Particle swarm optimization with selective particle regeneration for data clustering

► We present a novel algorithm developed based on particle swarm optimization. ► The algorithm contains particle regeneration operation. ► We apply this algorithm to data clustering problems. ► The proposed algorithm performs very well in the conducted numerical experiment. This paper presents selec...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Expert systems with applications Ročník 38; číslo 6; s. 6565 - 6576
Hlavní autori: Tsai, Chi-Yang, Kao, I-Wei
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.06.2011
Predmet:
ISSN:0957-4174, 1873-6793
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract ► We present a novel algorithm developed based on particle swarm optimization. ► The algorithm contains particle regeneration operation. ► We apply this algorithm to data clustering problems. ► The proposed algorithm performs very well in the conducted numerical experiment. This paper presents selective regeneration particle swarm optimization (SRPSO), a novel algorithm developed based on particle swarm optimization (PSO). It contains two new features, unbalanced parameter setting and particle regeneration operation. The unbalanced parameter setting enables fast convergence of the algorithm and the particle regeneration operation allows the search to escape from local optima and explore for better solutions. This algorithm is applied to data clustering problems for performance evaluation and a hybrid algorithm (KSRPSO) of K-means clustering method and SRPSO is developed. In the conducted numerical experiments, SRPSO and KSRPSO are compared to the original PSO algorithm, K-means, as well as, other methods proposed by other studies. The results demonstrate that SRPSO and KSRPSO are efficient, accurate, and robust methods for data clustering problems.
AbstractList ► We present a novel algorithm developed based on particle swarm optimization. ► The algorithm contains particle regeneration operation. ► We apply this algorithm to data clustering problems. ► The proposed algorithm performs very well in the conducted numerical experiment. This paper presents selective regeneration particle swarm optimization (SRPSO), a novel algorithm developed based on particle swarm optimization (PSO). It contains two new features, unbalanced parameter setting and particle regeneration operation. The unbalanced parameter setting enables fast convergence of the algorithm and the particle regeneration operation allows the search to escape from local optima and explore for better solutions. This algorithm is applied to data clustering problems for performance evaluation and a hybrid algorithm (KSRPSO) of K-means clustering method and SRPSO is developed. In the conducted numerical experiments, SRPSO and KSRPSO are compared to the original PSO algorithm, K-means, as well as, other methods proposed by other studies. The results demonstrate that SRPSO and KSRPSO are efficient, accurate, and robust methods for data clustering problems.
This paper presents selective regeneration particle swarm optimization (SRPSO), a novel algorithm developed based on particle swarm optimization (PSO). It contains two new features, unbalanced parameter setting and particle regeneration operation. The unbalanced parameter setting enables fast convergence of the algorithm and the particle regeneration operation allows the search to escape from local optima and explore for better solutions. This algorithm is applied to data clustering problems for performance evaluation and a hybrid algorithm (KSRPSO) of K-means clustering method and SRPSO is developed. In the conducted numerical experiments, SRPSO and KSRPSO are compared to the original PSO algorithm, K-means, as well as, other methods proposed by other studies. The results demonstrate that SRPSO and KSRPSO are efficient, accurate, and robust methods for data clustering problems.
Author Tsai, Chi-Yang
Kao, I-Wei
Author_xml – sequence: 1
  givenname: Chi-Yang
  surname: Tsai
  fullname: Tsai, Chi-Yang
  email: iecytsai@saturn.yzu.edu.tw
– sequence: 2
  givenname: I-Wei
  surname: Kao
  fullname: Kao, I-Wei
BookMark eNp9kDtPwzAURi1UJNrCH2DKBkuCX3lJLKjiJVWCocyWY18XV3kU220Fv56EwMLQ6UpX53zDmaFJ27WA0CXBCcEku9kk4A8yoXh4kAQX9ARNSZGzOMtLNkFTXKZ5zEnOz9DM-w3GJMc4n6LVq3TBqhqi3ndN1G2DbeyXDLZro4MN75GHGlSwe4i2f6iDNbTgRsh0LtIyyEjVOx_A2XZ9jk6NrD1c_N45enu4Xy2e4uXL4_PibhkrlqUhZpwXVFFTKVpIrqXErCJGawCjVQacstwUBmhVEULB0Eqnhc5SpVKiGaSUzdHVuLt13ccOfBCN9QrqWrbQ7bwoMs5ZSXnZk9dHyb4GwYwzynqUjqhynfcOjNg620j3KQgWQ2yxEUNsMcQWhIg-di8V_yRlw0-f4KStj6u3owp9qb0FJ7yy0CrQ1vXhhe7sMf0bxTqfcw
CitedBy_id crossref_primary_10_3233_BME_230150
crossref_primary_10_1016_j_aei_2016_05_003
crossref_primary_10_1007_s11042_021_10594_9
crossref_primary_10_1109_ACCESS_2019_2938063
crossref_primary_10_3390_a11100151
crossref_primary_10_1016_j_swevo_2019_100573
crossref_primary_10_1371_journal_pone_0137246
crossref_primary_10_1016_j_eswa_2016_02_009
crossref_primary_10_1016_j_swevo_2013_11_003
crossref_primary_10_3390_jmse10091232
crossref_primary_10_1007_s00500_013_1128_1
crossref_primary_10_1016_j_asoc_2018_07_031
crossref_primary_10_1016_j_neucom_2015_01_058
crossref_primary_10_1108_BIJ_11_2020_0594
crossref_primary_10_1155_2022_2828198
crossref_primary_10_1109_ACCESS_2020_2994984
crossref_primary_10_1108_IMDS_06_2015_0222
crossref_primary_10_1007_s00500_014_1436_0
crossref_primary_10_1007_s00500_023_09332_0
crossref_primary_10_1016_j_asoc_2013_05_003
crossref_primary_10_3390_app112311246
crossref_primary_10_1007_s11047_016_9542_9
crossref_primary_10_4018_jeco_2013040105
crossref_primary_10_1016_j_cnsns_2013_03_011
crossref_primary_10_1016_j_asoc_2018_06_013
crossref_primary_10_1007_s00521_015_2095_5
crossref_primary_10_1016_j_cja_2015_04_005
crossref_primary_10_1177_0021998312451298
crossref_primary_10_1007_s11015_012_9591_y
crossref_primary_10_1007_s13748_014_0044_7
crossref_primary_10_1109_ACCESS_2020_2973613
crossref_primary_10_1016_j_eswa_2013_08_051
crossref_primary_10_3390_s18092953
crossref_primary_10_1016_j_asoc_2016_01_019
crossref_primary_10_1016_j_advengsoft_2020_102961
crossref_primary_10_1016_j_procs_2025_03_309
crossref_primary_10_1016_j_eswa_2013_03_032
crossref_primary_10_3390_a8020234
crossref_primary_10_1007_s11837_012_0502_2
Cites_doi 10.1016/S0020-0255(02)00208-6
10.1016/j.chaos.2006.10.028
10.1080/0305215041000168521
10.1109/IEEM.2007.4419249
10.1016/j.cie.2007.10.012
10.1109/TSMCB.2008.921005
10.1016/j.eswa.2009.02.055
10.1016/j.eswa.2008.06.110
10.1142/S0218001401000927
10.1016/j.eswa.2007.01.028
10.1016/j.eswa.2008.06.027
10.1007/11552253_45
10.1016/j.cor.2007.02.019
10.1016/j.enpol.2008.02.018
10.1016/j.eswa.2009.05.073
10.1016/j.cor.2006.12.013
10.1016/j.asoc.2007.07.002
10.1088/0305-4470/38/40/001
10.1016/j.eswa.2008.02.072
ContentType Journal Article
Copyright 2010 Elsevier Ltd
Copyright_xml – notice: 2010 Elsevier Ltd
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.eswa.2010.11.082
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-6793
EndPage 6576
ExternalDocumentID 10_1016_j_eswa_2010_11_082
S0957417410013205
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABFNM
ABKBG
ABMAC
ABMVD
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACHRH
ACNNM
ACNTT
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGJBL
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABUFD
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c365t-34482c2fbc28a4daa03b1fddeefdc6e4237f8fe2bb112ef2bd58d65cc51d3e523
ISICitedReferencesCount 62
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000288343900022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Wed Oct 01 14:36:53 EDT 2025
Sun Nov 09 10:57:11 EST 2025
Sat Nov 29 04:44:22 EST 2025
Tue Nov 18 22:36:20 EST 2025
Fri Feb 23 02:30:23 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords K-means algorithm
Particle swarm optimization
Data clustering
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c365t-34482c2fbc28a4daa03b1fddeefdc6e4237f8fe2bb112ef2bd58d65cc51d3e523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 1701034323
PQPubID 23500
PageCount 12
ParticipantIDs proquest_miscellaneous_864439249
proquest_miscellaneous_1701034323
crossref_primary_10_1016_j_eswa_2010_11_082
crossref_citationtrail_10_1016_j_eswa_2010_11_082
elsevier_sciencedirect_doi_10_1016_j_eswa_2010_11_082
PublicationCentury 2000
PublicationDate June 2011
2011-06-00
20110601
PublicationDateYYYYMMDD 2011-06-01
PublicationDate_xml – month: 06
  year: 2011
  text: June 2011
PublicationDecade 2010
PublicationTitle Expert systems with applications
PublicationYear 2011
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kao, Zahara (b0050) 2007; 8
Adib (b0010) 2005; 40
Bandyopadhyay, Maulik, Malay (b0020) 2001; 15
Wang, Che, Wu (b0115) 2010; 37
(pp. 1942–1948).
Coelho (b0030) 2008; 37
Lin, Wang, Lee (b0070) 2009; 36
(pp. 281–297).
Onut, Tuzkaya, Doğac (b0090) 2008; 54
Sha, Hsu (b0095) 2008; 35
Alper (b0015) 2008; 36
(pp. 548–552).
Yannis, Magdalene, Michael, Constantin (b0120) 2009; 36
Kao, I.-W., Tsai, C.-Y., & Wang, Y.-C., (2007). An effective particle swarm optimization method for data clustering. In
Acharjee, Goswami (b0005) 2009; 36
Zeng, Zhu, Shen, Qi (b0125) 2007; 13
Ling, Iu, Chan, Lam, Yeung, Leung (b0075) 2008; 38
Bandyopadhyay, Maulik (b0025) 2002; 146
Hartigan (b0060) 1975
,
Kennedy, J., & Eberhart, R. C., (1995). Particle swarm optimization, In
Sun (b0100) 2009; 36
Tsai, Kao (b0105) 2009; 2
Fan, Liang, Zahara (b0035) 2004; 36
Kao, Zahara, Kao (b0055) 2008; 34
Wang, Qiu, Bai (b0110) 2005; 3646
Gao, Yang, Zhou, Hu (b0040) 2006; 12
Liu, Wang, Jin (b0080) 2008; 35
MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate observations. In
Lin (10.1016/j.eswa.2010.11.082_b0070) 2009; 36
Wang (10.1016/j.eswa.2010.11.082_b0115) 2010; 37
Alper (10.1016/j.eswa.2010.11.082_b0015) 2008; 36
Adib (10.1016/j.eswa.2010.11.082_b0010) 2005; 40
Ling (10.1016/j.eswa.2010.11.082_b0075) 2008; 38
Hartigan (10.1016/j.eswa.2010.11.082_b0060) 1975
Bandyopadhyay (10.1016/j.eswa.2010.11.082_b0025) 2002; 146
Kao (10.1016/j.eswa.2010.11.082_b0055) 2008; 34
Sun (10.1016/j.eswa.2010.11.082_b0100) 2009; 36
Zeng (10.1016/j.eswa.2010.11.082_b0125) 2007; 13
Gao (10.1016/j.eswa.2010.11.082_b0040) 2006; 12
Liu (10.1016/j.eswa.2010.11.082_b0080) 2008; 35
Kao (10.1016/j.eswa.2010.11.082_b0050) 2007; 8
Tsai (10.1016/j.eswa.2010.11.082_b0105) 2009; 2
Wang (10.1016/j.eswa.2010.11.082_b0110) 2005; 3646
Acharjee (10.1016/j.eswa.2010.11.082_b0005) 2009; 36
Yannis (10.1016/j.eswa.2010.11.082_b0120) 2009; 36
Coelho (10.1016/j.eswa.2010.11.082_b0030) 2008; 37
10.1016/j.eswa.2010.11.082_b0065
Bandyopadhyay (10.1016/j.eswa.2010.11.082_b0020) 2001; 15
10.1016/j.eswa.2010.11.082_b0045
Fan (10.1016/j.eswa.2010.11.082_b0035) 2004; 36
10.1016/j.eswa.2010.11.082_b0085
Sha (10.1016/j.eswa.2010.11.082_b0095) 2008; 35
Onut (10.1016/j.eswa.2010.11.082_b0090) 2008; 54
References_xml – reference: (pp. 281–297).
– volume: 146
  start-page: 221
  year: 2002
  end-page: 237
  ident: b0025
  article-title: An evolutionary technique based on
  publication-title: Information Science
– reference: Kao, I.-W., Tsai, C.-Y., & Wang, Y.-C., (2007). An effective particle swarm optimization method for data clustering. In
– reference: ,
– volume: 13
  start-page: 541
  year: 2007
  end-page: 552
  ident: b0125
  article-title: Discrete optimization problem of machine layout based on swarm intelligence algorithm
  publication-title: Computer Integrated Manufacturing Systems
– reference: (pp. 1942–1948).
– volume: 36
  start-page: 5402
  year: 2009
  end-page: 5541
  ident: b0070
  article-title: Pattern recognition using neural-fuzzy networks based on improved particle swam optimization
  publication-title: Expert Systems with Application
– volume: 36
  start-page: 1937
  year: 2008
  end-page: 1944
  ident: b0015
  article-title: Improvement of energy demand forecasts using swarm intelligence. The case of Turkey with projections to 2025
  publication-title: Energy Policy
– volume: 15
  start-page: 269
  year: 2001
  end-page: 285
  ident: b0020
  article-title: Clustering using simulated annealing with probabilistic redistribution
  publication-title: International Journal of Pattern Recognition and Artificial Intelligence
– volume: 38
  start-page: 743
  year: 2008
  end-page: 763
  ident: b0075
  article-title: Hybrid particle swarm optimization with wavelet mutation and its industrial applications
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics
– reference: (pp. 548–552).
– volume: 36
  start-page: 401
  year: 2004
  end-page: 418
  ident: b0035
  article-title: Hybrid simplex search and particle swarm optimization for the global optimization of multimodal functions
  publication-title: Engineering Optimization
– volume: 12
  start-page: 465
  year: 2006
  end-page: 469
  ident: b0040
  article-title: Category forecast application of neural network algorithm trained by particle swarm optimization
  publication-title: Computer Integrated Manufacturing Systems
– volume: 35
  start-page: 2791
  year: 2008
  end-page: 2806
  ident: b0080
  article-title: An effective hybrid PSO-based algorithm for flow shop scheduling with limited buffers
  publication-title: Computers and Operations Research
– reference: Kennedy, J., & Eberhart, R. C., (1995). Particle swarm optimization, In
– volume: 40
  start-page: 8487
  year: 2005
  end-page: 8492
  ident: b0010
  article-title: NP-hardness of the cluster minimization problem revisited
  publication-title: Journal of Physics A: Mathematical and General
– volume: 34
  start-page: 1754
  year: 2008
  end-page: 1762
  ident: b0055
  article-title: A hybridized approach to data clustering
  publication-title: Expert Systems with Application
– volume: 8
  start-page: 849
  year: 2007
  end-page: 857
  ident: b0050
  article-title: A hybrid genetic algorithm and particle swarm optimization for multimodal functions
  publication-title: Applied Soft Computing
– volume: 2
  start-page: 242
  year: 2009
  end-page: 252
  ident: b0105
  article-title: A particle swarm with selective particle regeneration for multimodal functions
  publication-title: Wseas Transactions on Information Science and Applications
– volume: 37
  start-page: 1023
  year: 2010
  end-page: 1034
  ident: b0115
  article-title: Using analytic hierarchy process and particle swarm optimization algorithm for evaluating product plans
  publication-title: Expert Systems with Applications
– year: 1975
  ident: b0060
  article-title: Clustering algorithms
– reference: MacQueen, J. B. (1967). Some methods for classification and analysis of multivariate observations. In
– volume: 54
  start-page: 783
  year: 2008
  end-page: 799
  ident: b0090
  article-title: A particle swarm optimization algorithm for the multiple-level warehouse layout design problem
  publication-title: Computers and Industrial Engineering
– volume: 36
  start-page: 3428
  year: 2009
  end-page: 3438
  ident: b0100
  article-title: Applying particle swarm optimization algorithm to roundness measurement
  publication-title: Expert Systems with Applications
– volume: 37
  start-page: 1409
  year: 2008
  end-page: 1418
  ident: b0030
  article-title: A quantum particle swarm optimizer with chaotic mutation operator
  publication-title: Chaos, Solitons and Fractals
– volume: 35
  start-page: 3243
  year: 2008
  end-page: 3261
  ident: b0095
  article-title: New particle swarm optimization for the open shop scheduling problem
  publication-title: Computers and Operations Research
– volume: 36
  start-page: 10604
  year: 2009
  end-page: 10611
  ident: b0120
  article-title: Ant colony and particle swarm optimization for financial classification problems
  publication-title: Expert Systems with Applications
– volume: 3646
  start-page: 497
  year: 2005
  end-page: 508
  ident: b0110
  article-title: A new hybrid NM method and particle swarm algorithm for multimodal function optimization
  publication-title: Lecture Notes in Computer Science
– volume: 36
  start-page: 541
  year: 2009
  end-page: 552
  ident: b0005
  article-title: Expert algorithm based on adaptive particle swarm optimization for power flow analysis
  publication-title: Expert Systems with Applications
– volume: 146
  start-page: 221
  year: 2002
  ident: 10.1016/j.eswa.2010.11.082_b0025
  article-title: An evolutionary technique based on K-means algorithm for optimal clustering in RN
  publication-title: Information Science
  doi: 10.1016/S0020-0255(02)00208-6
– volume: 37
  start-page: 1409
  year: 2008
  ident: 10.1016/j.eswa.2010.11.082_b0030
  article-title: A quantum particle swarm optimizer with chaotic mutation operator
  publication-title: Chaos, Solitons and Fractals
  doi: 10.1016/j.chaos.2006.10.028
– volume: 2
  start-page: 242
  year: 2009
  ident: 10.1016/j.eswa.2010.11.082_b0105
  article-title: A particle swarm with selective particle regeneration for multimodal functions
  publication-title: Wseas Transactions on Information Science and Applications
– volume: 36
  start-page: 401
  year: 2004
  ident: 10.1016/j.eswa.2010.11.082_b0035
  article-title: Hybrid simplex search and particle swarm optimization for the global optimization of multimodal functions
  publication-title: Engineering Optimization
  doi: 10.1080/0305215041000168521
– ident: 10.1016/j.eswa.2010.11.082_b0045
  doi: 10.1109/IEEM.2007.4419249
– volume: 13
  start-page: 541
  year: 2007
  ident: 10.1016/j.eswa.2010.11.082_b0125
  article-title: Discrete optimization problem of machine layout based on swarm intelligence algorithm
  publication-title: Computer Integrated Manufacturing Systems
– volume: 54
  start-page: 783
  year: 2008
  ident: 10.1016/j.eswa.2010.11.082_b0090
  article-title: A particle swarm optimization algorithm for the multiple-level warehouse layout design problem
  publication-title: Computers and Industrial Engineering
  doi: 10.1016/j.cie.2007.10.012
– volume: 38
  start-page: 743
  year: 2008
  ident: 10.1016/j.eswa.2010.11.082_b0075
  article-title: Hybrid particle swarm optimization with wavelet mutation and its industrial applications
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics
  doi: 10.1109/TSMCB.2008.921005
– volume: 36
  start-page: 10604
  year: 2009
  ident: 10.1016/j.eswa.2010.11.082_b0120
  article-title: Ant colony and particle swarm optimization for financial classification problems
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.02.055
– ident: 10.1016/j.eswa.2010.11.082_b0065
– volume: 36
  start-page: 5402
  year: 2009
  ident: 10.1016/j.eswa.2010.11.082_b0070
  article-title: Pattern recognition using neural-fuzzy networks based on improved particle swam optimization
  publication-title: Expert Systems with Application
  doi: 10.1016/j.eswa.2008.06.110
– year: 1975
  ident: 10.1016/j.eswa.2010.11.082_b0060
– volume: 15
  start-page: 269
  year: 2001
  ident: 10.1016/j.eswa.2010.11.082_b0020
  article-title: Clustering using simulated annealing with probabilistic redistribution
  publication-title: International Journal of Pattern Recognition and Artificial Intelligence
  doi: 10.1142/S0218001401000927
– volume: 34
  start-page: 1754
  year: 2008
  ident: 10.1016/j.eswa.2010.11.082_b0055
  article-title: A hybridized approach to data clustering
  publication-title: Expert Systems with Application
  doi: 10.1016/j.eswa.2007.01.028
– volume: 36
  start-page: 541
  year: 2009
  ident: 10.1016/j.eswa.2010.11.082_b0005
  article-title: Expert algorithm based on adaptive particle swarm optimization for power flow analysis
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.06.027
– volume: 3646
  start-page: 497
  year: 2005
  ident: 10.1016/j.eswa.2010.11.082_b0110
  article-title: A new hybrid NM method and particle swarm algorithm for multimodal function optimization
  publication-title: Lecture Notes in Computer Science
  doi: 10.1007/11552253_45
– volume: 35
  start-page: 3243
  year: 2008
  ident: 10.1016/j.eswa.2010.11.082_b0095
  article-title: New particle swarm optimization for the open shop scheduling problem
  publication-title: Computers and Operations Research
  doi: 10.1016/j.cor.2007.02.019
– volume: 36
  start-page: 1937
  year: 2008
  ident: 10.1016/j.eswa.2010.11.082_b0015
  article-title: Improvement of energy demand forecasts using swarm intelligence. The case of Turkey with projections to 2025
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2008.02.018
– volume: 37
  start-page: 1023
  year: 2010
  ident: 10.1016/j.eswa.2010.11.082_b0115
  article-title: Using analytic hierarchy process and particle swarm optimization algorithm for evaluating product plans
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2009.05.073
– volume: 35
  start-page: 2791
  year: 2008
  ident: 10.1016/j.eswa.2010.11.082_b0080
  article-title: An effective hybrid PSO-based algorithm for flow shop scheduling with limited buffers
  publication-title: Computers and Operations Research
  doi: 10.1016/j.cor.2006.12.013
– volume: 8
  start-page: 849
  year: 2007
  ident: 10.1016/j.eswa.2010.11.082_b0050
  article-title: A hybrid genetic algorithm and particle swarm optimization for multimodal functions
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2007.07.002
– volume: 12
  start-page: 465
  year: 2006
  ident: 10.1016/j.eswa.2010.11.082_b0040
  article-title: Category forecast application of neural network algorithm trained by particle swarm optimization
  publication-title: Computer Integrated Manufacturing Systems
– volume: 40
  start-page: 8487
  year: 2005
  ident: 10.1016/j.eswa.2010.11.082_b0010
  article-title: NP-hardness of the cluster minimization problem revisited
  publication-title: Journal of Physics A: Mathematical and General
  doi: 10.1088/0305-4470/38/40/001
– volume: 36
  start-page: 3428
  year: 2009
  ident: 10.1016/j.eswa.2010.11.082_b0100
  article-title: Applying particle swarm optimization algorithm to roundness measurement
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2008.02.072
– ident: 10.1016/j.eswa.2010.11.082_b0085
SSID ssj0017007
Score 2.2613792
Snippet ► We present a novel algorithm developed based on particle swarm optimization. ► The algorithm contains particle regeneration operation. ► We apply this...
This paper presents selective regeneration particle swarm optimization (SRPSO), a novel algorithm developed based on particle swarm optimization (PSO). It...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6565
SubjectTerms Algorithms
Clustering
Convergence
Data clustering
Expert systems
K-means algorithm
Mathematical models
Optimization
Particle swarm optimization
Performance evaluation
Regeneration
Title Particle swarm optimization with selective particle regeneration for data clustering
URI https://dx.doi.org/10.1016/j.eswa.2010.11.082
https://www.proquest.com/docview/1701034323
https://www.proquest.com/docview/864439249
Volume 38
WOSCitedRecordID wos000288343900022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-6793
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017007
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9swEBcj3cNe9j2WfRQN9hZUYsuy5cdSOtpRymAZy56MLEtbQusEO9n65-_OkhzT0dIN9uIYIX9E9_PpdPrdHSHvVWJ1bpRlpSw5Syqbs5KrlBmhk1hZXeWiCxQ-y87P5Xyehx3dtisnkNW1vLrK1_9V1NAGwsbQ2b8Qd39TaIBzEDocQexwvJPgP_m2SftLNZeTFeiESx9s6QnpXekbZAytQ9fGfO_ST_fEQySOTvTFFtMohMlt2bP2TLPxKaBDcNxgG7z3BbSu0vXRjwX7pvw9ULWrzjt7yr6axdDnEA24Uc4RFoJhdswj51HMWBK5ojsHxulTmXGWZq4IYlC4XA6ANdSeYFuKwUycClca5g8t7xwOywMDA-nYeV0i1ng3p_VMw8_4VvhSUberhNlu9-JM5HJE9g5Pj-cf-y2nbOpi68O_8BFWjgx4_Uk3WTHX5vPOSJk9Jg_96oIeOrE-IfdM_ZQ8CpU7qFfkz8gsgIR2IKFDkFCUKO1BQgNI6BAkFEBCESR0B5Ln5MuH49nRCfP1NZjmqdgwDkvzWMe21LFUSaXUlJeRhfnO2EqnBglTVloTlyUY5cbGZSVklQqtRVRxI2L-gozqVW1eEppaMKtLA_atkmAWVQp-baaQYgwLIp6OSRTGq9A--TzWQLkoAstwWeAYFzjGsCotYIzHZNJfs3apV27tLYIYCm88OqOwANTcet27ILMCNCtul6narLZtgZUKphh3zceE3tBHwnKCowvj1T8-_jV5sPvA3pDRptmat-S-_rlZtM2-x-hvoIexnQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Particle+swarm+optimization+with+selective+particle+regeneration+for+data+clustering&rft.jtitle=Expert+systems+with+applications&rft.au=Tsai%2C+Chi-Yang&rft.au=Kao%2C+I-Wei&rft.date=2011-06-01&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.eissn=1873-6793&rft.volume=38&rft.issue=6&rft.spage=6565&rft.epage=6576&rft_id=info:doi/10.1016%2Fj.eswa.2010.11.082&rft.externalDocID=S0957417410013205
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon