Chaos particle swarm optimization and T–S fuzzy modeling approaches to constrained predictive control

► T-S fuzzy modeling approach, chaos optimization algorithm (COA) and particle swarm optimization (PSO) have been used to perform predictive control. ► Chaos particle swarm optimization (CPSO) and T-S fuzzy modeling approaches are proposed to perform constrained predictive control. ► Predictive cont...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Expert systems with applications Ročník 39; číslo 1; s. 194 - 201
Hlavní autori: Jiang, Huimin, Kwong, C.K., Chen, Zengqiang, Ysim, Y.C.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 2012
Predmet:
ISSN:0957-4174, 1873-6793
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract ► T-S fuzzy modeling approach, chaos optimization algorithm (COA) and particle swarm optimization (PSO) have been used to perform predictive control. ► Chaos particle swarm optimization (CPSO) and T-S fuzzy modeling approaches are proposed to perform constrained predictive control. ► Predictive control of temperature of continued hyperthermic celiac perfusion based on the proposed approaches was conducted. ► Test results of the case indicate T-S fuzzy model based on CPSO outperforms models based on generalized predictive control, COA, and PSO. Predictive control of systems is very much related to the efficiency and cost of systems, as well as to the quality of systems outcomes. However, it is difficult to achieve optimal predictive control because most predictive controls for systems have characteristics of randomness, strong and complex constraints, large delay time, fuzziness, and nonlinearity. Conventional methods of solving constrained nonlinear optimization problems for predictive control are mainly based on quadratic programming, which is quite sensitive to initial values, easy to trap in local minimal points, and requires large computational effort. In recent years, T–S fuzzy modeling has been found to be an effective approach in performing predictive control. Intelligent optimization algorithms, such as chaos optimization algorithm (COA) and particle swarm optimization (PSO), have been shown to have faster convergence and higher iterative accuracy than those based on conventional optimization methods. In this paper, chaos particle swarm optimization (CPSO), which involves combining the strengths of COA and PSO, and T–S fuzzy modeling are proposed as approaches to perform constrained predictive control. Predictive control of temperature of continued hyperthermic celiac perfusion for medical treatment based on the proposed approaches was carried out. Simulation tests were conducted to evaluate the performance of temperature control based on T–S fuzzy modeling and CPSO. Test results indicate that the T–S fuzzy model based on CPSO outperforms models based on generalized predictive control, COA, and PSO.
AbstractList Predictive control of systems is very much related to the efficiency and cost of systems, as well as to the quality of systems outcomes. However, it is difficult to achieve optimal predictive control because most predictive controls for systems have characteristics of randomness, strong and complex constraints, large delay time, fuzziness, and nonlinearity. Conventional methods of solving constrained nonlinear optimization problems for predictive control are mainly based on quadratic programming, which is quite sensitive to initial values, easy to trap in local minimal points, and requires large computational effort. In recent years, T-S fuzzy modeling has been found to be an effective approach in performing predictive control. Intelligent optimization algorithms, such as chaos optimization algorithm (COA) and particle swarm optimization (PSO), have been shown to have faster convergence and higher iterative accuracy than those based on conventional optimization methods. In this paper, chaos particle swarm optimization (CPSO), which involves combining the strengths of COA and PSO, and T-S fuzzy modeling are proposed as approaches to perform constrained predictive control. Predictive control of temperature of continued hyperthermic celiac perfusion for medical treatment based on the proposed approaches was carried out. Simulation tests were conducted to evaluate the performance of temperature control based on T-S fuzzy modeling and CPSO. Test results indicate that the T-S fuzzy model based on CPSO outperforms models based on generalized predictive control, COA, and PSO.
► T-S fuzzy modeling approach, chaos optimization algorithm (COA) and particle swarm optimization (PSO) have been used to perform predictive control. ► Chaos particle swarm optimization (CPSO) and T-S fuzzy modeling approaches are proposed to perform constrained predictive control. ► Predictive control of temperature of continued hyperthermic celiac perfusion based on the proposed approaches was conducted. ► Test results of the case indicate T-S fuzzy model based on CPSO outperforms models based on generalized predictive control, COA, and PSO. Predictive control of systems is very much related to the efficiency and cost of systems, as well as to the quality of systems outcomes. However, it is difficult to achieve optimal predictive control because most predictive controls for systems have characteristics of randomness, strong and complex constraints, large delay time, fuzziness, and nonlinearity. Conventional methods of solving constrained nonlinear optimization problems for predictive control are mainly based on quadratic programming, which is quite sensitive to initial values, easy to trap in local minimal points, and requires large computational effort. In recent years, T–S fuzzy modeling has been found to be an effective approach in performing predictive control. Intelligent optimization algorithms, such as chaos optimization algorithm (COA) and particle swarm optimization (PSO), have been shown to have faster convergence and higher iterative accuracy than those based on conventional optimization methods. In this paper, chaos particle swarm optimization (CPSO), which involves combining the strengths of COA and PSO, and T–S fuzzy modeling are proposed as approaches to perform constrained predictive control. Predictive control of temperature of continued hyperthermic celiac perfusion for medical treatment based on the proposed approaches was carried out. Simulation tests were conducted to evaluate the performance of temperature control based on T–S fuzzy modeling and CPSO. Test results indicate that the T–S fuzzy model based on CPSO outperforms models based on generalized predictive control, COA, and PSO.
Author Jiang, Huimin
Ysim, Y.C.
Kwong, C.K.
Chen, Zengqiang
Author_xml – sequence: 1
  givenname: Huimin
  surname: Jiang
  fullname: Jiang, Huimin
  organization: Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China
– sequence: 2
  givenname: C.K.
  surname: Kwong
  fullname: Kwong, C.K.
  email: mfckkong@polyu.edu.hk
  organization: Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China
– sequence: 3
  givenname: Zengqiang
  surname: Chen
  fullname: Chen, Zengqiang
  organization: Department of Automation, Nankai University, Tianjin, China
– sequence: 4
  givenname: Y.C.
  surname: Ysim
  fullname: Ysim, Y.C.
  organization: Department of Industrial and Systems Engineering, The Hong Kong Polytechnic University, Hong Kong, China
BookMark eNp9kb1u2zAUhYnABWI7eYFM3NJFKn8kUQK6FEabFAjQIelMMORVQkMiFZJOYU99h75hniRU3amDpwtcnO_g3nNWaOG8A4SuKCkpoc2nbQnxlyoZobQkoiREnKElbQUvGtHxBVqSrhZFRUV1jlYxbgmhIouW6GnzrHzEkwrJ6gFwdgkj9lOyoz2oZL3Dyhn88Pb7zz3ud4fDHo_ewGDdE1bTFLzSzxBx8lh7F1NQ1oHBUwBjdbKvMK9T8MMF-tCrIcLlv7lGP799fdjcFnc_br5vvtwVmjd1KnhlGO9rqnshNKuoqdtWcd4RUrGONXX7-Kh5L1qtgKmeM5PfqBgjhjddq3vK1-j66JtPe9lBTHK0UcMwKAd-F2U24azmbFZ-PKnMzpTUdSN4lrZHqQ4-xgC91Db9DWd-eJCUyLkFuZVzC3JuQRIhc8AZZf-hU7CjCvvT0OcjBDmpVwtBRm3B6RxqAJ2k8fYU_g4-MKUH
CitedBy_id crossref_primary_10_1155_2014_172306
crossref_primary_10_1080_03081079_2015_1086344
crossref_primary_10_1007_s00500_022_07253_y
crossref_primary_10_1177_0954408914542139
crossref_primary_10_1155_2017_5813192
crossref_primary_10_1109_TCYB_2017_2771497
crossref_primary_10_4028_www_scientific_net_AMM_336_338_467
crossref_primary_10_3390_en18071849
crossref_primary_10_1007_s10489_022_04059_1
crossref_primary_10_1016_j_neucom_2013_07_009
crossref_primary_10_1007_s00521_020_05132_x
crossref_primary_10_1155_2015_437943
crossref_primary_10_1177_0954410014565678
crossref_primary_10_4028_www_scientific_net_AMM_321_324_921
crossref_primary_10_1007_s40313_021_00755_4
crossref_primary_10_1007_s10489_015_0752_0
crossref_primary_10_4028_www_scientific_net_AMM_220_223_2113
crossref_primary_10_1016_j_isatra_2022_05_018
crossref_primary_10_1016_j_eswa_2012_04_063
crossref_primary_10_1016_j_measurement_2013_11_041
crossref_primary_10_1016_j_ast_2013_11_003
crossref_primary_10_3390_a11020023
crossref_primary_10_1016_j_buildenv_2021_107667
crossref_primary_10_4018_IJSDA_2018040103
crossref_primary_10_1016_j_ifacol_2017_08_2564
crossref_primary_10_1109_ACCESS_2019_2932746
crossref_primary_10_1007_s40815_021_01153_3
crossref_primary_10_3390_ijgi5120241
crossref_primary_10_1016_j_arcontrol_2024_100966
crossref_primary_10_1016_j_measurement_2018_12_050
crossref_primary_10_1016_j_swevo_2015_03_002
crossref_primary_10_1016_j_eswa_2013_12_017
crossref_primary_10_1007_s11356_019_04208_z
crossref_primary_10_1007_s13198_021_01426_y
crossref_primary_10_1016_j_eswa_2013_10_061
crossref_primary_10_1109_TMECH_2016_2598606
Cites_doi 10.1007/BF02739235
10.1016/0005-1098(87)90087-2
10.1016/0957-4174(96)00026-7
10.1016/j.chaos.2007.09.063
10.1109/4235.910467
10.1016/j.chaos.2004.11.095
10.1016/j.arcontrol.2005.01.001
10.1016/j.eswa.2007.08.088
10.1016/j.eswa.2006.12.004
10.1016/j.eswa.2009.04.015
10.1016/S1004-9541(07)60121-9
10.1119/1.15345
10.1134/S1061920809010087
10.1016/j.applthermaleng.2008.11.001
ContentType Journal Article
Copyright 2011 Elsevier Ltd
Copyright_xml – notice: 2011 Elsevier Ltd
DBID AAYXX
CITATION
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.eswa.2011.07.007
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 201
ExternalDocumentID 10_1016_j_eswa_2011_07_007
S0957417411009699
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c365t-34d23f51cf77c241d588a339004292658bbc3f78cae2af32d1704220d3698cf13
ISICitedReferencesCount 54
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000296214900023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Thu Oct 02 11:08:47 EDT 2025
Sat Sep 27 23:40:05 EDT 2025
Tue Nov 18 20:35:36 EST 2025
Sat Nov 29 04:44:27 EST 2025
Fri Feb 23 02:26:30 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Constrained predictive control
COA
Chaos particle swarm optimization
PSO
T–S fuzzy models
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c365t-34d23f51cf77c241d588a339004292658bbc3f78cae2af32d1704220d3698cf13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 1701055673
PQPubID 23500
PageCount 8
ParticipantIDs proquest_miscellaneous_926325321
proquest_miscellaneous_1701055673
crossref_citationtrail_10_1016_j_eswa_2011_07_007
crossref_primary_10_1016_j_eswa_2011_07_007
elsevier_sciencedirect_doi_10_1016_j_eswa_2011_07_007
PublicationCentury 2000
PublicationDate 2012
2012-1-00
20120101
PublicationDateYYYYMMDD 2012-01-01
PublicationDate_xml – year: 2012
  text: 2012
PublicationDecade 2010
PublicationTitle Expert systems with applications
PublicationYear 2012
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liu, Wang, Jin, Tang, Huang (b0090) 2005; 25
Cheng (b0020) 1999; 4
Song, Chen, Yuan (b0130) 2007; 15
Lin, Ying, Chen, Lee (b0080) 2008; 35
Li, Qin, Bao, He (b0070) 2002; 38
Tang, Zhang, Jiang (b0135) 2009; 36
Mussati, Scenna, Manassaldi, Benz (b0105) 2009; 29
Mehta, A., Marwah, M., Hao, M, Gupta, C., Wang, S., Sharma, R., Dayal, U., & Ari, I. (2009). CHAOS: A data stream analysis architecture for enterprise applications. In
Kuwata (b0065) 2003; 47
(Vol. 1, pp. 81–86).
Dangprasert, Avatchanakorn (b0030) 1996; 10
Liu, Chen, Yuan (b0085) 2000; 33
(Vol. 4, pp. 1942–1948).
(pp. 69–73).
Alatas, Akin, Ozer (b0005) 2009; 40
Shi, H. Y., Chen, Z. F., & Sun, C. Z. (2003). Application of improved chaotic optimization algorithm to problems with motion planning for mobile robots. In
Gleick (b0050) 1987; 56
Kennedy, J. & Eberhart, R. (1995). Particle swarm optimization. In
Bachlaus, Shukla, Tiwari, Shankar (b0010) 2006; 220
Eberhart, R. C., & Shi, Y. H. (2001). Particle swarm optimization: Developments, applications and resources. In
Qin, Wu, Wang (b0110) 2005; 20
(pp. 33–40).
Krohling, Rey (b0060) 2001; 5
(pp. 39–43). IEEE Service Center.
Maslov (b0095) 2009; 16
Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. In
Fradkov, Evans (b0045) 2005; 29
(Vol. 1, pp. 611–615).
Eberhart, R. C., & Kennedy, J. (1995). A new optimizer using particle swarm theory. In
Bazaraa, Sherali, Shetty (b0140) 2006
Clarke, Mohtadi, Tuffs (b0025) 1987; 23
Schittkowski (b0115) 1986; 5
Lin, Chang, Hsieh (b0075) 2008; 34
10.1016/j.eswa.2011.07.007_b0040
Krohling (10.1016/j.eswa.2011.07.007_b0060) 2001; 5
10.1016/j.eswa.2011.07.007_b0100
10.1016/j.eswa.2011.07.007_b0120
Tang (10.1016/j.eswa.2011.07.007_b0135) 2009; 36
Lin (10.1016/j.eswa.2011.07.007_b0080) 2008; 35
Alatas (10.1016/j.eswa.2011.07.007_b0005) 2009; 40
Cheng (10.1016/j.eswa.2011.07.007_b0020) 1999; 4
Fradkov (10.1016/j.eswa.2011.07.007_b0045) 2005; 29
Gleick (10.1016/j.eswa.2011.07.007_b0050) 1987; 56
Bazaraa (10.1016/j.eswa.2011.07.007_b0140) 2006
Schittkowski (10.1016/j.eswa.2011.07.007_b0115) 1986; 5
10.1016/j.eswa.2011.07.007_b0125
Bachlaus (10.1016/j.eswa.2011.07.007_b0010) 2006; 220
Li (10.1016/j.eswa.2011.07.007_b0070) 2002; 38
Qin (10.1016/j.eswa.2011.07.007_b0110) 2005; 20
10.1016/j.eswa.2011.07.007_b0035
Maslov (10.1016/j.eswa.2011.07.007_b0095) 2009; 16
10.1016/j.eswa.2011.07.007_b0055
Kuwata (10.1016/j.eswa.2011.07.007_b0065) 2003; 47
Lin (10.1016/j.eswa.2011.07.007_b0075) 2008; 34
Liu (10.1016/j.eswa.2011.07.007_b0085) 2000; 33
Liu (10.1016/j.eswa.2011.07.007_b0090) 2005; 25
Mussati (10.1016/j.eswa.2011.07.007_b0105) 2009; 29
Song (10.1016/j.eswa.2011.07.007_b0130) 2007; 15
Clarke (10.1016/j.eswa.2011.07.007_b0025) 1987; 23
Dangprasert (10.1016/j.eswa.2011.07.007_b0030) 1996; 10
References_xml – reference: Kennedy, J. & Eberhart, R. (1995). Particle swarm optimization. In:
– volume: 38
  start-page: 1
  year: 2002
  end-page: 4
  ident: b0070
  article-title: Particle swarm optimization algorithm
  publication-title: Computer Engineering and Applications
– volume: 5
  start-page: 78
  year: 2001
  end-page: 82
  ident: b0060
  article-title: Design of optimal disturbance rejection PID controllers using genetic algorithms
  publication-title: IEEE Transaction on Evolutionary
– volume: 47
  start-page: 451
  year: 2003
  end-page: 455
  ident: b0065
  article-title: Chaos simulator as a developing tool for applications of chaos engineering
  publication-title: Systems, Control and Information
– reference: (Vol. 4, pp. 1942–1948).
– volume: 220
  start-page: 77
  year: 2006
  end-page: 91
  ident: b0010
  article-title: Optimization of system reliability using chaos-embedded self-organizing hierarchical particle swarm optimization
  publication-title: Proceedings of the institution of mechanical engineers
– reference: Shi, H. Y., Chen, Z. F., & Sun, C. Z. (2003). Application of improved chaotic optimization algorithm to problems with motion planning for mobile robots. In:
– volume: 10
  start-page: 465
  year: 1996
  end-page: 470
  ident: b0030
  article-title: Genetic algorithms based on an intelligent controller
  publication-title: Expert System with Application
– volume: 56
  start-page: 1053
  year: 1987
  end-page: 1054
  ident: b0050
  article-title: Chaos, making a new science
  publication-title: American Journal of Physics
– volume: 25
  start-page: 1261
  year: 2005
  end-page: 1271
  ident: b0090
  article-title: Improved particle swarm optimization combined with chaos
  publication-title: Chaos, Solitons & Fractals
– volume: 29
  start-page: 33
  year: 2005
  end-page: 56
  ident: b0045
  article-title: Control of chaos: Methods and applications in engineering
  publication-title: Annual Reviews in Control
– volume: 5
  start-page: 1
  year: 1986
  end-page: 4
  ident: b0115
  article-title: A fortran subroutine solving constrained nonlinear programming problems
  publication-title: Annals of Operations Research
– volume: 29
  start-page: 2194
  year: 2009
  end-page: 2204
  ident: b0105
  article-title: Mixed integer nonlinear programming model for the optimal design of fired heaters
  publication-title: Applied Thermal Engineering
– reference: Shi, Y., & Eberhart, R. (1998). A modified particle swarm optimizer. In:
– reference: (Vol. 1, pp. 611–615).
– volume: 16
  start-page: 103
  year: 2009
  end-page: 120
  ident: b0095
  article-title: Theory of chaos and its application to the crisis of debts and the origin of inflation
  publication-title: Russian Journal of Mathematical Physics
– reference: Mehta, A., Marwah, M., Hao, M, Gupta, C., Wang, S., Sharma, R., Dayal, U., & Ari, I. (2009). CHAOS: A data stream analysis architecture for enterprise applications. In:
– reference: (Vol. 1, pp. 81–86).
– reference: Eberhart, R. C., & Kennedy, J. (1995). A new optimizer using particle swarm theory. In:
– volume: 33
  start-page: 114
  year: 2000
  end-page: 119
  ident: b0085
  article-title: T–S model based fuzzy generalized predictive control
  publication-title: Acta Scientiarum Naturalium University Nankaiensis
– volume: 35
  start-page: 1817
  year: 2008
  end-page: 1824
  ident: b0080
  article-title: Particle swarm optimization for parameter determination and feature selection of support vector machines
  publication-title: Expert Systems with Applications
– volume: 15
  start-page: 539
  year: 2007
  end-page: 544
  ident: b0130
  article-title: Neural network nonlinear predictive control based on tent-map chaos optimization
  publication-title: Chinese Journal of Chemical Engineering
– reference: (pp. 39–43). IEEE Service Center.
– reference: Eberhart, R. C., & Shi, Y. H. (2001). Particle swarm optimization: Developments, applications and resources. In:
– reference: (pp. 69–73).
– volume: 4
  start-page: 74
  year: 1999
  end-page: 78
  ident: b0020
  article-title: Study on fuzzy-neural network controller of T–S model and its application
  publication-title: Journal of Circuits and System
– volume: 20
  start-page: 261
  year: 2005
  end-page: 265
  ident: b0110
  article-title: Hybrid chaos optimization algorithm for fuzzy neural network model and its applications
  publication-title: Control and Decision
– volume: 34
  start-page: 1194
  year: 2008
  end-page: 1199
  ident: b0075
  article-title: A particle swarm optimization approach to nonlinear rational filter modeling
  publication-title: Expert System with Application
– reference: (pp. 33–40).
– volume: 40
  start-page: 1715
  year: 2009
  end-page: 1734
  ident: b0005
  article-title: Chaos embedded particle swarm optimization algorithms
  publication-title: Chaos, Solitons & Fractals
– volume: 23
  start-page: 137
  year: 1987
  end-page: 160
  ident: b0025
  article-title: Generalized predictive control
  publication-title: Automatica
– year: 2006
  ident: b0140
  article-title: Nonlinear programming: Theory and algorithms
– volume: 36
  start-page: 11853
  year: 2009
  end-page: 11857
  ident: b0135
  article-title: Prediction of silicon content in hot metal using support vector regression based on chaos particle swarm optimization
  publication-title: Expert Systems with Applications
– volume: 5
  start-page: 1
  year: 1986
  ident: 10.1016/j.eswa.2011.07.007_b0115
  article-title: A fortran subroutine solving constrained nonlinear programming problems
  publication-title: Annals of Operations Research
  doi: 10.1007/BF02739235
– volume: 23
  start-page: 137
  year: 1987
  ident: 10.1016/j.eswa.2011.07.007_b0025
  article-title: Generalized predictive control
  publication-title: Automatica
  doi: 10.1016/0005-1098(87)90087-2
– volume: 10
  start-page: 465
  year: 1996
  ident: 10.1016/j.eswa.2011.07.007_b0030
  article-title: Genetic algorithms based on an intelligent controller
  publication-title: Expert System with Application
  doi: 10.1016/0957-4174(96)00026-7
– volume: 47
  start-page: 451
  year: 2003
  ident: 10.1016/j.eswa.2011.07.007_b0065
  article-title: Chaos simulator as a developing tool for applications of chaos engineering
  publication-title: Systems, Control and Information
– volume: 40
  start-page: 1715
  year: 2009
  ident: 10.1016/j.eswa.2011.07.007_b0005
  article-title: Chaos embedded particle swarm optimization algorithms
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2007.09.063
– volume: 5
  start-page: 78
  year: 2001
  ident: 10.1016/j.eswa.2011.07.007_b0060
  article-title: Design of optimal disturbance rejection PID controllers using genetic algorithms
  publication-title: IEEE Transaction on Evolutionary
  doi: 10.1109/4235.910467
– volume: 25
  start-page: 1261
  year: 2005
  ident: 10.1016/j.eswa.2011.07.007_b0090
  article-title: Improved particle swarm optimization combined with chaos
  publication-title: Chaos, Solitons & Fractals
  doi: 10.1016/j.chaos.2004.11.095
– volume: 29
  start-page: 33
  year: 2005
  ident: 10.1016/j.eswa.2011.07.007_b0045
  article-title: Control of chaos: Methods and applications in engineering
  publication-title: Annual Reviews in Control
  doi: 10.1016/j.arcontrol.2005.01.001
– volume: 35
  start-page: 1817
  year: 2008
  ident: 10.1016/j.eswa.2011.07.007_b0080
  article-title: Particle swarm optimization for parameter determination and feature selection of support vector machines
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2007.08.088
– volume: 20
  start-page: 261
  year: 2005
  ident: 10.1016/j.eswa.2011.07.007_b0110
  article-title: Hybrid chaos optimization algorithm for fuzzy neural network model and its applications
  publication-title: Control and Decision
– volume: 34
  start-page: 1194
  year: 2008
  ident: 10.1016/j.eswa.2011.07.007_b0075
  article-title: A particle swarm optimization approach to nonlinear rational filter modeling
  publication-title: Expert System with Application
  doi: 10.1016/j.eswa.2006.12.004
– volume: 36
  start-page: 11853
  year: 2009
  ident: 10.1016/j.eswa.2011.07.007_b0135
  article-title: Prediction of silicon content in hot metal using support vector regression based on chaos particle swarm optimization
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.04.015
– volume: 38
  start-page: 1
  year: 2002
  ident: 10.1016/j.eswa.2011.07.007_b0070
  article-title: Particle swarm optimization algorithm
  publication-title: Computer Engineering and Applications
– ident: 10.1016/j.eswa.2011.07.007_b0125
– volume: 4
  start-page: 74
  year: 1999
  ident: 10.1016/j.eswa.2011.07.007_b0020
  article-title: Study on fuzzy-neural network controller of T–S model and its application
  publication-title: Journal of Circuits and System
– ident: 10.1016/j.eswa.2011.07.007_b0055
– ident: 10.1016/j.eswa.2011.07.007_b0100
– volume: 15
  start-page: 539
  year: 2007
  ident: 10.1016/j.eswa.2011.07.007_b0130
  article-title: Neural network nonlinear predictive control based on tent-map chaos optimization
  publication-title: Chinese Journal of Chemical Engineering
  doi: 10.1016/S1004-9541(07)60121-9
– ident: 10.1016/j.eswa.2011.07.007_b0035
– ident: 10.1016/j.eswa.2011.07.007_b0120
– volume: 56
  start-page: 1053
  year: 1987
  ident: 10.1016/j.eswa.2011.07.007_b0050
  article-title: Chaos, making a new science
  publication-title: American Journal of Physics
  doi: 10.1119/1.15345
– volume: 16
  start-page: 103
  year: 2009
  ident: 10.1016/j.eswa.2011.07.007_b0095
  article-title: Theory of chaos and its application to the crisis of debts and the origin of inflation
  publication-title: Russian Journal of Mathematical Physics
  doi: 10.1134/S1061920809010087
– year: 2006
  ident: 10.1016/j.eswa.2011.07.007_b0140
– volume: 220
  start-page: 77
  year: 2006
  ident: 10.1016/j.eswa.2011.07.007_b0010
  article-title: Optimization of system reliability using chaos-embedded self-organizing hierarchical particle swarm optimization
  publication-title: Proceedings of the institution of mechanical engineers
– ident: 10.1016/j.eswa.2011.07.007_b0040
– volume: 29
  start-page: 2194
  year: 2009
  ident: 10.1016/j.eswa.2011.07.007_b0105
  article-title: Mixed integer nonlinear programming model for the optimal design of fired heaters
  publication-title: Applied Thermal Engineering
  doi: 10.1016/j.applthermaleng.2008.11.001
– volume: 33
  start-page: 114
  year: 2000
  ident: 10.1016/j.eswa.2011.07.007_b0085
  article-title: T–S model based fuzzy generalized predictive control
  publication-title: Acta Scientiarum Naturalium University Nankaiensis
SSID ssj0017007
Score 2.2590268
Snippet ► T-S fuzzy modeling approach, chaos optimization algorithm (COA) and particle swarm optimization (PSO) have been used to perform predictive control. ► Chaos...
Predictive control of systems is very much related to the efficiency and cost of systems, as well as to the quality of systems outcomes. However, it is...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 194
SubjectTerms Chaos particle swarm optimization
Chaos theory
COA
Constrained predictive control
Constraints
Fuzzy
Fuzzy logic
Fuzzy set theory
Mathematical models
Optimization
Predictive control
PSO
T–S fuzzy models
Title Chaos particle swarm optimization and T–S fuzzy modeling approaches to constrained predictive control
URI https://dx.doi.org/10.1016/j.eswa.2011.07.007
https://www.proquest.com/docview/1701055673
https://www.proquest.com/docview/926325321
Volume 39
WOSCitedRecordID wos000296214900023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dbtMwFLZKxwU3_CPKn4zEXZSosZPYuZyqofGjCakFFW4ix3FGpy0tTbuNXfEOPATvxZNwHNtJN7QJkLiJqtRuXJ8vx8fH53wHoRehIExyeL9ZLEo_KhLiC5FwXygVhbAnomkT7f7hLdvb49Np-q7X--FyYY4PWVXx09N08V9FDfdA2Dp19i_E3f4o3IDPIHS4gtjh-keCH30W89pb2G-8-kQsj7w5aIYjm3LZnBdMXJQDHXvl-uzsq6mJ06QsWppxQ_4gtQGp60iohlCgmDUK0oW4n3Psa9bkleWGdllzG-fjbbDOzPqod9e6pFir8k9sdPAoeBN0UQdGLX5S1f4X3a_VUrUpA_0xGAWbnouw2-G2yTRd5JLxSDI_Ck3RnkAZfcwZ9RNmiig6hW3Yj84B02jfMI02FnJivCS_rRHGXXEQKBCA5XDVNJasWxHbOMWxHpMekibWS5M0vYa2CItT3kdb2692pq_bAys2NJn57j_Y_CwTSnjxSZfZQBesgcbEmdxGN-3eBG8b5NxBPVXdRbdc3Q9sl4F7aL-BGHYQww3E8CbEMEAMT35--z7GDbiwAxfuwIVXc7wBLtyBC1tw3UfvX-5MRru-LdjhS5rEK59GBaFlHMqSMQmmYRFzLuB1b6weArZunktaMi6FIqKkpIBpiwgZFjRJuSxD-gD1q3mlHiIMC6nUxSNpTuKoiIe5jLngOTQiRZmHyQCFbgozadns9XgPMxe2eJDpac_0tGdDHWTBBshr-ywMl8uVrWMnmcxao8bKzABIV_Z77sSYgarW52-iUvN1nenSB5q7itEBwpe0SXX9hJiS8NE_Pv4xuqHfNeMlfIL6q-VaPUXX5fFqVi-fWdj-AvvJyiU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Chaos+particle+swarm+optimization+and+T%E2%80%93S+fuzzy+modeling+approaches+to+constrained+predictive+control&rft.jtitle=Expert+systems+with+applications&rft.au=Jiang%2C+Huimin&rft.au=Kwong%2C+C.K.&rft.au=Chen%2C+Zengqiang&rft.au=Ysim%2C+Y.C.&rft.date=2012&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=39&rft.issue=1&rft.spage=194&rft.epage=201&rft_id=info:doi/10.1016%2Fj.eswa.2011.07.007&rft.externalDocID=S0957417411009699
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon