Maximizing Gathered Samples in Wireless Sensor Networks with Slepian-Wolf Coding

We consider an energy constrained wireless sensor network, with arbitrary number of nodes, where source nodes utilize Slepian-Wolf (SW) coding before transmission to a joint decoder. We investigate optimal and near-optimal SW coding rates, transmit powers, and transmit durations that maximize the nu...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on wireless communications Vol. 11; no. 2; pp. 751 - 761
Main Authors: Tianqi Wang, Vosoughi, A., Heinzelman, W., Seyedi, A.
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.02.2012
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:1536-1276, 1558-2248
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider an energy constrained wireless sensor network, with arbitrary number of nodes, where source nodes utilize Slepian-Wolf (SW) coding before transmission to a joint decoder. We investigate optimal and near-optimal SW coding rates, transmit powers, and transmit durations that maximize the number of collected samples during the network lifetime, subject to channel capacity, SW rate region, and residual energy constraints. We find optimal (near-optimal) closed-form solutions in the absence (presence) of an energy constraint at the joint decoder. We take into account the energy consumption of SW encoding and decoding and communication circuitry. Numerical results demonstrate the effectiveness of the proposed optimization, especially when the joint decoder is not energy constrained.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1536-1276
1558-2248
DOI:10.1109/TWC.2011.122211.110417