An Approximate Algorithm for Sparse Distributionally Robust Optimization
In this paper, we propose a sparse distributionally robust optimization (DRO) model incorporating the Conditional Value-at-Risk (CVaR) measure to control tail risks in uncertain environments. The model utilizes sparsity to reduce transaction costs and enhance operational efficiency. We reformulate t...
Uloženo v:
| Vydáno v: | Information (Basel) Ročník 16; číslo 8; s. 676 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.08.2025
|
| Témata: | |
| ISSN: | 2078-2489, 2078-2489 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | In this paper, we propose a sparse distributionally robust optimization (DRO) model incorporating the Conditional Value-at-Risk (CVaR) measure to control tail risks in uncertain environments. The model utilizes sparsity to reduce transaction costs and enhance operational efficiency. We reformulate the problem as a Min-Max-Min optimization and convert it into an equivalent non-smooth minimization problem. To address this computational challenge, we develop an approximate discretization (AD) scheme for the underlying continuous random vector and prove its convergence to the original non-smooth formulation under mild conditions. The resulting problem can be efficiently solved using a subgradient method. While our analysis focuses on CVaR penalty, this approach is applicable to a broader class of non-smooth convex regularizers. The experimental results on the portfolio selection problem confirm the effectiveness and scalability of the proposed AD algorithm. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2078-2489 2078-2489 |
| DOI: | 10.3390/info16080676 |