254
  year: 1996
  end-page: 265
  ident: bib0029
  article-title: Estimating the demand distributions of single-period items having frequent stockouts
  publication-title: European Journal of Operational Research
– volume: 32
  start-page: 821
  year: 2007
  end-page: 839
  ident: bib0031
  article-title: Provably near-optimal sampling-based policies for stochastic inventory control models
  publication-title: Mathematics of Operations Research
– volume: 4
  start-page: 251
  issue: 2
  year: 1991
  ident: 10.1016/j.ejor.2019.04.043_bib0018
  article-title: Approximation capabilities of multilayer feedforward networks
  publication-title: Neural Networks
  doi: 10.1016/0893-6080(91)90009-T
– volume: In Press
  start-page: 1
  year: 2018
  ident: 10.1016/j.ejor.2019.04.043_bib0046
  article-title: Empirical safety stock estimation based on kernel and GARCH models
  publication-title: Omega
– year: 2017
  ident: 10.1016/j.ejor.2019.04.043_bib0041
– volume: 12
  start-page: 479
  issue: 2
  year: 2002
  ident: 10.1016/j.ejor.2019.04.043_bib0026
  article-title: The sample average approximation method for stochastic discrete optimization
  publication-title: SIAM Journal on Optimization
  doi: 10.1137/S1052623499363220
– volume: 29
  start-page: 1189
  issue: 5
  year: 2001
  ident: 10.1016/j.ejor.2019.04.043_bib0015
  article-title: Greedy function approximation: a gradient boosting machine
  publication-title: The Annals of Statistics
  doi: 10.1214/aos/1013203451
– volume: 14
  start-page: 35
  issue: 1
  year: 1998
  ident: 10.1016/j.ejor.2019.04.043_bib0048
  article-title: Forecasting with artificial neural networks: the state of the art
  publication-title: International Journal of Forecasting
  doi: 10.1016/S0169-2070(97)00044-7
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.ejor.2019.04.043_bib0009
  article-title: Random forests
  publication-title: Machine Learning
  doi: 10.1023/A:1010933404324
– volume: 41
  start-page: 4235
  issue: 9
  year: 2014
  ident: 10.1016/j.ejor.2019.04.043_bib0028
  article-title: Neural network ensemble operators for time series forecasting
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2013.12.011
– volume: 67
  start-page: 90
  issue: 1
  year: 2018
  ident: 10.1016/j.ejor.2019.04.043_bib0001
  article-title: The big data newsvendor: practical insights from machine learning
  publication-title: Operations Research
  doi: 10.1287/opre.2018.1757
– volume: 264
  start-page: 967
  issue: 3
  year: 2018
  ident: 10.1016/j.ejor.2019.04.043_bib0003
  article-title: The impact of special days in call arrivals forecasting: a neural network approach to modelling special days
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2016.07.015
– volume: 18
  start-page: 439
  issue: 3
  year: 2002
  ident: 10.1016/j.ejor.2019.04.043_bib0023
  article-title: A state space framework for automatic forecasting using exponential smoothing methods
  publication-title: International Journal of Forecasting
  doi: 10.1016/S0169-2070(01)00110-8
– year: 2009
  ident: 10.1016/j.ejor.2019.04.043_bib0004
– volume: 19
  start-page: 299
  year: 2000
  ident: 10.1016/j.ejor.2019.04.043_bib0043
  article-title: A quantile regression approach to estimating the distribution of multiperiod returns
  publication-title: The Journal of Forecasting
  doi: 10.1002/1099-131X(200007)19:4<299::AID-FOR775>3.0.CO;2-V
– volume: 37
  start-page: 1277
  issue: 9
  year: 2011
  ident: 10.1016/j.ejor.2019.04.043_bib0010
  article-title: Quantile regression neural networks: Implementation in R and application to precipitation downscaling
  publication-title: Computers and Geosciences
  doi: 10.1016/j.cageo.2010.07.005
– volume: 10
  start-page: 353
  year: 2003
  ident: 10.1016/j.ejor.2019.04.043_bib0040
  article-title: Monte carlo sampling methods
  doi: 10.1016/S0927-0507(03)10006-0
– volume: 32
  start-page: 821
  issue: 4
  year: 2007
  ident: 10.1016/j.ejor.2019.04.043_bib0031
  article-title: Provably near-optimal sampling-based policies for stochastic inventory control models
  publication-title: Mathematics of Operations Research
  doi: 10.1287/moor.1070.0272
– year: 2016
  ident: 10.1016/j.ejor.2019.04.043_sbref0032
  article-title: Applying deep learning to the newsvendor problem
  publication-title: CoRR
– volume: 26
  start-page: 1
  issue: 3
  year: 2008
  ident: 10.1016/j.ejor.2019.04.043_bib0020
  article-title: Automatic time series forecasting: the forecast package for R
  publication-title: Journal of Statistical Software
– volume: 42
  start-page: 408
  issue: 1
  year: 2006
  ident: 10.1016/j.ejor.2019.04.043_bib0045
  article-title: A hybrid sales forecasting system based on clustering and decision trees
  publication-title: Decision Support Systems
  doi: 10.1016/j.dss.2005.01.008
– year: 2005
  ident: 10.1016/j.ejor.2019.04.043_bib0027
– volume: 76
  start-page: 140
  year: 2017
  ident: 10.1016/j.ejor.2019.04.043_bib0019
  article-title: Cluster-based hierarchical demand forecasting for perishable goods
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2017.01.022
– volume: 92
  start-page: 254
  issue: 2
  year: 1996
  ident: 10.1016/j.ejor.2019.04.043_bib0029
  article-title: Estimating the demand distributions of single-period items having frequent stockouts
  publication-title: European Journal of Operational Research
  doi: 10.1016/0377-2217(95)00134-4
– volume: 7
  start-page: 1231
  year: 2006
  ident: 10.1016/j.ejor.2019.04.043_bib0042
  article-title: Nonparametric quantile estimation
  publication-title: Journal of Machine Learning Research
– volume: 22
  start-page: 679
  issue: 4
  year: 2006
  ident: 10.1016/j.ejor.2019.04.043_bib0021
  article-title: Another look at measures of forecast accuracy
  publication-title: International journal of forecasting
  doi: 10.1016/j.ijforecast.2006.03.001
– year: 2017
  ident: 10.1016/j.ejor.2019.04.043_bib0037
– volume: 37
  start-page: 704
  issue: 9
  year: 2007
  ident: 10.1016/j.ejor.2019.04.043_bib0047
  article-title: Consumer responses to shelf out-of-stocks of perishable products
  publication-title: International Journal of Physical Distribution & Logistics Management
  doi: 10.1108/09600030710840822
– volume: 27
  start-page: 123
  issue: 1
  year: 1976
  ident: 10.1016/j.ejor.2019.04.043_bib0012
  article-title: Sales data and the estimation of demand
  publication-title: Operational Research Quarterly
  doi: 10.1057/jors.1976.13
– volume: 213
  start-page: 361
  issue: 2
  year: 2011
  ident: 10.1016/j.ejor.2019.04.043_bib0036
  article-title: The newsvendor problem: Review and directions for future research
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2010.11.024
– volume: 44
  start-page: 825
  issue: 8
  year: 1993
  ident: 10.1016/j.ejor.2019.04.043_bib0016
  article-title: The distribution free newsboy problem: review and extensions
  publication-title: The Journal of the Operational Research Society
  doi: 10.1057/jors.1993.141
– start-page: 3146
  year: 2017
  ident: 10.1016/j.ejor.2019.04.043_bib0024
  article-title: LightGBM: A highly efficient gradient boosting decision tree
– volume: 140
  start-page: 637
  issue: 2
  year: 2012
  ident: 10.1016/j.ejor.2019.04.043_bib0008
  article-title: Safety stock planning under causal demand forecasting
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2011.04.017
– volume: 54
  start-page: 150
  issue: 1
  year: 2006
  ident: 10.1016/j.ejor.2019.04.043_bib0007
  article-title: A robust optimization approach to inventory theory
  publication-title: Operations Research
  doi: 10.1287/opre.1050.0238
– volume: 47
  start-page: 1101
  issue: 8
  year: 2001
  ident: 10.1016/j.ejor.2019.04.043_bib0017
  article-title: An adaptive, distribution-free algorithm for the newsvendor problem with censored demands, with applications to inventory and distribution
  publication-title: Management Science
  doi: 10.1287/mnsc.47.8.1101.10231
– year: 2015
  ident: 10.1016/j.ejor.2019.04.043_sbref0025
  article-title: Adam: A method for stochastic optimization
– volume: 256
  start-page: 454
  issue: 2
  year: 2017
  ident: 10.1016/j.ejor.2019.04.043_bib0035
  article-title: On the calculation of safety stocks when demand is forecasted
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2016.06.035
– volume: 178
  start-page: 154
  issue: 1
  year: 2007
  ident: 10.1016/j.ejor.2019.04.043_bib0044
  article-title: Forecasting daily supermarket sales using exponentially weighted quantile regression
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.02.006
– volume: 184
  start-page: 1140
  issue: 3
  year: 2008
  ident: 10.1016/j.ejor.2019.04.043_bib0011
  article-title: Application of machine learning techniques for supply chain demand forecasting
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.12.004
– volume: 27
  start-page: 635
  issue: 3
  year: 2011
  ident: 10.1016/j.ejor.2019.04.043_bib0013
  article-title: Advances in forecasting with neural networks? Empirical evidence from the NN3 competition on time series prediction
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2011.04.001
– volume: 13
  start-page: 281
  year: 2012
  ident: 10.1016/j.ejor.2019.04.043_bib0005
  article-title: Random search for hyper-parameter optimization
  publication-title: Journal of Machine Learning Research
– volume: In Press
  year: 2018
  ident: 10.1016/j.ejor.2019.04.043_bib0034
  article-title: A general method for addressing forecasting uncertainty in inventory models
  publication-title: International Journal of Forecasting
– year: 2008
  ident: 10.1016/j.ejor.2019.04.043_bib0022
– volume: 10634
  start-page: 912
  year: 2017
  ident: 10.1016/j.ejor.2019.04.043_bib0049
  article-title: Assessing the performance of deep learning algorithms for newsvendor problem
– year: 2010
  ident: 10.1016/j.ejor.2019.04.043_sbref0002
  article-title: An evaluation of neural network ensembles and model selection for time series prediction
– start-page: 232
  year: 2009
  ident: 10.1016/j.ejor.2019.04.043_sbref0014
  article-title: Forecasting seasonal time series with multilayer perceptrons-an empirical evaluation of input vector specifications for deterministic seasonality
– volume: forthcoming
  year: 2018
  ident: 10.1016/j.ejor.2019.04.043_bib0006
  article-title: From predictive to prescriptive analytics
  publication-title: Management Science
– volume: 63
  start-page: 1294
  issue: 6
  year: 2015
  ident: 10.1016/j.ejor.2019.04.043_bib0030
  article-title: The data-driven newsvendor problem: new bounds and insights
  publication-title: Operations Research
  doi: 10.1287/opre.2015.1422
– volume: 56
  start-page: 188
  issue: 1
  year: 2008
  ident: 10.1016/j.ejor.2019.04.043_bib0033
  article-title: Regret in the newsvendor model with partial information
  publication-title: Operations Research
  doi: 10.1287/opre.1070.0486
– volume: 149
  start-page: 28
  year: 2014
  ident: 10.1016/j.ejor.2019.04.043_bib0038
  article-title: The data-driven newsvendor with censored demand observations
  publication-title: International Journal of Production Economics
  doi: 10.1016/j.ijpe.2013.04.039
– start-page: 201
  year: 1958
  ident: 10.1016/j.ejor.2019.04.043_bib0039
  article-title: A min-max solution of an inventory problem
SSID ssj0001515
Score 2.59156
Snippet •We identify and conceptualize three levels of data-driven inventory management.•We investigate the impact of the levels on the performance in a newsvendor...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 904
SubjectTerms Inventory
Machine learning
Newsvendor
Quantile regression
Retail
Title A data-driven newsvendor problem: From data to decision
URI https://dx.doi.org/10.1016/j.ejor.2019.04.043
Volume 278
WOSCitedRecordID wos000472690900014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: AIEXJ
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fb9MwELZKhxA8DCggxgD5gbfKk_Ojsc1bmTbBBBPSBupblDiOaLclUwjTxN_CH8tdbKfRBhMgIVVp5dpt6vt6Pp_vuyPkFaBEFxjzJDjXLNZBwqTRETOa55nQSRF0If-f34vDQ7lYqI-j0Q_Phbk4FVUlLy_V-X8VNbSBsJE6-xfi7j8UGuA1CB2uIHa4_pHg51OM-mRFg3qsqxgOz0XdTF3tGPQB7COpBLuh6Vm4Mju_ddI7gxUaGu86dDmCvqxRkVvZH2Qndd5LEY_h3-x6tuGRgTWzHeARQLOE3fWZK9T8oW6W7ffe59NiyEeF7y-L1i6RyFQc-ikC5Qh7vfPsGoHGkraEYGFo6Zs7xupgKUKWSFtmwCvpUMgBGqOBylW2fLFbvZUlh15bGKyPYrVjVjVmgQ1Ul-DWZoi6knD7CG8K7wlsW475-G-RjVDMlByTjfm7vcVBv9KjMdidUrkf4UhZNn7w6jf92vAZGDPHD8im24XQuUXPQzIy1YTc8SSICbnvi31Qp_sn5N4gc-UjIuZ0gDK6Rhl1KHtNEWNdJ9rW1GPsMfm0v3e8-5a5GhxMR8msZaKMuVG5jLUUZWaELMMS80kUEbSDcZmFKocdcB5kmUi4lhFXuZCFgX2wiBQ30RMyrurKPCVUaq7LRCUmidETgifscRzmoYFNtY4js0UCP0GpdgnqsU7KaeojEVcpTmqKk5ryGB7RFpn2Y85tepYbe8_8vKfOwLSGYwowuWHcs38ct03urv8Jz8m4bb6ZF-S2vmiXX5uXDk0_AUMRnfw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data-driven+newsvendor+problem%3A+From+data+to+decision&rft.jtitle=European+journal+of+operational+research&rft.au=Huber%2C+Jakob&rft.au=M%C3%BCller%2C+Sebastian&rft.au=Fleischmann%2C+Moritz&rft.au=Stuckenschmidt%2C+Heiner&rft.date=2019-11-01&rft.pub=Elsevier+B.V&rft.issn=0377-2217&rft.eissn=1872-6860&rft.volume=278&rft.issue=3&rft.spage=904&rft.epage=915&rft_id=info:doi/10.1016%2Fj.ejor.2019.04.043&rft.externalDocID=S0377221719303807
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon