Communication scheduling in data gathering networks of heterogeneous sensors with data compression: Algorithms and empirical experiments

•Investigated a communication scheduling problem to address data compression and data communication together.•Proposed a pseudo-polynomial time exact algorithm based on dynamic programming.•Proposed a fully polynomial time approximation scheme.•Extensive numerical experiments conducted to examine th...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:European journal of operational research Jg. 271; H. 2; S. 462 - 473
Hauptverfasser: Luo, Wenchang, Gu, Boyuan, Lin, Guohui
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.12.2018
Schlagworte:
ISSN:0377-2217, 1872-6860
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Investigated a communication scheduling problem to address data compression and data communication together.•Proposed a pseudo-polynomial time exact algorithm based on dynamic programming.•Proposed a fully polynomial time approximation scheme.•Extensive numerical experiments conducted to examine the practical performance of the algorithms. We consider a communication scheduling problem to address data compression and data communication together, arising from the data gathering wireless sensor networks with data compression. In the problem, the deployed sensors are heterogeneous, in that the data compression ratios, in terms of size reduction, the compression time, and the compression costs, in terms of energy consumption, on different sensors are different. The bi-objective is to minimize the total compression cost and to minimize the total time to transfer all the data to the base station. The problem reduces to two mono-objective optimization problems in two separate ways: in the original problem a time bound is given and the mono-objective is to minimize the total compression cost, and in the complementary problem a global compression budget is given and the mono-objective is to minimize the makespan. We present a unified exact algorithm for both of them based on dynamic programming; this exact algorithm is then developed into a fully polynomial time approximation scheme for the complementary problem, and a dual fully polynomial time approximation scheme for the original problem. All these approximation algorithms have been implemented and extensive computational experiments show that they run fast and return the optimal solutions almost all the time.
AbstractList •Investigated a communication scheduling problem to address data compression and data communication together.•Proposed a pseudo-polynomial time exact algorithm based on dynamic programming.•Proposed a fully polynomial time approximation scheme.•Extensive numerical experiments conducted to examine the practical performance of the algorithms. We consider a communication scheduling problem to address data compression and data communication together, arising from the data gathering wireless sensor networks with data compression. In the problem, the deployed sensors are heterogeneous, in that the data compression ratios, in terms of size reduction, the compression time, and the compression costs, in terms of energy consumption, on different sensors are different. The bi-objective is to minimize the total compression cost and to minimize the total time to transfer all the data to the base station. The problem reduces to two mono-objective optimization problems in two separate ways: in the original problem a time bound is given and the mono-objective is to minimize the total compression cost, and in the complementary problem a global compression budget is given and the mono-objective is to minimize the makespan. We present a unified exact algorithm for both of them based on dynamic programming; this exact algorithm is then developed into a fully polynomial time approximation scheme for the complementary problem, and a dual fully polynomial time approximation scheme for the original problem. All these approximation algorithms have been implemented and extensive computational experiments show that they run fast and return the optimal solutions almost all the time.
Author Lin, Guohui
Gu, Boyuan
Luo, Wenchang
Author_xml – sequence: 1
  givenname: Wenchang
  surname: Luo
  fullname: Luo, Wenchang
  email: wenchang@ualberta.ca
  organization: Faculty of Science, Ningbo University, Ningbo, Zhejiang 315211, China
– sequence: 2
  givenname: Boyuan
  surname: Gu
  fullname: Gu, Boyuan
  email: bgu1@ualberta.ca
  organization: Department of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada
– sequence: 3
  givenname: Guohui
  orcidid: 0000-0003-4283-3396
  surname: Lin
  fullname: Lin, Guohui
  email: guohui@ualberta.ca
  organization: Department of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, Canada
BookMark eNp9kE1OwzAQRi1UJNrCBVj5Agm2EycpYlNV_EmV2MDacpxx45DYle1SuAHHJqWsWHQ10ozeNzNvhibWWUDompKUElrcdCl0zqeM0ColPCV5eYamtCpZUlQFmaApycoyYYyWF2gWQkcIoZzyKfpeuWHYWaNkNM7ioFpodr2xG2wsbmSUeCNjC_7QsRD3zr8H7DRuIYJ3G7DgdgEHsMH5gPcmtkdKuWHrIYQx9BYv-43z42gIWNoGw7A1ftzYY_jcjtED2Bgu0bmWfYCrvzpHbw_3r6unZP3y-LxarhOVFTwm-SJblJpnFSlBN0TpktVMV42uWKbzgnKeU6iKGuqc83pRS73IGc-41IRCoZpsjtgxV3kXggcttuMF0n8JSsTBpejEwaU4uBSEi9HlCFX_IGXir7HopelPo3dHFManPgx4EZQBq6AxHlQUjTOn8B9k5Zby
CitedBy_id crossref_primary_10_3390_s18113806
crossref_primary_10_3390_s23042300
crossref_primary_10_1155_2022_3948221
crossref_primary_10_1016_j_cie_2022_108467
crossref_primary_10_11627_jksie_2024_47_2_048
crossref_primary_10_1007_s10479_023_05522_z
crossref_primary_10_1080_01605682_2021_1886616
crossref_primary_10_1080_0305215X_2020_1861263
crossref_primary_10_1080_01605682_2024_2419979
crossref_primary_10_1080_01966324_2021_1960226
crossref_primary_10_1155_2021_5805433
crossref_primary_10_1017_S0373463324000420
crossref_primary_10_1016_j_ejor_2021_01_043
crossref_primary_10_1007_s10951_020_00648_5
crossref_primary_10_1007_s10479_019_03185_3
crossref_primary_10_1002_dac_5198
Cites_doi 10.1016/S1389-1286(01)00302-4
10.1016/j.amc.2014.03.024
10.1007/s11276-009-0183-0
10.1109/TMC.2010.42
10.1109/TPDS.2009.45
10.1023/B:JOCO.0000021934.29833.6b
10.1109/TAES.2006.1603426
10.1016/j.ejor.2013.05.033
10.1145/7531.7535
10.1007/s00453-017-0373-6
10.1016/j.ejor.2006.05.037
10.1109/TNET.2012.2229716
10.1016/j.ejor.2015.05.026
10.1016/j.ejor.2012.12.028
10.5120/2432-3271
10.1145/1614320.1614337
10.1016/S0167-5060(08)70356-X
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.ejor.2018.05.047
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
Business
EISSN 1872-6860
EndPage 473
ExternalDocumentID 10_1016_j_ejor_2018_05_047
S0377221718304582
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABUCO
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BKOJK
BKOMP
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
KOM
LY1
M41
MHUIS
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
RXW
SCC
SDF
SDG
SDP
SDS
SES
SPC
SPCBC
SSB
SSD
SSV
SSW
SSZ
T5K
TAE
TN5
U5U
XPP
ZMT
~02
~G-
1OL
29G
41~
9DU
AAAKG
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
ADXHL
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HVGLF
HZ~
R2-
SEW
VH1
WUQ
~HD
ID FETCH-LOGICAL-c365t-49397f53807efd0cf72b2f8df823f4615541e86beb455b9baf942535af01e6cd3
ISICitedReferencesCount 14
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000440960300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0377-2217
IngestDate Sat Nov 29 07:20:37 EST 2025
Tue Nov 18 22:13:58 EST 2025
Fri Feb 23 02:27:37 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Wireless sensor network
Scheduling
Performance analysis
Algorithm
Data compression
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c365t-49397f53807efd0cf72b2f8df823f4615541e86beb455b9baf942535af01e6cd3
ORCID 0000-0003-4283-3396
PageCount 12
ParticipantIDs crossref_primary_10_1016_j_ejor_2018_05_047
crossref_citationtrail_10_1016_j_ejor_2018_05_047
elsevier_sciencedirect_doi_10_1016_j_ejor_2018_05_047
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationTitle European journal of operational research
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Choi, Robertazzi (bib0006) 2008
Shi, Fapojuwo (bib0020) 2010; 9
Kreher, Stinson (bib0014) 1998
Kellerer, Pferschy, Pisinger (bib0011) 2004
Kumar, Chauhan (bib0015) 2011; 20
Graham, Lawler, Lenstra, Kan (bib0008) 1979; 5
Akyildiz, Su, Sankarasubramaniam, Cayirci (bib0001) 2002; 38
Xu, Wang, Wang (bib0024) 2011
Hochbaum, Shmoys (bib0009) 1987; 34
Kellerer, Pferschy (bib0010) 2004; 8
Alfieri, Bianco, Brandimarte, Chiasserini (bib0002) 2007; 181
Berlińska (bib0003) 2014; 235
Wu, Li, Liu, Lou (bib0022) 2010; 21
Wang, Tang, Yin, Li (bib0021) 2012
Berlińska (bib0004) 2015; 246
Luo, Wu, Sun, Chen (bib0016) 2009
Xiang, Luo, Rosenberg (bib0023) 2013; 21
.
Kellerer, Strusevich (bib0012) 2013; 228
Ergen, Varaiya (bib0007) 2010; 16
Luo, W., Xu, Y., Gu, B., Tong, W., Goebel, R., & Lin, G. (2018). Algorithms for communication scheduling in data gatheringnetwork with data compression. Algorithmica. In press. doi
Moges, Robertazzi (bib0018) 2006; 42
Rossi, Singh, Sevaux (bib0019) 2013; 231
Kimura, Latifi (bib0013) 2005
Błażewicz, J., Ecker, K. H., Pesch, E., Schmidt, G., & Weglarz, J. (2007). Handbook on scheduling: From theory to applications. Springer.
Moges (10.1016/j.ejor.2018.05.047_bib0018) 2006; 42
Kumar (10.1016/j.ejor.2018.05.047_bib0015) 2011; 20
Shi (10.1016/j.ejor.2018.05.047_bib0020) 2010; 9
Berlińska (10.1016/j.ejor.2018.05.047_bib0003) 2014; 235
Ergen (10.1016/j.ejor.2018.05.047_bib0007) 2010; 16
Graham (10.1016/j.ejor.2018.05.047_bib0008) 1979; 5
Xiang (10.1016/j.ejor.2018.05.047_bib0023) 2013; 21
Berlińska (10.1016/j.ejor.2018.05.047_bib0004) 2015; 246
Kimura (10.1016/j.ejor.2018.05.047_bib0013) 2005
Alfieri (10.1016/j.ejor.2018.05.047_bib0002) 2007; 181
10.1016/j.ejor.2018.05.047_bib0005
10.1016/j.ejor.2018.05.047_bib0017
Akyildiz (10.1016/j.ejor.2018.05.047_bib0001) 2002; 38
Kellerer (10.1016/j.ejor.2018.05.047_bib0011) 2004
Luo (10.1016/j.ejor.2018.05.047_bib0016) 2009
Xu (10.1016/j.ejor.2018.05.047_bib0024) 2011
Rossi (10.1016/j.ejor.2018.05.047_bib0019) 2013; 231
Wang (10.1016/j.ejor.2018.05.047_bib0021) 2012
Hochbaum (10.1016/j.ejor.2018.05.047_bib0009) 1987; 34
Kellerer (10.1016/j.ejor.2018.05.047_bib0010) 2004; 8
Kreher (10.1016/j.ejor.2018.05.047_bib0014) 1998
Wu (10.1016/j.ejor.2018.05.047_bib0022) 2010; 21
Kellerer (10.1016/j.ejor.2018.05.047_bib0012) 2013; 228
Choi (10.1016/j.ejor.2018.05.047_bib0006) 2008
References_xml – volume: 20
  start-page: 7
  year: 2011
  end-page: 13
  ident: bib0015
  article-title: A survey on scheduling algorithms for wireless sensor networks
  publication-title: International Journal of Computer Applications
– start-page: 9
  year: 2008
  end-page: 17
  ident: bib0006
  article-title: Divisible load scheduling in wireless sensor networks with information utility
  publication-title: Proceedings of the 2008 IEEE international performance, computing and communications conference
– volume: 21
  start-page: 1722
  year: 2013
  end-page: 1735
  ident: bib0023
  article-title: Compressed data aggregation: Energy-efficient and high-fidelity data collection
  publication-title: IEEE/ACM Transactions on Networking
– start-page: 1
  year: 2011
  end-page: 5
  ident: bib0024
  article-title: Major coefficients recovery: A compressed data gathering scheme for wireless sensor network
  publication-title: Proceedings of global telecommunications conference (GLOBECOM 2011)
– volume: 9
  start-page: 927
  year: 2010
  end-page: 940
  ident: bib0020
  article-title: TDMA scheduling with optimized energy efficiency and minimum delay in clustered wireless sensor networks
  publication-title: IEEE Transactions on Mobile Computing
– volume: 181
  start-page: 390
  year: 2007
  end-page: 402
  ident: bib0002
  article-title: Maximizing system lifetime in wireless sensor networks
  publication-title: European Journal of Operational Research
– volume: 246
  start-page: 744
  year: 2015
  end-page: 749
  ident: bib0004
  article-title: Scheduling for data gathering networks with data compression
  publication-title: European Journal of Operational Research
– volume: 235
  start-page: 530
  year: 2014
  end-page: 537
  ident: bib0003
  article-title: Communication scheduling in data gathering networks with limited memory
  publication-title: Applied Mathematics and Computation
– volume: 16
  start-page: 985
  year: 2010
  end-page: 997
  ident: bib0007
  article-title: TDMA scheduling algorithms for wireless sensor networks
  publication-title: Wireless Networks
– volume: 8
  start-page: 5
  year: 2004
  end-page: 11
  ident: bib0010
  article-title: Improved dynamic programming in connection with an FPTAS for the knapsack problem
  publication-title: Journal of Combinatorial Optimization
– start-page: 145
  year: 2009
  end-page: 156
  ident: bib0016
  article-title: Compressive data gathering for large-scale wireless sensor networks
  publication-title: Proceedings of the 15th annual international conference on mobile computing and networking
– volume: 231
  start-page: 229
  year: 2013
  end-page: 241
  ident: bib0019
  article-title: Lifetime maximization in wireless directional sensor network
  publication-title: European Journal of Operational Research
– reference: Luo, W., Xu, Y., Gu, B., Tong, W., Goebel, R., & Lin, G. (2018). Algorithms for communication scheduling in data gatheringnetwork with data compression. Algorithmica. In press. doi:
– volume: 34
  start-page: 144
  year: 1987
  end-page: 162
  ident: bib0009
  article-title: Using dual approximation algorithms for scheduling problems: Theoretical and practical results
  publication-title: Journal of the ACM
– start-page: 8
  year: 2005
  end-page: 13
  ident: bib0013
  article-title: A survey on data compression in wireless sensor networks
  publication-title: Proceedings of the 2005 international conference on information technology: coding and computing
– volume: 21
  start-page: 275
  year: 2010
  end-page: 287
  ident: bib0022
  article-title: Energy-efficient wake-up scheduling for data collection and aggregation
  publication-title: IEEE Transactions on Parallel and Distributed Systems
– volume: 5
  start-page: 287
  year: 1979
  end-page: 326
  ident: bib0008
  article-title: Optimization and approximation in deterministic sequencing and scheduling: A survey
  publication-title: Annuals of Discrete Mathematics
– volume: 42
  start-page: 327
  year: 2006
  end-page: 340
  ident: bib0018
  article-title: Wireless sensor networks: Scheduling for measurement and data reporting
  publication-title: IEEE Transactions on Aerospace and Electronic Systems
– volume: 38
  start-page: 393
  year: 2002
  end-page: 422
  ident: bib0001
  article-title: Wireless sensor networks: A survey
  publication-title: Computer Networks
– reference: .
– reference: Błażewicz, J., Ecker, K. H., Pesch, E., Schmidt, G., & Weglarz, J. (2007). Handbook on scheduling: From theory to applications. Springer.
– volume: 228
  start-page: 24
  year: 2013
  end-page: 32
  ident: bib0012
  article-title: Fast approximation schemes for Boolean programming and scheduling problems related to positive convex half-product
  publication-title: European Journal of Operational Research
– year: 1998
  ident: bib0014
  article-title: Combinatorial algorithms: Generation, enumeration and search
– start-page: 603
  year: 2012
  end-page: 611
  ident: bib0021
  article-title: Data gathering in wireless sensor networks through intelligent compressive sensing
  publication-title: Proceedings of INFOCOM 2012
– year: 2004
  ident: bib0011
  article-title: Knapsack problems
– volume: 38
  start-page: 393
  year: 2002
  ident: 10.1016/j.ejor.2018.05.047_bib0001
  article-title: Wireless sensor networks: A survey
  publication-title: Computer Networks
  doi: 10.1016/S1389-1286(01)00302-4
– volume: 235
  start-page: 530
  year: 2014
  ident: 10.1016/j.ejor.2018.05.047_bib0003
  article-title: Communication scheduling in data gathering networks with limited memory
  publication-title: Applied Mathematics and Computation
  doi: 10.1016/j.amc.2014.03.024
– ident: 10.1016/j.ejor.2018.05.047_bib0005
– volume: 16
  start-page: 985
  year: 2010
  ident: 10.1016/j.ejor.2018.05.047_bib0007
  article-title: TDMA scheduling algorithms for wireless sensor networks
  publication-title: Wireless Networks
  doi: 10.1007/s11276-009-0183-0
– volume: 9
  start-page: 927
  year: 2010
  ident: 10.1016/j.ejor.2018.05.047_bib0020
  article-title: TDMA scheduling with optimized energy efficiency and minimum delay in clustered wireless sensor networks
  publication-title: IEEE Transactions on Mobile Computing
  doi: 10.1109/TMC.2010.42
– volume: 21
  start-page: 275
  year: 2010
  ident: 10.1016/j.ejor.2018.05.047_bib0022
  article-title: Energy-efficient wake-up scheduling for data collection and aggregation
  publication-title: IEEE Transactions on Parallel and Distributed Systems
  doi: 10.1109/TPDS.2009.45
– volume: 8
  start-page: 5
  year: 2004
  ident: 10.1016/j.ejor.2018.05.047_bib0010
  article-title: Improved dynamic programming in connection with an FPTAS for the knapsack problem
  publication-title: Journal of Combinatorial Optimization
  doi: 10.1023/B:JOCO.0000021934.29833.6b
– volume: 42
  start-page: 327
  year: 2006
  ident: 10.1016/j.ejor.2018.05.047_bib0018
  article-title: Wireless sensor networks: Scheduling for measurement and data reporting
  publication-title: IEEE Transactions on Aerospace and Electronic Systems
  doi: 10.1109/TAES.2006.1603426
– volume: 231
  start-page: 229
  year: 2013
  ident: 10.1016/j.ejor.2018.05.047_bib0019
  article-title: Lifetime maximization in wireless directional sensor network
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2013.05.033
– volume: 34
  start-page: 144
  year: 1987
  ident: 10.1016/j.ejor.2018.05.047_bib0009
  article-title: Using dual approximation algorithms for scheduling problems: Theoretical and practical results
  publication-title: Journal of the ACM
  doi: 10.1145/7531.7535
– ident: 10.1016/j.ejor.2018.05.047_bib0017
  doi: 10.1007/s00453-017-0373-6
– volume: 181
  start-page: 390
  year: 2007
  ident: 10.1016/j.ejor.2018.05.047_bib0002
  article-title: Maximizing system lifetime in wireless sensor networks
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2006.05.037
– volume: 21
  start-page: 1722
  year: 2013
  ident: 10.1016/j.ejor.2018.05.047_bib0023
  article-title: Compressed data aggregation: Energy-efficient and high-fidelity data collection
  publication-title: IEEE/ACM Transactions on Networking
  doi: 10.1109/TNET.2012.2229716
– start-page: 8
  year: 2005
  ident: 10.1016/j.ejor.2018.05.047_bib0013
  article-title: A survey on data compression in wireless sensor networks
– volume: 246
  start-page: 744
  year: 2015
  ident: 10.1016/j.ejor.2018.05.047_bib0004
  article-title: Scheduling for data gathering networks with data compression
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2015.05.026
– start-page: 1
  year: 2011
  ident: 10.1016/j.ejor.2018.05.047_bib0024
  article-title: Major coefficients recovery: A compressed data gathering scheme for wireless sensor network
– volume: 228
  start-page: 24
  year: 2013
  ident: 10.1016/j.ejor.2018.05.047_bib0012
  article-title: Fast approximation schemes for Boolean programming and scheduling problems related to positive convex half-product
  publication-title: European Journal of Operational Research
  doi: 10.1016/j.ejor.2012.12.028
– volume: 20
  start-page: 7
  year: 2011
  ident: 10.1016/j.ejor.2018.05.047_bib0015
  article-title: A survey on scheduling algorithms for wireless sensor networks
  publication-title: International Journal of Computer Applications
  doi: 10.5120/2432-3271
– start-page: 9
  year: 2008
  ident: 10.1016/j.ejor.2018.05.047_bib0006
  article-title: Divisible load scheduling in wireless sensor networks with information utility
– year: 2004
  ident: 10.1016/j.ejor.2018.05.047_bib0011
– year: 1998
  ident: 10.1016/j.ejor.2018.05.047_bib0014
– start-page: 145
  year: 2009
  ident: 10.1016/j.ejor.2018.05.047_bib0016
  article-title: Compressive data gathering for large-scale wireless sensor networks
  publication-title: Proceedings of the 15th annual international conference on mobile computing and networking
  doi: 10.1145/1614320.1614337
– start-page: 603
  year: 2012
  ident: 10.1016/j.ejor.2018.05.047_bib0021
  article-title: Data gathering in wireless sensor networks through intelligent compressive sensing
– volume: 5
  start-page: 287
  year: 1979
  ident: 10.1016/j.ejor.2018.05.047_bib0008
  article-title: Optimization and approximation in deterministic sequencing and scheduling: A survey
  publication-title: Annuals of Discrete Mathematics
  doi: 10.1016/S0167-5060(08)70356-X
SSID ssj0001515
Score 2.3555467
Snippet •Investigated a communication scheduling problem to address data compression and data communication together.•Proposed a pseudo-polynomial time exact algorithm...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 462
SubjectTerms Algorithm
Data compression
Performance analysis
Scheduling
Wireless sensor network
Title Communication scheduling in data gathering networks of heterogeneous sensors with data compression: Algorithms and empirical experiments
URI https://dx.doi.org/10.1016/j.ejor.2018.05.047
Volume 271
WOSCitedRecordID wos000440960300007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6860
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001515
  issn: 0377-2217
  databaseCode: AIEXJ
  dateStart: 19950105
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELaqLkJw4FFALC_5wK3KqnGc2OG2QstLaIXEInqLEsfutuomVdusln_Ab-LXMc44j-7CCpC4RJEbJ6nni2c8_maGkJdxrJjU3HiAJulx0IFe6psJnKVSSZaHIsViE-L4WE6n8afB4EcTC3O-FEUhLy7i1X8VNbSBsG3o7F-Iu70pNMA5CB2OIHY4_pHgd0I-xrB4BWWydJErlg86nrmgv9m4QA74Bi1GGOES7qotKXYDq1tbhqd209a9LPccObMFuvZn5Rp-PMMcz_psNcdkI13JgM1vvf7OAoaGdeOLdEmHWuf0x6r24X6FkbUu7ZYmVNWALL9VPS4RpkF4W5Wn1bzvxfDlJUbI1fAaDOkSwmMMgzsPNM7QUjAvkliEoJnCGZZxcVhlvQmZu7kedTvHsilX1AZ6MBYHelHaHLG-rLO5ctEpyZa6-Nm-lH0nmAvtJjOo_z0mwlgOyd7h-6Pph9YOsKZivYfl_oQL2UJ24eUn_dos6pk6J_fIHbdGoYeIrftkoIsRudmESIzI3aYUCHWaYURu9_JaPiDfdzBIOwzSeUEtmmiLQdpgkJaG7mCQOgxSi0Hs1cPgK9ohkAICaYtA2kPgQ_LlzdHJ63eeK_nhqSAKtx6PwT42oa2CoE0-UUawjBmZG8kCw-0eOve1jDKd8TDM4iw1MSidIEzNxNeRyoNHZFiUhX5MaDoJVS6iFCzQnCu74R-AnHwdyNSm8VP7xG9GPFEuH74ty7JMGuLjIrFSSqyUkkmYgJT2ybjts8JsMNdeHTaCTJw9i3ZqAri7pt-Tf-z3lNzqPq1nZLhdV_o5uaHOt_PN-oWD50_tq8yp
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Communication+scheduling+in+data+gathering+networks+of+heterogeneous+sensors+with+data+compression%3A+Algorithms+and+empirical+experiments&rft.jtitle=European+journal+of+operational+research&rft.au=Luo%2C+Wenchang&rft.au=Gu%2C+Boyuan&rft.au=Lin%2C+Guohui&rft.date=2018-12-01&rft.pub=Elsevier+B.V&rft.issn=0377-2217&rft.eissn=1872-6860&rft.volume=271&rft.issue=2&rft.spage=462&rft.epage=473&rft_id=info:doi/10.1016%2Fj.ejor.2018.05.047&rft.externalDocID=S0377221718304582
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0377-2217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0377-2217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0377-2217&client=summon