Communication scheduling in data gathering networks of heterogeneous sensors with data compression: Algorithms and empirical experiments
•Investigated a communication scheduling problem to address data compression and data communication together.•Proposed a pseudo-polynomial time exact algorithm based on dynamic programming.•Proposed a fully polynomial time approximation scheme.•Extensive numerical experiments conducted to examine th...
Gespeichert in:
| Veröffentlicht in: | European journal of operational research Jg. 271; H. 2; S. 462 - 473 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.12.2018
|
| Schlagworte: | |
| ISSN: | 0377-2217, 1872-6860 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Investigated a communication scheduling problem to address data compression and data communication together.•Proposed a pseudo-polynomial time exact algorithm based on dynamic programming.•Proposed a fully polynomial time approximation scheme.•Extensive numerical experiments conducted to examine the practical performance of the algorithms.
We consider a communication scheduling problem to address data compression and data communication together, arising from the data gathering wireless sensor networks with data compression. In the problem, the deployed sensors are heterogeneous, in that the data compression ratios, in terms of size reduction, the compression time, and the compression costs, in terms of energy consumption, on different sensors are different. The bi-objective is to minimize the total compression cost and to minimize the total time to transfer all the data to the base station. The problem reduces to two mono-objective optimization problems in two separate ways: in the original problem a time bound is given and the mono-objective is to minimize the total compression cost, and in the complementary problem a global compression budget is given and the mono-objective is to minimize the makespan. We present a unified exact algorithm for both of them based on dynamic programming; this exact algorithm is then developed into a fully polynomial time approximation scheme for the complementary problem, and a dual fully polynomial time approximation scheme for the original problem. All these approximation algorithms have been implemented and extensive computational experiments show that they run fast and return the optimal solutions almost all the time. |
|---|---|
| AbstractList | •Investigated a communication scheduling problem to address data compression and data communication together.•Proposed a pseudo-polynomial time exact algorithm based on dynamic programming.•Proposed a fully polynomial time approximation scheme.•Extensive numerical experiments conducted to examine the practical performance of the algorithms.
We consider a communication scheduling problem to address data compression and data communication together, arising from the data gathering wireless sensor networks with data compression. In the problem, the deployed sensors are heterogeneous, in that the data compression ratios, in terms of size reduction, the compression time, and the compression costs, in terms of energy consumption, on different sensors are different. The bi-objective is to minimize the total compression cost and to minimize the total time to transfer all the data to the base station. The problem reduces to two mono-objective optimization problems in two separate ways: in the original problem a time bound is given and the mono-objective is to minimize the total compression cost, and in the complementary problem a global compression budget is given and the mono-objective is to minimize the makespan. We present a unified exact algorithm for both of them based on dynamic programming; this exact algorithm is then developed into a fully polynomial time approximation scheme for the complementary problem, and a dual fully polynomial time approximation scheme for the original problem. All these approximation algorithms have been implemented and extensive computational experiments show that they run fast and return the optimal solutions almost all the time. |
| Author | Lin, Guohui Gu, Boyuan Luo, Wenchang |
| Author_xml | – sequence: 1 givenname: Wenchang surname: Luo fullname: Luo, Wenchang email: wenchang@ualberta.ca organization: Faculty of Science, Ningbo University, Ningbo, Zhejiang 315211, China – sequence: 2 givenname: Boyuan surname: Gu fullname: Gu, Boyuan email: bgu1@ualberta.ca organization: Department of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada – sequence: 3 givenname: Guohui orcidid: 0000-0003-4283-3396 surname: Lin fullname: Lin, Guohui email: guohui@ualberta.ca organization: Department of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada |
| BookMark | eNp9kE1OwzAQRi1UJNrCBVj5Agm2EycpYlNV_EmV2MDacpxx45DYle1SuAHHJqWsWHQ10ozeNzNvhibWWUDompKUElrcdCl0zqeM0ColPCV5eYamtCpZUlQFmaApycoyYYyWF2gWQkcIoZzyKfpeuWHYWaNkNM7ioFpodr2xG2wsbmSUeCNjC_7QsRD3zr8H7DRuIYJ3G7DgdgEHsMH5gPcmtkdKuWHrIYQx9BYv-43z42gIWNoGw7A1ftzYY_jcjtED2Bgu0bmWfYCrvzpHbw_3r6unZP3y-LxarhOVFTwm-SJblJpnFSlBN0TpktVMV42uWKbzgnKeU6iKGuqc83pRS73IGc-41IRCoZpsjtgxV3kXggcttuMF0n8JSsTBpejEwaU4uBSEi9HlCFX_IGXir7HopelPo3dHFManPgx4EZQBq6AxHlQUjTOn8B9k5Zby |
| CitedBy_id | crossref_primary_10_3390_s18113806 crossref_primary_10_3390_s23042300 crossref_primary_10_1155_2022_3948221 crossref_primary_10_1016_j_cie_2022_108467 crossref_primary_10_11627_jksie_2024_47_2_048 crossref_primary_10_1007_s10479_023_05522_z crossref_primary_10_1080_01605682_2021_1886616 crossref_primary_10_1080_0305215X_2020_1861263 crossref_primary_10_1080_01605682_2024_2419979 crossref_primary_10_1080_01966324_2021_1960226 crossref_primary_10_1155_2021_5805433 crossref_primary_10_1017_S0373463324000420 crossref_primary_10_1016_j_ejor_2021_01_043 crossref_primary_10_1007_s10951_020_00648_5 crossref_primary_10_1007_s10479_019_03185_3 crossref_primary_10_1002_dac_5198 |
| Cites_doi | 10.1016/S1389-1286(01)00302-4 10.1016/j.amc.2014.03.024 10.1007/s11276-009-0183-0 10.1109/TMC.2010.42 10.1109/TPDS.2009.45 10.1023/B:JOCO.0000021934.29833.6b 10.1109/TAES.2006.1603426 10.1016/j.ejor.2013.05.033 10.1145/7531.7535 10.1007/s00453-017-0373-6 10.1016/j.ejor.2006.05.037 10.1109/TNET.2012.2229716 10.1016/j.ejor.2015.05.026 10.1016/j.ejor.2012.12.028 10.5120/2432-3271 10.1145/1614320.1614337 10.1016/S0167-5060(08)70356-X |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier B.V. |
| Copyright_xml | – notice: 2018 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ejor.2018.05.047 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science Business |
| EISSN | 1872-6860 |
| EndPage | 473 |
| ExternalDocumentID | 10_1016_j_ejor_2018_05_047 S0377221718304582 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO AAYFN ABAOU ABBOA ABFNM ABFRF ABJNI ABMAC ABUCO ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIWK ACNCT ACRLP ACZNC ADBBV ADEZE ADGUI AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BKOJK BKOMP BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W KOM LY1 M41 MHUIS MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG ROL RPZ RXW SCC SDF SDG SDP SDS SES SPC SPCBC SSB SSD SSV SSW SSZ T5K TAE TN5 U5U XPP ZMT ~02 ~G- 1OL 29G 41~ 9DU AAAKG AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO ADXHL AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HVGLF HZ~ R2- SEW VH1 WUQ ~HD |
| ID | FETCH-LOGICAL-c365t-49397f53807efd0cf72b2f8df823f4615541e86beb455b9baf942535af01e6cd3 |
| ISICitedReferencesCount | 14 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000440960300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0377-2217 |
| IngestDate | Sat Nov 29 07:20:37 EST 2025 Tue Nov 18 22:13:58 EST 2025 Fri Feb 23 02:27:37 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | Wireless sensor network Scheduling Performance analysis Algorithm Data compression |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c365t-49397f53807efd0cf72b2f8df823f4615541e86beb455b9baf942535af01e6cd3 |
| ORCID | 0000-0003-4283-3396 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1016_j_ejor_2018_05_047 crossref_citationtrail_10_1016_j_ejor_2018_05_047 elsevier_sciencedirect_doi_10_1016_j_ejor_2018_05_047 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-12-01 |
| PublicationDateYYYYMMDD | 2018-12-01 |
| PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | European journal of operational research |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Choi, Robertazzi (bib0006) 2008 Shi, Fapojuwo (bib0020) 2010; 9 Kreher, Stinson (bib0014) 1998 Kellerer, Pferschy, Pisinger (bib0011) 2004 Kumar, Chauhan (bib0015) 2011; 20 Graham, Lawler, Lenstra, Kan (bib0008) 1979; 5 Akyildiz, Su, Sankarasubramaniam, Cayirci (bib0001) 2002; 38 Xu, Wang, Wang (bib0024) 2011 Hochbaum, Shmoys (bib0009) 1987; 34 Kellerer, Pferschy (bib0010) 2004; 8 Alfieri, Bianco, Brandimarte, Chiasserini (bib0002) 2007; 181 Berlińska (bib0003) 2014; 235 Wu, Li, Liu, Lou (bib0022) 2010; 21 Wang, Tang, Yin, Li (bib0021) 2012 Berlińska (bib0004) 2015; 246 Luo, Wu, Sun, Chen (bib0016) 2009 Xiang, Luo, Rosenberg (bib0023) 2013; 21 . Kellerer, Strusevich (bib0012) 2013; 228 Ergen, Varaiya (bib0007) 2010; 16 Luo, W., Xu, Y., Gu, B., Tong, W., Goebel, R., & Lin, G. (2018). Algorithms for communication scheduling in data gatheringnetwork with data compression. Algorithmica. In press. doi Moges, Robertazzi (bib0018) 2006; 42 Rossi, Singh, Sevaux (bib0019) 2013; 231 Kimura, Latifi (bib0013) 2005 Błażewicz, J., Ecker, K. H., Pesch, E., Schmidt, G., & Weglarz, J. (2007). Handbook on scheduling: From theory to applications. Springer. Moges (10.1016/j.ejor.2018.05.047_bib0018) 2006; 42 Kumar (10.1016/j.ejor.2018.05.047_bib0015) 2011; 20 Shi (10.1016/j.ejor.2018.05.047_bib0020) 2010; 9 Berlińska (10.1016/j.ejor.2018.05.047_bib0003) 2014; 235 Ergen (10.1016/j.ejor.2018.05.047_bib0007) 2010; 16 Graham (10.1016/j.ejor.2018.05.047_bib0008) 1979; 5 Xiang (10.1016/j.ejor.2018.05.047_bib0023) 2013; 21 Berlińska (10.1016/j.ejor.2018.05.047_bib0004) 2015; 246 Kimura (10.1016/j.ejor.2018.05.047_bib0013) 2005 Alfieri (10.1016/j.ejor.2018.05.047_bib0002) 2007; 181 10.1016/j.ejor.2018.05.047_bib0005 10.1016/j.ejor.2018.05.047_bib0017 Akyildiz (10.1016/j.ejor.2018.05.047_bib0001) 2002; 38 Kellerer (10.1016/j.ejor.2018.05.047_bib0011) 2004 Luo (10.1016/j.ejor.2018.05.047_bib0016) 2009 Xu (10.1016/j.ejor.2018.05.047_bib0024) 2011 Rossi (10.1016/j.ejor.2018.05.047_bib0019) 2013; 231 Wang (10.1016/j.ejor.2018.05.047_bib0021) 2012 Hochbaum (10.1016/j.ejor.2018.05.047_bib0009) 1987; 34 Kellerer (10.1016/j.ejor.2018.05.047_bib0010) 2004; 8 Kreher (10.1016/j.ejor.2018.05.047_bib0014) 1998 Wu (10.1016/j.ejor.2018.05.047_bib0022) 2010; 21 Kellerer (10.1016/j.ejor.2018.05.047_bib0012) 2013; 228 Choi (10.1016/j.ejor.2018.05.047_bib0006) 2008 |
| References_xml | – volume: 20 start-page: 7 year: 2011 end-page: 13 ident: bib0015 article-title: A survey on scheduling algorithms for wireless sensor networks publication-title: International Journal of Computer Applications – start-page: 9 year: 2008 end-page: 17 ident: bib0006 article-title: Divisible load scheduling in wireless sensor networks with information utility publication-title: Proceedings of the 2008 IEEE international performance, computing and communications conference – volume: 21 start-page: 1722 year: 2013 end-page: 1735 ident: bib0023 article-title: Compressed data aggregation: Energy-efficient and high-fidelity data collection publication-title: IEEE/ACM Transactions on Networking – start-page: 1 year: 2011 end-page: 5 ident: bib0024 article-title: Major coefficients recovery: A compressed data gathering scheme for wireless sensor network publication-title: Proceedings of global telecommunications conference (GLOBECOM 2011) – volume: 9 start-page: 927 year: 2010 end-page: 940 ident: bib0020 article-title: TDMA scheduling with optimized energy efficiency and minimum delay in clustered wireless sensor networks publication-title: IEEE Transactions on Mobile Computing – volume: 181 start-page: 390 year: 2007 end-page: 402 ident: bib0002 article-title: Maximizing system lifetime in wireless sensor networks publication-title: European Journal of Operational Research – volume: 246 start-page: 744 year: 2015 end-page: 749 ident: bib0004 article-title: Scheduling for data gathering networks with data compression publication-title: European Journal of Operational Research – volume: 235 start-page: 530 year: 2014 end-page: 537 ident: bib0003 article-title: Communication scheduling in data gathering networks with limited memory publication-title: Applied Mathematics and Computation – volume: 16 start-page: 985 year: 2010 end-page: 997 ident: bib0007 article-title: TDMA scheduling algorithms for wireless sensor networks publication-title: Wireless Networks – volume: 8 start-page: 5 year: 2004 end-page: 11 ident: bib0010 article-title: Improved dynamic programming in connection with an FPTAS for the knapsack problem publication-title: Journal of Combinatorial Optimization – start-page: 145 year: 2009 end-page: 156 ident: bib0016 article-title: Compressive data gathering for large-scale wireless sensor networks publication-title: Proceedings of the 15th annual international conference on mobile computing and networking – volume: 231 start-page: 229 year: 2013 end-page: 241 ident: bib0019 article-title: Lifetime maximization in wireless directional sensor network publication-title: European Journal of Operational Research – reference: Luo, W., Xu, Y., Gu, B., Tong, W., Goebel, R., & Lin, G. (2018). Algorithms for communication scheduling in data gatheringnetwork with data compression. Algorithmica. In press. doi: – volume: 34 start-page: 144 year: 1987 end-page: 162 ident: bib0009 article-title: Using dual approximation algorithms for scheduling problems: Theoretical and practical results publication-title: Journal of the ACM – start-page: 8 year: 2005 end-page: 13 ident: bib0013 article-title: A survey on data compression in wireless sensor networks publication-title: Proceedings of the 2005 international conference on information technology: coding and computing – volume: 21 start-page: 275 year: 2010 end-page: 287 ident: bib0022 article-title: Energy-efficient wake-up scheduling for data collection and aggregation publication-title: IEEE Transactions on Parallel and Distributed Systems – volume: 5 start-page: 287 year: 1979 end-page: 326 ident: bib0008 article-title: Optimization and approximation in deterministic sequencing and scheduling: A survey publication-title: Annuals of Discrete Mathematics – volume: 42 start-page: 327 year: 2006 end-page: 340 ident: bib0018 article-title: Wireless sensor networks: Scheduling for measurement and data reporting publication-title: IEEE Transactions on Aerospace and Electronic Systems – volume: 38 start-page: 393 year: 2002 end-page: 422 ident: bib0001 article-title: Wireless sensor networks: A survey publication-title: Computer Networks – reference: . – reference: Błażewicz, J., Ecker, K. H., Pesch, E., Schmidt, G., & Weglarz, J. (2007). Handbook on scheduling: From theory to applications. Springer. – volume: 228 start-page: 24 year: 2013 end-page: 32 ident: bib0012 article-title: Fast approximation schemes for Boolean programming and scheduling problems related to positive convex half-product publication-title: European Journal of Operational Research – year: 1998 ident: bib0014 article-title: Combinatorial algorithms: Generation, enumeration and search – start-page: 603 year: 2012 end-page: 611 ident: bib0021 article-title: Data gathering in wireless sensor networks through intelligent compressive sensing publication-title: Proceedings of INFOCOM 2012 – year: 2004 ident: bib0011 article-title: Knapsack problems – volume: 38 start-page: 393 year: 2002 ident: 10.1016/j.ejor.2018.05.047_bib0001 article-title: Wireless sensor networks: A survey publication-title: Computer Networks doi: 10.1016/S1389-1286(01)00302-4 – volume: 235 start-page: 530 year: 2014 ident: 10.1016/j.ejor.2018.05.047_bib0003 article-title: Communication scheduling in data gathering networks with limited memory publication-title: Applied Mathematics and Computation doi: 10.1016/j.amc.2014.03.024 – ident: 10.1016/j.ejor.2018.05.047_bib0005 – volume: 16 start-page: 985 year: 2010 ident: 10.1016/j.ejor.2018.05.047_bib0007 article-title: TDMA scheduling algorithms for wireless sensor networks publication-title: Wireless Networks doi: 10.1007/s11276-009-0183-0 – volume: 9 start-page: 927 year: 2010 ident: 10.1016/j.ejor.2018.05.047_bib0020 article-title: TDMA scheduling with optimized energy efficiency and minimum delay in clustered wireless sensor networks publication-title: IEEE Transactions on Mobile Computing doi: 10.1109/TMC.2010.42 – volume: 21 start-page: 275 year: 2010 ident: 10.1016/j.ejor.2018.05.047_bib0022 article-title: Energy-efficient wake-up scheduling for data collection and aggregation publication-title: IEEE Transactions on Parallel and Distributed Systems doi: 10.1109/TPDS.2009.45 – volume: 8 start-page: 5 year: 2004 ident: 10.1016/j.ejor.2018.05.047_bib0010 article-title: Improved dynamic programming in connection with an FPTAS for the knapsack problem publication-title: Journal of Combinatorial Optimization doi: 10.1023/B:JOCO.0000021934.29833.6b – volume: 42 start-page: 327 year: 2006 ident: 10.1016/j.ejor.2018.05.047_bib0018 article-title: Wireless sensor networks: Scheduling for measurement and data reporting publication-title: IEEE Transactions on Aerospace and Electronic Systems doi: 10.1109/TAES.2006.1603426 – volume: 231 start-page: 229 year: 2013 ident: 10.1016/j.ejor.2018.05.047_bib0019 article-title: Lifetime maximization in wireless directional sensor network publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2013.05.033 – volume: 34 start-page: 144 year: 1987 ident: 10.1016/j.ejor.2018.05.047_bib0009 article-title: Using dual approximation algorithms for scheduling problems: Theoretical and practical results publication-title: Journal of the ACM doi: 10.1145/7531.7535 – ident: 10.1016/j.ejor.2018.05.047_bib0017 doi: 10.1007/s00453-017-0373-6 – volume: 181 start-page: 390 year: 2007 ident: 10.1016/j.ejor.2018.05.047_bib0002 article-title: Maximizing system lifetime in wireless sensor networks publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2006.05.037 – volume: 21 start-page: 1722 year: 2013 ident: 10.1016/j.ejor.2018.05.047_bib0023 article-title: Compressed data aggregation: Energy-efficient and high-fidelity data collection publication-title: IEEE/ACM Transactions on Networking doi: 10.1109/TNET.2012.2229716 – start-page: 8 year: 2005 ident: 10.1016/j.ejor.2018.05.047_bib0013 article-title: A survey on data compression in wireless sensor networks – volume: 246 start-page: 744 year: 2015 ident: 10.1016/j.ejor.2018.05.047_bib0004 article-title: Scheduling for data gathering networks with data compression publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2015.05.026 – start-page: 1 year: 2011 ident: 10.1016/j.ejor.2018.05.047_bib0024 article-title: Major coefficients recovery: A compressed data gathering scheme for wireless sensor network – volume: 228 start-page: 24 year: 2013 ident: 10.1016/j.ejor.2018.05.047_bib0012 article-title: Fast approximation schemes for Boolean programming and scheduling problems related to positive convex half-product publication-title: European Journal of Operational Research doi: 10.1016/j.ejor.2012.12.028 – volume: 20 start-page: 7 year: 2011 ident: 10.1016/j.ejor.2018.05.047_bib0015 article-title: A survey on scheduling algorithms for wireless sensor networks publication-title: International Journal of Computer Applications doi: 10.5120/2432-3271 – start-page: 9 year: 2008 ident: 10.1016/j.ejor.2018.05.047_bib0006 article-title: Divisible load scheduling in wireless sensor networks with information utility – year: 2004 ident: 10.1016/j.ejor.2018.05.047_bib0011 – year: 1998 ident: 10.1016/j.ejor.2018.05.047_bib0014 – start-page: 145 year: 2009 ident: 10.1016/j.ejor.2018.05.047_bib0016 article-title: Compressive data gathering for large-scale wireless sensor networks publication-title: Proceedings of the 15th annual international conference on mobile computing and networking doi: 10.1145/1614320.1614337 – start-page: 603 year: 2012 ident: 10.1016/j.ejor.2018.05.047_bib0021 article-title: Data gathering in wireless sensor networks through intelligent compressive sensing – volume: 5 start-page: 287 year: 1979 ident: 10.1016/j.ejor.2018.05.047_bib0008 article-title: Optimization and approximation in deterministic sequencing and scheduling: A survey publication-title: Annuals of Discrete Mathematics doi: 10.1016/S0167-5060(08)70356-X |
| SSID | ssj0001515 |
| Score | 2.3555467 |
| Snippet | •Investigated a communication scheduling problem to address data compression and data communication together.•Proposed a pseudo-polynomial time exact algorithm... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 462 |
| SubjectTerms | Algorithm Data compression Performance analysis Scheduling Wireless sensor network |
| Title | Communication scheduling in data gathering networks of heterogeneous sensors with data compression: Algorithms and empirical experiments |
| URI | https://dx.doi.org/10.1016/j.ejor.2018.05.047 |
| Volume | 271 |
| WOSCitedRecordID | wos000440960300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-6860 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001515 issn: 0377-2217 databaseCode: AIEXJ dateStart: 19950105 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaqLkJw4FFALC_5wK3KqnGc2OG2QstLaIXEInqLEsfutuomVdusln_Ab-LXMc44j-7CCpC4RJEbJ6nni2c8_maGkJdxrJjU3HiAJulx0IFe6psJnKVSSZaHIsViE-L4WE6n8afB4EcTC3O-FEUhLy7i1X8VNbSBsG3o7F-Iu70pNMA5CB2OIHY4_pHgd0I-xrB4BWWydJErlg86nrmgv9m4QA74Bi1GGOES7qotKXYDq1tbhqd209a9LPccObMFuvZn5Rp-PMMcz_psNcdkI13JgM1vvf7OAoaGdeOLdEmHWuf0x6r24X6FkbUu7ZYmVNWALL9VPS4RpkF4W5Wn1bzvxfDlJUbI1fAaDOkSwmMMgzsPNM7QUjAvkliEoJnCGZZxcVhlvQmZu7kedTvHsilX1AZ6MBYHelHaHLG-rLO5ctEpyZa6-Nm-lH0nmAvtJjOo_z0mwlgOyd7h-6Pph9YOsKZivYfl_oQL2UJ24eUn_dos6pk6J_fIHbdGoYeIrftkoIsRudmESIzI3aYUCHWaYURu9_JaPiDfdzBIOwzSeUEtmmiLQdpgkJaG7mCQOgxSi0Hs1cPgK9ohkAICaYtA2kPgQ_LlzdHJ63eeK_nhqSAKtx6PwT42oa2CoE0-UUawjBmZG8kCw-0eOve1jDKd8TDM4iw1MSidIEzNxNeRyoNHZFiUhX5MaDoJVS6iFCzQnCu74R-AnHwdyNSm8VP7xG9GPFEuH74ty7JMGuLjIrFSSqyUkkmYgJT2ybjts8JsMNdeHTaCTJw9i3ZqAri7pt-Tf-z3lNzqPq1nZLhdV_o5uaHOt_PN-oWD50_tq8yp |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Communication+scheduling+in+data+gathering+networks+of+heterogeneous+sensors+with+data+compression%3A+Algorithms+and+empirical+experiments&rft.jtitle=European+journal+of+operational+research&rft.au=Luo%2C+Wenchang&rft.au=Gu%2C+Boyuan&rft.au=Lin%2C+Guohui&rft.date=2018-12-01&rft.pub=Elsevier+B.V&rft.issn=0377-2217&rft.eissn=1872-6860&rft.volume=271&rft.issue=2&rft.spage=462&rft.epage=473&rft_id=info:doi/10.1016%2Fj.ejor.2018.05.047&rft.externalDocID=S0377221718304582 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon |