Clinical Prediction Model and Tool for Assessing Risk of Persistent Pain After Breast Cancer Surgery

Purpose Persistent pain after breast cancer surgery is a well-recognized problem, with moderate to severe pain affecting 15% to 20% of women at 1 year from surgery. Several risk factors for persistent pain have been recognized, but tools to identify high-risk patients and preventive interventions ar...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of clinical oncology Ročník 35; číslo 15; s. 1660
Hlavní autori: Meretoja, Tuomo J, Andersen, Kenneth Geving, Bruce, Julie, Haasio, Lassi, Sipilä, Reetta, Scott, Neil W, Ripatti, Samuli, Kehlet, Henrik, Kalso, Eija
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States 20.05.2017
Predmet:
ISSN:1527-7755, 1527-7755
On-line prístup:Zistit podrobnosti o prístupe
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Purpose Persistent pain after breast cancer surgery is a well-recognized problem, with moderate to severe pain affecting 15% to 20% of women at 1 year from surgery. Several risk factors for persistent pain have been recognized, but tools to identify high-risk patients and preventive interventions are missing. The aim was to develop a clinically applicable risk prediction tool. Methods The prediction models were developed and tested using three prospective data sets from Finland (n = 860), Denmark (n = 453), and Scotland (n = 231). Prediction models for persistent pain of moderate to severe intensity at 1 year postoperatively were developed by logistic regression analyses in the Finnish patient cohort. The models were tested in two independent cohorts from Denmark and Scotland by assessing the areas under the receiver operating characteristics curves (ROC-AUCs). The outcome variable was moderate to severe persistent pain at 1 year from surgery in the Finnish and Danish cohorts and at 9 months in the Scottish cohort. Results Moderate to severe persistent pain occurred in 13.5%, 13.9%, and 20.3% of the patients in the three studies, respectively. Preoperative pain in the operative area ( P < .001), high body mass index ( P = .039), axillary lymph node dissection ( P = .008), and more severe acute postoperative pain intensity at the seventh postoperative day ( P = .003) predicted persistent pain in the final prediction model, which performed well in the Danish (ROC-AUC, 0.739) and Scottish (ROC-AUC, 0.740) cohorts. At the 20% risk level, the model had 32.8% and 47.4% sensitivity and 94.4% and 82.4% specificity in the Danish and Scottish cohorts, respectively. Conclusion Our validated prediction models and an online risk calculator provide clinicians and researchers with a simple tool to screen for patients at high risk of developing persistent pain after breast cancer surgery.
AbstractList Purpose Persistent pain after breast cancer surgery is a well-recognized problem, with moderate to severe pain affecting 15% to 20% of women at 1 year from surgery. Several risk factors for persistent pain have been recognized, but tools to identify high-risk patients and preventive interventions are missing. The aim was to develop a clinically applicable risk prediction tool. Methods The prediction models were developed and tested using three prospective data sets from Finland (n = 860), Denmark (n = 453), and Scotland (n = 231). Prediction models for persistent pain of moderate to severe intensity at 1 year postoperatively were developed by logistic regression analyses in the Finnish patient cohort. The models were tested in two independent cohorts from Denmark and Scotland by assessing the areas under the receiver operating characteristics curves (ROC-AUCs). The outcome variable was moderate to severe persistent pain at 1 year from surgery in the Finnish and Danish cohorts and at 9 months in the Scottish cohort. Results Moderate to severe persistent pain occurred in 13.5%, 13.9%, and 20.3% of the patients in the three studies, respectively. Preoperative pain in the operative area ( P < .001), high body mass index ( P = .039), axillary lymph node dissection ( P = .008), and more severe acute postoperative pain intensity at the seventh postoperative day ( P = .003) predicted persistent pain in the final prediction model, which performed well in the Danish (ROC-AUC, 0.739) and Scottish (ROC-AUC, 0.740) cohorts. At the 20% risk level, the model had 32.8% and 47.4% sensitivity and 94.4% and 82.4% specificity in the Danish and Scottish cohorts, respectively. Conclusion Our validated prediction models and an online risk calculator provide clinicians and researchers with a simple tool to screen for patients at high risk of developing persistent pain after breast cancer surgery.
Purpose Persistent pain after breast cancer surgery is a well-recognized problem, with moderate to severe pain affecting 15% to 20% of women at 1 year from surgery. Several risk factors for persistent pain have been recognized, but tools to identify high-risk patients and preventive interventions are missing. The aim was to develop a clinically applicable risk prediction tool. Methods The prediction models were developed and tested using three prospective data sets from Finland (n = 860), Denmark (n = 453), and Scotland (n = 231). Prediction models for persistent pain of moderate to severe intensity at 1 year postoperatively were developed by logistic regression analyses in the Finnish patient cohort. The models were tested in two independent cohorts from Denmark and Scotland by assessing the areas under the receiver operating characteristics curves (ROC-AUCs). The outcome variable was moderate to severe persistent pain at 1 year from surgery in the Finnish and Danish cohorts and at 9 months in the Scottish cohort. Results Moderate to severe persistent pain occurred in 13.5%, 13.9%, and 20.3% of the patients in the three studies, respectively. Preoperative pain in the operative area ( P < .001), high body mass index ( P = .039), axillary lymph node dissection ( P = .008), and more severe acute postoperative pain intensity at the seventh postoperative day ( P = .003) predicted persistent pain in the final prediction model, which performed well in the Danish (ROC-AUC, 0.739) and Scottish (ROC-AUC, 0.740) cohorts. At the 20% risk level, the model had 32.8% and 47.4% sensitivity and 94.4% and 82.4% specificity in the Danish and Scottish cohorts, respectively. Conclusion Our validated prediction models and an online risk calculator provide clinicians and researchers with a simple tool to screen for patients at high risk of developing persistent pain after breast cancer surgery.Purpose Persistent pain after breast cancer surgery is a well-recognized problem, with moderate to severe pain affecting 15% to 20% of women at 1 year from surgery. Several risk factors for persistent pain have been recognized, but tools to identify high-risk patients and preventive interventions are missing. The aim was to develop a clinically applicable risk prediction tool. Methods The prediction models were developed and tested using three prospective data sets from Finland (n = 860), Denmark (n = 453), and Scotland (n = 231). Prediction models for persistent pain of moderate to severe intensity at 1 year postoperatively were developed by logistic regression analyses in the Finnish patient cohort. The models were tested in two independent cohorts from Denmark and Scotland by assessing the areas under the receiver operating characteristics curves (ROC-AUCs). The outcome variable was moderate to severe persistent pain at 1 year from surgery in the Finnish and Danish cohorts and at 9 months in the Scottish cohort. Results Moderate to severe persistent pain occurred in 13.5%, 13.9%, and 20.3% of the patients in the three studies, respectively. Preoperative pain in the operative area ( P < .001), high body mass index ( P = .039), axillary lymph node dissection ( P = .008), and more severe acute postoperative pain intensity at the seventh postoperative day ( P = .003) predicted persistent pain in the final prediction model, which performed well in the Danish (ROC-AUC, 0.739) and Scottish (ROC-AUC, 0.740) cohorts. At the 20% risk level, the model had 32.8% and 47.4% sensitivity and 94.4% and 82.4% specificity in the Danish and Scottish cohorts, respectively. Conclusion Our validated prediction models and an online risk calculator provide clinicians and researchers with a simple tool to screen for patients at high risk of developing persistent pain after breast cancer surgery.
Author Haasio, Lassi
Scott, Neil W
Andersen, Kenneth Geving
Kalso, Eija
Meretoja, Tuomo J
Bruce, Julie
Sipilä, Reetta
Ripatti, Samuli
Kehlet, Henrik
Author_xml – sequence: 1
  givenname: Tuomo J
  surname: Meretoja
  fullname: Meretoja, Tuomo J
  organization: Tuomo J. Meretoja, Lassi Haasio, Reetta Sipilä, and Eija Kalso, Helsinki University Hospital; Tuomo J. Meretoja, Lassi Haasio, Reetta Sipilä, Samuli Ripatti, and Eija Kalso, University of Helsinki, Helsinki, Finland; Kenneth Geving Andersen and Henrik Kehlet, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Julie Bruce, University of Warwick, Coventry; and Neil W. Scott, University of Aberdeen, Aberdeen, United Kingdom
– sequence: 2
  givenname: Kenneth Geving
  surname: Andersen
  fullname: Andersen, Kenneth Geving
  organization: Tuomo J. Meretoja, Lassi Haasio, Reetta Sipilä, and Eija Kalso, Helsinki University Hospital; Tuomo J. Meretoja, Lassi Haasio, Reetta Sipilä, Samuli Ripatti, and Eija Kalso, University of Helsinki, Helsinki, Finland; Kenneth Geving Andersen and Henrik Kehlet, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Julie Bruce, University of Warwick, Coventry; and Neil W. Scott, University of Aberdeen, Aberdeen, United Kingdom
– sequence: 3
  givenname: Julie
  surname: Bruce
  fullname: Bruce, Julie
  organization: Tuomo J. Meretoja, Lassi Haasio, Reetta Sipilä, and Eija Kalso, Helsinki University Hospital; Tuomo J. Meretoja, Lassi Haasio, Reetta Sipilä, Samuli Ripatti, and Eija Kalso, University of Helsinki, Helsinki, Finland; Kenneth Geving Andersen and Henrik Kehlet, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Julie Bruce, University of Warwick, Coventry; and Neil W. Scott, University of Aberdeen, Aberdeen, United Kingdom
– sequence: 4
  givenname: Lassi
  surname: Haasio
  fullname: Haasio, Lassi
  organization: Tuomo J. Meretoja, Lassi Haasio, Reetta Sipilä, and Eija Kalso, Helsinki University Hospital; Tuomo J. Meretoja, Lassi Haasio, Reetta Sipilä, Samuli Ripatti, and Eija Kalso, University of Helsinki, Helsinki, Finland; Kenneth Geving Andersen and Henrik Kehlet, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Julie Bruce, University of Warwick, Coventry; and Neil W. Scott, University of Aberdeen, Aberdeen, United Kingdom
– sequence: 5
  givenname: Reetta
  surname: Sipilä
  fullname: Sipilä, Reetta
  organization: Tuomo J. Meretoja, Lassi Haasio, Reetta Sipilä, and Eija Kalso, Helsinki University Hospital; Tuomo J. Meretoja, Lassi Haasio, Reetta Sipilä, Samuli Ripatti, and Eija Kalso, University of Helsinki, Helsinki, Finland; Kenneth Geving Andersen and Henrik Kehlet, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Julie Bruce, University of Warwick, Coventry; and Neil W. Scott, University of Aberdeen, Aberdeen, United Kingdom
– sequence: 6
  givenname: Neil W
  surname: Scott
  fullname: Scott, Neil W
  organization: Tuomo J. Meretoja, Lassi Haasio, Reetta Sipilä, and Eija Kalso, Helsinki University Hospital; Tuomo J. Meretoja, Lassi Haasio, Reetta Sipilä, Samuli Ripatti, and Eija Kalso, University of Helsinki, Helsinki, Finland; Kenneth Geving Andersen and Henrik Kehlet, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Julie Bruce, University of Warwick, Coventry; and Neil W. Scott, University of Aberdeen, Aberdeen, United Kingdom
– sequence: 7
  givenname: Samuli
  surname: Ripatti
  fullname: Ripatti, Samuli
  organization: Tuomo J. Meretoja, Lassi Haasio, Reetta Sipilä, and Eija Kalso, Helsinki University Hospital; Tuomo J. Meretoja, Lassi Haasio, Reetta Sipilä, Samuli Ripatti, and Eija Kalso, University of Helsinki, Helsinki, Finland; Kenneth Geving Andersen and Henrik Kehlet, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Julie Bruce, University of Warwick, Coventry; and Neil W. Scott, University of Aberdeen, Aberdeen, United Kingdom
– sequence: 8
  givenname: Henrik
  surname: Kehlet
  fullname: Kehlet, Henrik
  organization: Tuomo J. Meretoja, Lassi Haasio, Reetta Sipilä, and Eija Kalso, Helsinki University Hospital; Tuomo J. Meretoja, Lassi Haasio, Reetta Sipilä, Samuli Ripatti, and Eija Kalso, University of Helsinki, Helsinki, Finland; Kenneth Geving Andersen and Henrik Kehlet, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Julie Bruce, University of Warwick, Coventry; and Neil W. Scott, University of Aberdeen, Aberdeen, United Kingdom
– sequence: 9
  givenname: Eija
  surname: Kalso
  fullname: Kalso, Eija
  organization: Tuomo J. Meretoja, Lassi Haasio, Reetta Sipilä, and Eija Kalso, Helsinki University Hospital; Tuomo J. Meretoja, Lassi Haasio, Reetta Sipilä, Samuli Ripatti, and Eija Kalso, University of Helsinki, Helsinki, Finland; Kenneth Geving Andersen and Henrik Kehlet, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark; Julie Bruce, University of Warwick, Coventry; and Neil W. Scott, University of Aberdeen, Aberdeen, United Kingdom
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28524782$$D View this record in MEDLINE/PubMed
BookMark eNpNkD1PwzAYhC1URGlhZ0IeWVJe27GdjCXiU0WtoMyR7TiVIbWLnQz991SiSEx3p3t0w03QyAdvEboiMCMU4PalWs4oEDGTMGM5YSfonHAqMyk5H_3zYzRJ6ROA5AXjZ2hMC05zWdBz1FSd886oDq-ibZzpXfD4NTS2w8o3eB1Ch9sQ8Twlm5LzG_zm0hcOLV7ZmFzqre_xSjmP521vI76LVqUeV8qbQ3of4sbG_QU6bVWX7OVRp-jj4X5dPWWL5eNzNV9khgneZ7nRErgoWuDAWkOI0UCV5FofCsEgN6C1ppywkggoylxyaAUVljOh89LSKbr53d3F8D3Y1Ndbl4ztOuVtGFJNSoCCibKUB_T6iA56a5t6F91WxX399wz9AUlQZjc
CitedBy_id crossref_primary_10_1007_s00482_020_00525_2
crossref_primary_10_3389_fonc_2023_1096468
crossref_primary_10_1097_PR9_0000000000000627
crossref_primary_10_2147_JPR_S368295
crossref_primary_10_1002_jso_25395
crossref_primary_10_3390_cancers13164147
crossref_primary_10_1080_03007995_2018_1449738
crossref_primary_10_1097_j_pain_0000000000001398
crossref_primary_10_1097_EJA_0000000000001116
crossref_primary_10_1016_j_archoralbio_2021_105336
crossref_primary_10_1245_s10434_020_09479_2
crossref_primary_10_2217_pmt_2019_0039
crossref_primary_10_7759_cureus_47384
crossref_primary_10_1213_ANE_0000000000005713
crossref_primary_10_1111_anae_15440
crossref_primary_10_1097_j_pain_0000000000002361
crossref_primary_10_1177_20101058211006419
crossref_primary_10_1111_anae_16011
crossref_primary_10_3390_jcm10092000
crossref_primary_10_1371_journal_pone_0268606
crossref_primary_10_2217_pmt_2018_0031
crossref_primary_10_1001_jamanetworkopen_2019_0168
crossref_primary_10_1007_s00540_018_2570_0
crossref_primary_10_1097_PR9_0000000000000976
crossref_primary_10_1002_cam4_3129
crossref_primary_10_1136_bmjmed_2024_001143
crossref_primary_10_1111_anae_15958
crossref_primary_10_1097_j_pain_0000000000001945
crossref_primary_10_1093_pm_pnaa363
crossref_primary_10_1097_AJP_0000000000000729
crossref_primary_10_1016_j_bja_2018_06_007
crossref_primary_10_1097_j_pain_0000000000003405
crossref_primary_10_3390_jcm9123831
crossref_primary_10_1093_bja_aex202
crossref_primary_10_1016_j_jtos_2020_10_004
crossref_primary_10_1007_s00482_018_0332_4
crossref_primary_10_1097_AJP_0000000000000575
crossref_primary_10_1007_s40265_022_01675_6
crossref_primary_10_1515_sjpain_2020_0013
crossref_primary_10_1080_00207454_2020_1835899
crossref_primary_10_1097_j_pain_0000000000001616
crossref_primary_10_1016_j_ijsu_2022_106937
crossref_primary_10_1016_j_jmpt_2019_03_016
crossref_primary_10_1097_SLA_0000000000006344
crossref_primary_10_1136_bmj_2021_066542
crossref_primary_10_1016_j_bja_2022_06_010
crossref_primary_10_1007_s15015_017_3624_0
crossref_primary_10_1016_S0140_6736_19_30352_6
crossref_primary_10_1515_sjpain_2023_0072
crossref_primary_10_1097_j_pain_0000000000002261
crossref_primary_10_1007_s11764_024_01567_6
crossref_primary_10_1177_07488068221116529
crossref_primary_10_2147_JPR_S415714
crossref_primary_10_1016_j_jpain_2018_11_004
crossref_primary_10_3390_life11101026
crossref_primary_10_1016_j_bjae_2021_11_008
crossref_primary_10_3389_fsurg_2022_1068321
crossref_primary_10_3390_jcm10091887
crossref_primary_10_1016_j_jpain_2019_08_008
crossref_primary_10_1093_ptj_pzz096
crossref_primary_10_5604_01_3001_0055_2350
crossref_primary_10_1093_pm_pnz049
crossref_primary_10_1089_jwh_2024_0701
crossref_primary_10_2147_JPR_S237435
crossref_primary_10_1016_j_jpain_2022_07_012
crossref_primary_10_1016_j_bja_2022_09_026
crossref_primary_10_1016_j_bja_2018_05_070
crossref_primary_10_1097_ACO_0000000000001299
crossref_primary_10_1097_PRS_0000000000004636
crossref_primary_10_1136_rapm_2018_000040
crossref_primary_10_7326_M22_0844
crossref_primary_10_1016_j_jpain_2018_06_002
crossref_primary_10_1136_bmjopen_2017_019078
crossref_primary_10_1155_prm_1331412
crossref_primary_10_1007_s10549_019_05461_z
crossref_primary_10_1097_SPC_0000000000000341
ContentType Journal Article
DBID CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1200/JCO.2016.70.3413
DatabaseName Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod no_fulltext_linktorsrc
Discipline Medicine
Pharmacy, Therapeutics, & Pharmacology
EISSN 1527-7755
ExternalDocumentID 28524782
Genre Journal Article
GrantInformation_xml – fundername: Chief Scientist Office
  grantid: CZG/2/488
GroupedDBID ---
.55
0R~
18M
2WC
34G
39C
4.4
53G
5GY
5RE
8F7
AARDX
AAWTL
AAYEP
ABBLC
ABJNI
ABOCM
ACGFO
ACGFS
ACGUR
ADBBV
AEGXH
AENEX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
BAWUL
BYPQX
C45
CGR
CS3
CUY
CVF
DIK
EBS
ECM
EIF
EJD
F5P
F9R
FBNNL
FD8
GX1
H13
HZ~
IH2
K-O
KQ8
L7B
LSO
MJL
N9A
NPM
O9-
OK1
OVD
OWW
P2P
QTD
R1G
RHI
RLZ
RUC
SJN
TEORI
TR2
TWZ
UDS
VVN
WH7
X7M
YFH
YQY
7X8
ID FETCH-LOGICAL-c365t-4cb70568f0503fc11cb02a75bbcb76304c0bbb25139160894750f626e536b49e2
IEDL.DBID 7X8
ISICitedReferencesCount 85
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000402725500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1527-7755
IngestDate Tue Aug 05 11:01:19 EDT 2025
Mon Jul 21 05:50:25 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 15
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c365t-4cb70568f0503fc11cb02a75bbcb76304c0bbb25139160894750f626e536b49e2
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 28524782
PQID 1900836997
PQPubID 23479
ParticipantIDs proquest_miscellaneous_1900836997
pubmed_primary_28524782
PublicationCentury 2000
PublicationDate 2017-05-20
PublicationDateYYYYMMDD 2017-05-20
PublicationDate_xml – month: 05
  year: 2017
  text: 2017-05-20
  day: 20
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Journal of clinical oncology
PublicationTitleAlternate J Clin Oncol
PublicationYear 2017
SSID ssj0014835
Score 2.5133848
Snippet Purpose Persistent pain after breast cancer surgery is a well-recognized problem, with moderate to severe pain affecting 15% to 20% of women at 1 year from...
SourceID proquest
pubmed
SourceType Aggregation Database
Index Database
StartPage 1660
SubjectTerms Breast Neoplasms - pathology
Breast Neoplasms - surgery
Cancer Pain - etiology
Cohort Studies
Female
Humans
Logistic Models
Middle Aged
Models, Statistical
Pain, Postoperative - etiology
Predictive Value of Tests
Risk Assessment
ROC Curve
Title Clinical Prediction Model and Tool for Assessing Risk of Persistent Pain After Breast Cancer Surgery
URI https://www.ncbi.nlm.nih.gov/pubmed/28524782
https://www.proquest.com/docview/1900836997
Volume 35
WOSCitedRecordID wos000402725500006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText
inHoldings 1
isFullTextHit
isPrint
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF7Uinjx_agvRhBPxuaxm82eRItFxNagFXor2SQLxZLUpgr9984kkZ4EwUsuYUnYnZ35dmfm-xi78LQ0iVKJ5RrNLS4S21KJFAjk0sizteMLUzYKP8leLxgMVFhfuBV1WeWPTywddZLHdEfewsBFRMpKyZvJh0WqUZRdrSU0llnDQyhDG1MOFlkEHpQCm6Tcih8Xok5TomG0HtvPVNflX0s8tnISN_gNYJaBprP531_cYhs1xITbyia22VKa7bC1bp1E32GXYUVXPb-C_qL7qriCSwgXRNbzXZbUpKFjCKc0mtYQSDxtDFGWQD_Px4CYF6rEMcZAeBkV75AboLp6sp9sBmE0yuCWlMjhjgrgZ9AmQ5vCa9WQvcfeOvf99oNVqzJYseeLmcVjLRE1BYaYZEzsOLG23UgKrfGF79k8trXWCJuopdcOFEdMYvDYlArP11yl7j5byfIsPWTgR6kQJtJGOorj0U8jGOI6SKLA4TECmyY7_5noIVo9pTKiLM0_i-FiqpvsoFqt4aSi5xi6gXA5Ap-jP4w-ZusuxWlboLs4YQ2Dez49Zavx12xUTM9Kc8JnL-x-Awl9050
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Clinical+Prediction+Model+and+Tool+for+Assessing+Risk+of+Persistent+Pain+After+Breast+Cancer+Surgery&rft.jtitle=Journal+of+clinical+oncology&rft.au=Meretoja%2C+Tuomo+J&rft.au=Andersen%2C+Kenneth+Geving&rft.au=Bruce%2C+Julie&rft.au=Haasio%2C+Lassi&rft.date=2017-05-20&rft.eissn=1527-7755&rft.volume=35&rft.issue=15&rft.spage=1660&rft_id=info:doi/10.1200%2FJCO.2016.70.3413&rft_id=info%3Apmid%2F28524782&rft_id=info%3Apmid%2F28524782&rft.externalDocID=28524782
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1527-7755&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1527-7755&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1527-7755&client=summon