Unit commitment using a new integer coded genetic algorithm

This paper proposes a new Integer‐Coded Genetic Algorithm (ICGA) for the solution of the thermal unit commitment problem. The thermal generating units scheduling consists of the sequence of operation/reservation times of the generating units, which is coded into a sequence of alternating sign intege...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:European transactions on electrical power Ročník 19; číslo 8; s. 1161 - 1176
Hlavní autoři: Amjady, Nima, Shirzadi, Ali
Médium: Journal Article
Jazyk:angličtina
Vydáno: Chichester, UK John Wiley & Sons, Ltd 01.11.2009
Wiley
Témata:
ISSN:1430-144X, 1546-3109
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper proposes a new Integer‐Coded Genetic Algorithm (ICGA) for the solution of the thermal unit commitment problem. The thermal generating units scheduling consists of the sequence of operation/reservation times of the generating units, which is coded into a sequence of alternating sign integer numbers in the proposed ICGA. The minimum up and down time constraints of the generating units are directly coded in the chromosome structure of the ICGA. The proposed ICGA has a new hybrid crossover composed of modified average bound and swapping operators. In addition, a combination of uniform and non‐uniform mutations is used as the mutation operator. As a result, the algorithm robustness is improved. Test results with systems of up to 300 units and 24 hours scheduling horizon are presented. The comparison of the obtained results with those of other Unit Commitment (UC) methods justifies the effectiveness of the proposed method in light of minimizing the total operation cost. Copyright © 2008 John Wiley & Sons, Ltd.
AbstractList This paper proposes a new Integer-Coded Genetic Algorithm (ICGA) for the solution of the thermal unit commitment problem. The thermal generating units scheduling consists of the sequence of operation/reservation times of the generating units, which is coded into a sequence of alternating sign integer numbers in the proposed ICGA. The minimum up and down time constraints of the generating units are directly coded in the chromosome structure of the ICGA. The proposed ICGA has a new hybrid crossover composed of modified average bound and swapping operators. In addition, a combination of uniform and non-uniform mutations is used as the mutation operator. As a result, the algorithm robustness is improved. Test results with systems of up to 300 units and 24 hours scheduling horizon are presented. The comparison of the obtained results with those of other Unit Commitment (UC) methods justifies the effectiveness of the proposed method in light of minimizing the total operation cost.
This paper proposes a new Integer‐Coded Genetic Algorithm (ICGA) for the solution of the thermal unit commitment problem. The thermal generating units scheduling consists of the sequence of operation/reservation times of the generating units, which is coded into a sequence of alternating sign integer numbers in the proposed ICGA. The minimum up and down time constraints of the generating units are directly coded in the chromosome structure of the ICGA. The proposed ICGA has a new hybrid crossover composed of modified average bound and swapping operators. In addition, a combination of uniform and non‐uniform mutations is used as the mutation operator. As a result, the algorithm robustness is improved. Test results with systems of up to 300 units and 24 hours scheduling horizon are presented. The comparison of the obtained results with those of other Unit Commitment (UC) methods justifies the effectiveness of the proposed method in light of minimizing the total operation cost. Copyright © 2008 John Wiley & Sons, Ltd.
Author Amjady, Nima
Shirzadi, Ali
Author_xml – sequence: 1
  givenname: Nima
  surname: Amjady
  fullname: Amjady, Nima
  email: amjady@tavanir.org.ir
  organization: Department of Electrical Engineering, Semnan University, Semnan, Iran
– sequence: 2
  givenname: Ali
  surname: Shirzadi
  fullname: Shirzadi, Ali
  organization: Department of Electrical Engineering, Semnan University, Semnan, Iran
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22195067$$DView record in Pascal Francis
BookMark eNp10FtLHDEUB_AgCl7BjzAvpX2ZbS6TyQSfimxtQaorK_oWzmTPbNPOZNYky9Zvb2RtQalPOZDfufA_JLt-9EjIKaMTRin_jAlXE67VDjlgsqpLwajezXUlaMmq6n6fHMb4K0ulGnlAzm69S4Udh8GlAX0q1tH5ZQGFx03hfMIlhvy9wEWxRI_J2QL65Rhc-jkck70O-ognL-8Ruf06nZ9_Ky-vLr6ff7ksrailKltZW2DWcoHQCdpSpilYroDLTgOVTFcLyRXjILpat9jwpm6xha5BDZ224oh83M5dhfFhjTGZwUWLfQ8ex3U0SuY9vFYsyw8vEqKFvgvgrYtmFdwA4dFwzrSktcpusnU2jDEG7Ix1CZIbfQrgesOoeQ7TPIdpcpi54dObhr8z_0PLLd24Hh_fdWY6n16_8i4m_PPPQ_ht8qVKmrsfF0Y01d0Nm92bmXgCS7qU_A
CitedBy_id crossref_primary_10_1016_j_anucene_2013_04_023
crossref_primary_10_1016_j_engappai_2014_09_014
crossref_primary_10_1080_01496395_2011_595473
crossref_primary_10_1002_etep_1913
crossref_primary_10_1016_j_cie_2022_108876
crossref_primary_10_1016_j_ijepes_2014_04_038
crossref_primary_10_1016_j_anucene_2021_108331
crossref_primary_10_1016_j_apenergy_2016_07_117
crossref_primary_10_1007_s00158_017_1839_5
crossref_primary_10_1002_etep_2046
crossref_primary_10_1155_2011_589862
crossref_primary_10_1016_j_petrol_2018_10_005
crossref_primary_10_1002_etep_2164
crossref_primary_10_1007_s12206_011_1038_z
crossref_primary_10_1155_2015_710876
crossref_primary_10_1155_2014_583157
crossref_primary_10_1016_j_epsr_2022_107961
Cites_doi 10.1023/A:1018947401538
10.1016/j.epsr.2005.10.005
10.1109/TPWRS.2003.820707
10.1109/59.867163
10.1109/TPAS.1983.317714
10.1049/ip-d.1980.0044
10.1016/S0142-0615(03)00003-6
10.1016/S0378-7796(03)00147-0
10.1016/j.epsr.2005.07.002
10.1080/15325000500419185
10.1109/TPWRS.2007.907443
10.1109/TPWRS.2005.860907
10.1109/ICIT.2003.1290244
10.1109/59.485989
10.1109/59.589804
10.1109/59.43211
10.1002/047122412X.ch8
10.1109/TPWRS.2003.811000
10.1016/S0142-0615(01)00048-5
10.1109/TPWRS.2003.821625
10.1049/ip-gtd:20045190
10.1109/TPWRS.1987.4335130
10.1109/TPWRS.2006.876672
10.1016/j.ijepes.2006.02.011
10.1049/ip-gtd:20020460
10.1109/IJCNN.2005.1556046
10.1109/59.801925
10.1109/ICPST.2004.1460285
10.1109/TPAS.1978.354719
10.1016/0378-7796(94)90006-X
10.1109/PESW.2002.984954
10.1023/A:1017960507177
ContentType Journal Article
Copyright Copyright © 2008 John Wiley & Sons, Ltd.
2015 INIST-CNRS
Copyright_xml – notice: Copyright © 2008 John Wiley & Sons, Ltd.
– notice: 2015 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
7SP
7TB
8FD
FR3
KR7
L7M
DOI 10.1002/etep.297
DatabaseName Istex
CrossRef
Pascal-Francis
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList Civil Engineering Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1546-3109
EndPage 1176
ExternalDocumentID 22195067
10_1002_etep_297
ETEP297
ark_67375_WNG_384WR1QX_Q
Genre article
GroupedDBID .3N
.GA
.Y3
1L6
1OB
1OC
24P
31~
3WU
4.4
52M
52O
52T
52W
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
AAEVG
AAMMB
AANHP
AAZKR
ABCUV
ABIJN
ACAHQ
ACBWZ
ACCMX
ACPOU
ACRPL
ACXQS
ACYXJ
ADEOM
ADIZJ
ADMGS
ADNMO
ADOZA
AEFGJ
AEIMD
AFBPY
AFGKR
AFZJQ
AGQPQ
AGXDD
AIDQK
AIDYY
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZFZN
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BSCLL
CMOOK
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F21
FEDTE
G-S
G.N
GNP
GODZA
HF~
HHY
HVGLF
IX1
JPC
LATKE
LAW
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
OIG
P2P
P2X
P4D
PALCI
QB0
QRW
RIWAO
ROL
RX1
RYL
SAMSI
SUPJJ
UB1
V2E
W8V
W99
WIH
WIK
WXSBR
XV2
~IA
33P
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
HGLYW
RWI
WWI
AAYXX
CITATION
O8X
IQODW
7SP
7TB
8FD
FR3
KR7
L7M
ID FETCH-LOGICAL-c3657-b56ca1cc23eaf30b0190ac27a25f9a05194d52712a3f69be8286bebaf8e9af9c3
IEDL.DBID 24P
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000272929500012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1430-144X
IngestDate Fri Jul 11 16:10:44 EDT 2025
Mon Jul 21 09:15:46 EDT 2025
Sat Nov 29 02:35:46 EST 2025
Tue Nov 18 22:14:54 EST 2025
Wed Jan 22 16:20:31 EST 2025
Tue Sep 09 05:32:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords Performance evaluation
Dispatching problem
mutation
crossover
integer-coded genetic algorithm
unit commitment
Stopping time
Genetic algorithm
Power distribution planning
Effectiveness factor
Comparative study
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3657-b56ca1cc23eaf30b0190ac27a25f9a05194d52712a3f69be8286bebaf8e9af9c3
Notes ArticleID:ETEP297
istex:F4E9ED121E42BDF5D318C7000A6F6D273C3F0C0F
ark:/67375/WNG-384WR1QX-Q
ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 753652671
PQPubID 23500
PageCount 16
ParticipantIDs proquest_miscellaneous_753652671
pascalfrancis_primary_22195067
crossref_citationtrail_10_1002_etep_297
crossref_primary_10_1002_etep_297
wiley_primary_10_1002_etep_297_ETEP297
istex_primary_ark_67375_WNG_384WR1QX_Q
PublicationCentury 2000
PublicationDate November 2009
PublicationDateYYYYMMDD 2009-11-01
PublicationDate_xml – month: 11
  year: 2009
  text: November 2009
PublicationDecade 2000
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
– name: Chichester
PublicationTitle European transactions on electrical power
PublicationTitleAlternate Euro. Trans. Electr. Power
PublicationYear 2009
Publisher John Wiley & Sons, Ltd
Wiley
Publisher_xml – name: John Wiley & Sons, Ltd
– name: Wiley
References Swarup KS, Yamashiro S. A genetic algorithm approach to generator unit commitment. Electrical Power and Energy Systems 2003; 25: 679-687.
Kazarlis SA, Bakirtzis AG, Petridis V. A genetic algorithm solution to the unit commitment problem. IEEE Transactions on Power Systems 1996; 11: 29-36.
Valenzuela J, Smith AE. A seeded memetic algorithm for large unit commitment problems. Journal of Heuristic 2002; 8: 173-195.
Snyder WL, Powell HD, Rayburn JC. Dynamic programming approach to unit commitment. IEEE Transactions on Power Systems 1987; 2(2): 339-350.
Yamin HY, Shabidehpour SM. Unit commitment using a hybrid model between Lagrangian relaxation and genetic algorithm in competitive electricity markets. Electric Power Systems Research 2003; 68: 83-92.
Goldberg DE. Genetic Algorithms in Search Optimization and Machine Learning. Addison-Wesley: Reading, MA, 1989.
Senjyu T, Saber AY, Miyagi T, Urasaki N, Funabashi T. Absolutely stochastic simulated annealing approach to large scale unit commitment problem. Electric Power Components and Systems 2006; 34(6): 619-637.
Gollmer R, Nowak MP, Romisch W, Schultz R. Unit commitment in power generation-a basic model and some extensions. Annals of Operation Research 2000; 96: 167-189.
Sheble GB, Maifeld TT. Unit commitment by genetic algorithm and expert-system. Electric Power Systems Research 1994; 30(2): 115-121.
Carrión M, Arroyo JM. A Computationally efficient mixed-integer linear formulation for the thermal unit commitment problem. IEEE Transactions on Power Systems 2006; 21(3): 1371-1378.
Saneifard S, Prasad NR, Smollech HA. A fuzzy logic approach to unit commitment. IEEE Transactions on Power Systems 1997; 12(2): 988-995.
Balci HH, Valenzuela JF. Scheduling electric power generators using particle swarm optimization combined with the Lagrangian relaxation method. International Journal of Applied Mathematics and Computer Science 2004; 14(3): 411-421.
Senjyu T, Miyagi T, Saber AY, Urasaki N, Funabashi T. Emerging solution of large-scale unit commitment problem by stochastic priority list. Electric Power Systems Research 2006; 76: 283-292.
Dang C, Li M. A floating-point genetic algorithm for solving the unit commitment problem. European Journal of Operational Research 2006; 1370-1395. Available online at: http://www.sciencedirect.com/ (in press).
Cohen AI, Yoshimura M. A branch-and-bound algorithm for unit commitment. IEEE Transactions on Power Systems 1983; PAS-102(2): 444-451.
Sun L, Zhang Y, Jiang C. A matrix real-coded genetic algorithm to the unit commitment problem. Electric Power Systems Research 2006; 76: 716-728.
Juste KA, Kitu H, Tunaka E, Hasegawa J. An evolutionary programming solution to the unit commitment problem. IEEE Transactions on Power Systems 1999; 14(4): 1452-1459.
Dillon TS, Edwin KW. Integer programming approach to the problem of optimal unit commitment with probabilistic reserve determination. IEEE Transactions on Power Systems 1978; PAS-97(6): 2154-2166.
Victoire TAA, Jeyakumar AE. Unit commitment by a tabusearch-based hybrid-optimisation technique. IET Proceedings Generation, Transmission and Distribution 2005; 152(4): 563-574.
Damousis IG, Bakirtzis AG, Dokopoulos PS. A solution to the unit commitment problem using integer-coded genetic algorithm. IEEE Transactions on Power Systems 2004; 19(2): 1165-1172.
Senjyu T, Shimabukuro K, Uezato K, Funabashi T. A fast technique for unit commitment problem by extended priority list. IEEE Transactions on Power Systems 2003; 18(2): 882-888.
Baptistella LFB, Geromel JC. A decomposition approach to problem of unit commitment schedule for hydrothermal systems. Proceedings of IEEE, Vol. 149, no. 5, 1980; 250.
Ting TO, Rao MVC, Loo CK. A novel approach for unit commitment problem via an effective hybrid particle swarm optimization. IEEE Transactions on Power Systems 2006; 21(1): 411-418.
Wood AJ, Wollenberg BF. Power Generation, Operation, and Control, 2nd edn. Wiley: New York, 1996.
Ongsakul W, Petcharaks N. Unit commitment by enhanced adaptive Lagrangian relaxation. IEEE Transactions on Power Systems 2004; 19(1): 620-628.
Xing W, Wu FF. Genetic algorithm based unit commitment with energy contracts. Electrical Power and Energy Systems 2002; 24: 329-336.
Cheng CP, Liu CW, Liu GC. Unit commitment by Lagrangian relaxation and genetic algorithms. IEEE Transactions on Power Systems 2000; 15: 707-714.
Shahidehpour M, Yamin H, Li Z. Market Operations in Electric Power Systems: Forecasting, Scheduling, and Risk Management. Wiley: New York, 2002; 275-310.
Mokhtari S, Sing J, Wollenberg B. A unit commitment expert system (power system control). IEEE Transactions on Power Systems 1988; 3(1): 272-277.
Hosseini SH, Khodaei A, Aminifar F. A novel straightforward unit commitment method for large-scale power systems. IEEE Transactions on Power Systems 2007; 22(4): 2134-2143.
Zhao B, Guo CX, Bai BR, Cao YJ. An improved particle swarm optimization algorithm for unit commitment. International Journal of Electrical Power and Energy Systems 2006; 28: 482-490.
1987; 2
1983; PAS‐102
2005; 152
2006; 34
2006; 76
2002; 8
1996
2006
2005
2003; 18
2004
2003
2002
1996; 11
1980; 149
1988; 3
2004; 19
2000; 15
2006; 21
2004; 14
2002; 24
2006; 28
2000; 96
1997; 12
1999; 14
2003; 68
2003; 25
1978; PAS‐97
2007; 22
1994; 30
1989
Dang C (e_1_2_1_28_2) 2006
e_1_2_1_22_2
e_1_2_1_23_2
e_1_2_1_20_2
e_1_2_1_21_2
e_1_2_1_26_2
e_1_2_1_27_2
e_1_2_1_24_2
e_1_2_1_25_2
Wood AJ (e_1_2_1_2_2) 1996
Goldberg DE (e_1_2_1_29_2) 1989
Balci HH (e_1_2_1_36_2) 2004; 14
e_1_2_1_6_2
e_1_2_1_30_2
e_1_2_1_7_2
e_1_2_1_4_2
e_1_2_1_5_2
e_1_2_1_11_2
e_1_2_1_34_2
e_1_2_1_3_2
e_1_2_1_12_2
e_1_2_1_33_2
e_1_2_1_32_2
e_1_2_1_10_2
e_1_2_1_31_2
e_1_2_1_15_2
e_1_2_1_38_2
e_1_2_1_16_2
e_1_2_1_37_2
e_1_2_1_13_2
e_1_2_1_14_2
e_1_2_1_35_2
e_1_2_1_19_2
e_1_2_1_8_2
e_1_2_1_17_2
e_1_2_1_9_2
e_1_2_1_18_2
e_1_2_1_39_2
References_xml – reference: Hosseini SH, Khodaei A, Aminifar F. A novel straightforward unit commitment method for large-scale power systems. IEEE Transactions on Power Systems 2007; 22(4): 2134-2143.
– reference: Senjyu T, Miyagi T, Saber AY, Urasaki N, Funabashi T. Emerging solution of large-scale unit commitment problem by stochastic priority list. Electric Power Systems Research 2006; 76: 283-292.
– reference: Senjyu T, Shimabukuro K, Uezato K, Funabashi T. A fast technique for unit commitment problem by extended priority list. IEEE Transactions on Power Systems 2003; 18(2): 882-888.
– reference: Saneifard S, Prasad NR, Smollech HA. A fuzzy logic approach to unit commitment. IEEE Transactions on Power Systems 1997; 12(2): 988-995.
– reference: Zhao B, Guo CX, Bai BR, Cao YJ. An improved particle swarm optimization algorithm for unit commitment. International Journal of Electrical Power and Energy Systems 2006; 28: 482-490.
– reference: Snyder WL, Powell HD, Rayburn JC. Dynamic programming approach to unit commitment. IEEE Transactions on Power Systems 1987; 2(2): 339-350.
– reference: Wood AJ, Wollenberg BF. Power Generation, Operation, and Control, 2nd edn. Wiley: New York, 1996.
– reference: Ting TO, Rao MVC, Loo CK. A novel approach for unit commitment problem via an effective hybrid particle swarm optimization. IEEE Transactions on Power Systems 2006; 21(1): 411-418.
– reference: Yamin HY, Shabidehpour SM. Unit commitment using a hybrid model between Lagrangian relaxation and genetic algorithm in competitive electricity markets. Electric Power Systems Research 2003; 68: 83-92.
– reference: Sun L, Zhang Y, Jiang C. A matrix real-coded genetic algorithm to the unit commitment problem. Electric Power Systems Research 2006; 76: 716-728.
– reference: Balci HH, Valenzuela JF. Scheduling electric power generators using particle swarm optimization combined with the Lagrangian relaxation method. International Journal of Applied Mathematics and Computer Science 2004; 14(3): 411-421.
– reference: Sheble GB, Maifeld TT. Unit commitment by genetic algorithm and expert-system. Electric Power Systems Research 1994; 30(2): 115-121.
– reference: Victoire TAA, Jeyakumar AE. Unit commitment by a tabusearch-based hybrid-optimisation technique. IET Proceedings Generation, Transmission and Distribution 2005; 152(4): 563-574.
– reference: Swarup KS, Yamashiro S. A genetic algorithm approach to generator unit commitment. Electrical Power and Energy Systems 2003; 25: 679-687.
– reference: Cohen AI, Yoshimura M. A branch-and-bound algorithm for unit commitment. IEEE Transactions on Power Systems 1983; PAS-102(2): 444-451.
– reference: Juste KA, Kitu H, Tunaka E, Hasegawa J. An evolutionary programming solution to the unit commitment problem. IEEE Transactions on Power Systems 1999; 14(4): 1452-1459.
– reference: Dillon TS, Edwin KW. Integer programming approach to the problem of optimal unit commitment with probabilistic reserve determination. IEEE Transactions on Power Systems 1978; PAS-97(6): 2154-2166.
– reference: Baptistella LFB, Geromel JC. A decomposition approach to problem of unit commitment schedule for hydrothermal systems. Proceedings of IEEE, Vol. 149, no. 5, 1980; 250.
– reference: Mokhtari S, Sing J, Wollenberg B. A unit commitment expert system (power system control). IEEE Transactions on Power Systems 1988; 3(1): 272-277.
– reference: Cheng CP, Liu CW, Liu GC. Unit commitment by Lagrangian relaxation and genetic algorithms. IEEE Transactions on Power Systems 2000; 15: 707-714.
– reference: Ongsakul W, Petcharaks N. Unit commitment by enhanced adaptive Lagrangian relaxation. IEEE Transactions on Power Systems 2004; 19(1): 620-628.
– reference: Xing W, Wu FF. Genetic algorithm based unit commitment with energy contracts. Electrical Power and Energy Systems 2002; 24: 329-336.
– reference: Senjyu T, Saber AY, Miyagi T, Urasaki N, Funabashi T. Absolutely stochastic simulated annealing approach to large scale unit commitment problem. Electric Power Components and Systems 2006; 34(6): 619-637.
– reference: Kazarlis SA, Bakirtzis AG, Petridis V. A genetic algorithm solution to the unit commitment problem. IEEE Transactions on Power Systems 1996; 11: 29-36.
– reference: Damousis IG, Bakirtzis AG, Dokopoulos PS. A solution to the unit commitment problem using integer-coded genetic algorithm. IEEE Transactions on Power Systems 2004; 19(2): 1165-1172.
– reference: Shahidehpour M, Yamin H, Li Z. Market Operations in Electric Power Systems: Forecasting, Scheduling, and Risk Management. Wiley: New York, 2002; 275-310.
– reference: Dang C, Li M. A floating-point genetic algorithm for solving the unit commitment problem. European Journal of Operational Research 2006; 1370-1395. Available online at: http://www.sciencedirect.com/ (in press).
– reference: Goldberg DE. Genetic Algorithms in Search Optimization and Machine Learning. Addison-Wesley: Reading, MA, 1989.
– reference: Gollmer R, Nowak MP, Romisch W, Schultz R. Unit commitment in power generation-a basic model and some extensions. Annals of Operation Research 2000; 96: 167-189.
– reference: Carrión M, Arroyo JM. A Computationally efficient mixed-integer linear formulation for the thermal unit commitment problem. IEEE Transactions on Power Systems 2006; 21(3): 1371-1378.
– reference: Valenzuela J, Smith AE. A seeded memetic algorithm for large unit commitment problems. Journal of Heuristic 2002; 8: 173-195.
– volume: 19
  start-page: 620
  issue: 1
  year: 2004
  end-page: 628
  article-title: Unit commitment by enhanced adaptive Lagrangian relaxation
  publication-title: IEEE Transactions on Power Systems
– volume: 76
  start-page: 716
  year: 2006
  end-page: 728
  article-title: A matrix real‐coded genetic algorithm to the unit commitment problem
  publication-title: Electric Power Systems Research
– volume: 152
  start-page: 563
  issue: 4
  year: 2005
  end-page: 574
  article-title: Unit commitment by a tabusearch‐based hybrid‐optimisation technique
  publication-title: IET Proceedings Generation, Transmission and Distribution
– start-page: 593
  year: 2002
  end-page: 599
– volume: 19
  start-page: 1165
  issue: 2
  year: 2004
  end-page: 1172
  article-title: A solution to the unit commitment problem using integer‐coded genetic algorithm
  publication-title: IEEE Transactions on Power Systems
– year: 1989
– year: 1996
– volume: 96
  start-page: 167
  year: 2000
  end-page: 189
  article-title: Unit commitment in power generation—a basic model and some extensions
  publication-title: Annals of Operation Research
– start-page: 72
  year: 2003
  end-page: 77
– start-page: 275
  year: 2002
  end-page: 310
– volume: 18
  start-page: 882
  issue: 2
  year: 2003
  end-page: 888
  article-title: A fast technique for unit commitment problem by extended priority list
  publication-title: IEEE Transactions on Power Systems
– volume: 24
  start-page: 329
  year: 2002
  end-page: 336
  article-title: Genetic algorithm based unit commitment with energy contracts
  publication-title: Electrical Power and Energy Systems
– volume: 14
  start-page: 1452
  issue: 4
  year: 1999
  end-page: 1459
  article-title: An evolutionary programming solution to the unit commitment problem
  publication-title: IEEE Transactions on Power Systems
– volume: 68
  start-page: 83
  year: 2003
  end-page: 92
  article-title: Unit commitment using a hybrid model between Lagrangian relaxation and genetic algorithm in competitive electricity markets
  publication-title: Electric Power Systems Research
– start-page: 58
  year: 2002
  end-page: 63
– volume: 21
  start-page: 411
  issue: 1
  year: 2006
  end-page: 418
  article-title: A novel approach for unit commitment problem via an effective hybrid particle swarm optimization
  publication-title: IEEE Transactions on Power Systems
– volume: 21
  start-page: 1371
  issue: 3
  year: 2006
  end-page: 1378
  article-title: A Computationally efficient mixed‐integer linear formulation for the thermal unit commitment problem
  publication-title: IEEE Transactions on Power Systems
– volume: 25
  start-page: 679
  year: 2003
  end-page: 687
  article-title: A genetic algorithm approach to generator unit commitment
  publication-title: Electrical Power and Energy Systems
– volume: 14
  start-page: 411
  issue: 3
  year: 2004
  end-page: 421
  article-title: Scheduling electric power generators using particle swarm optimization combined with the Lagrangian relaxation method
  publication-title: International Journal of Applied Mathematics and Computer Science
– volume: 30
  start-page: 115
  issue: 2
  year: 1994
  end-page: 121
  article-title: Unit commitment by genetic algorithm and expert‐system
  publication-title: Electric Power Systems Research
– volume: 22
  start-page: 2134
  issue: 4
  year: 2007
  end-page: 2143
  article-title: A novel straightforward unit commitment method for large‐scale power systems
  publication-title: IEEE Transactions on Power Systems
– start-page: 1325
  year: 2005
  end-page: 1330
– volume: PAS‐102
  start-page: 444
  issue: 2
  year: 1983
  end-page: 451
  article-title: A branch‐and‐bound algorithm for unit commitment
  publication-title: IEEE Transactions on Power Systems
– start-page: 418
  year: 2003
  end-page: 424
– volume: 2
  start-page: 339
  issue: 2
  year: 1987
  end-page: 350
  article-title: Dynamic programming approach to unit commitment
  publication-title: IEEE Transactions on Power Systems
– volume: 149
  start-page: 250
  year: 1980
  article-title: A decomposition approach to problem of unit commitment schedule for hydrothermal systems
  publication-title: Proceedings of IEEE
– volume: 8
  start-page: 173
  year: 2002
  end-page: 195
  article-title: A seeded memetic algorithm for large unit commitment problems
  publication-title: Journal of Heuristic
– volume: PAS‐97
  start-page: 2154
  issue: 6
  year: 1978
  end-page: 2166
  article-title: Integer programming approach to the problem of optimal unit commitment with probabilistic reserve determination
  publication-title: IEEE Transactions on Power Systems
– volume: 11
  start-page: 29
  year: 1996
  end-page: 36
  article-title: A genetic algorithm solution to the unit commitment problem
  publication-title: IEEE Transactions on Power Systems
– start-page: 1746
  year: 2004
  end-page: 1751
– volume: 34
  start-page: 619
  issue: 6
  year: 2006
  end-page: 637
  article-title: Absolutely stochastic simulated annealing approach to large scale unit commitment problem
  publication-title: Electric Power Components and Systems
– volume: 28
  start-page: 482
  year: 2006
  end-page: 490
  article-title: An improved particle swarm optimization algorithm for unit commitment
  publication-title: International Journal of Electrical Power and Energy Systems
– volume: 3
  start-page: 272
  issue: 1
  year: 1988
  end-page: 277
  article-title: A unit commitment expert system (power system control)
  publication-title: IEEE Transactions on Power Systems
– volume: 15
  start-page: 707
  year: 2000
  end-page: 714
  article-title: Unit commitment by Lagrangian relaxation and genetic algorithms
  publication-title: IEEE Transactions on Power Systems
– start-page: 1370
  year: 2006
  end-page: 1395
  article-title: A floating‐point genetic algorithm for solving the unit commitment problem
  publication-title: European Journal of Operational Research
– volume: 76
  start-page: 283
  year: 2006
  end-page: 292
  article-title: Emerging solution of large‐scale unit commitment problem by stochastic priority list
  publication-title: Electric Power Systems Research
– volume: 12
  start-page: 988
  issue: 2
  year: 1997
  end-page: 995
  article-title: A fuzzy logic approach to unit commitment
  publication-title: IEEE Transactions on Power Systems
– ident: e_1_2_1_3_2
  doi: 10.1023/A:1018947401538
– ident: e_1_2_1_31_2
  doi: 10.1016/j.epsr.2005.10.005
– ident: e_1_2_1_10_2
  doi: 10.1109/TPWRS.2003.820707
– ident: e_1_2_1_27_2
  doi: 10.1109/59.867163
– ident: e_1_2_1_11_2
  doi: 10.1109/TPAS.1983.317714
– ident: e_1_2_1_14_2
  doi: 10.1049/ip-d.1980.0044
– ident: e_1_2_1_22_2
  doi: 10.1016/S0142-0615(03)00003-6
– ident: e_1_2_1_23_2
  doi: 10.1016/S0378-7796(03)00147-0
– ident: e_1_2_1_8_2
  doi: 10.1016/j.epsr.2005.07.002
– ident: e_1_2_1_15_2
  doi: 10.1080/15325000500419185
– ident: e_1_2_1_6_2
  doi: 10.1109/TPWRS.2007.907443
– ident: e_1_2_1_34_2
  doi: 10.1109/TPWRS.2005.860907
– ident: e_1_2_1_5_2
– ident: e_1_2_1_37_2
  doi: 10.1109/ICIT.2003.1290244
– volume: 14
  start-page: 411
  issue: 3
  year: 2004
  ident: e_1_2_1_36_2
  article-title: Scheduling electric power generators using particle swarm optimization combined with the Lagrangian relaxation method
  publication-title: International Journal of Applied Mathematics and Computer Science
– ident: e_1_2_1_20_2
  doi: 10.1109/59.485989
– volume-title: Power Generation, Operation, and Control
  year: 1996
  ident: e_1_2_1_2_2
– start-page: 1370
  year: 2006
  ident: e_1_2_1_28_2
  article-title: A floating‐point genetic algorithm for solving the unit commitment problem
  publication-title: European Journal of Operational Research
– ident: e_1_2_1_19_2
  doi: 10.1109/59.589804
– ident: e_1_2_1_35_2
– ident: e_1_2_1_18_2
  doi: 10.1109/59.43211
– ident: e_1_2_1_4_2
  doi: 10.1002/047122412X.ch8
– ident: e_1_2_1_7_2
  doi: 10.1109/TPWRS.2003.811000
– ident: e_1_2_1_21_2
  doi: 10.1016/S0142-0615(01)00048-5
– ident: e_1_2_1_25_2
  doi: 10.1109/TPWRS.2003.821625
– ident: e_1_2_1_38_2
  doi: 10.1049/ip-gtd:20045190
– ident: e_1_2_1_9_2
  doi: 10.1109/TPWRS.1987.4335130
– ident: e_1_2_1_13_2
  doi: 10.1109/TPWRS.2006.876672
– ident: e_1_2_1_24_2
  doi: 10.1016/j.ijepes.2006.02.011
– volume-title: Genetic Algorithms in Search Optimization and Machine Learning
  year: 1989
  ident: e_1_2_1_29_2
– ident: e_1_2_1_16_2
  doi: 10.1049/ip-gtd:20020460
– ident: e_1_2_1_30_2
  doi: 10.1109/IJCNN.2005.1556046
– ident: e_1_2_1_32_2
  doi: 10.1109/59.801925
– ident: e_1_2_1_33_2
  doi: 10.1109/ICPST.2004.1460285
– ident: e_1_2_1_12_2
  doi: 10.1109/TPAS.1978.354719
– ident: e_1_2_1_17_2
  doi: 10.1016/0378-7796(94)90006-X
– ident: e_1_2_1_26_2
  doi: 10.1109/PESW.2002.984954
– ident: e_1_2_1_39_2
  doi: 10.1023/A:1017960507177
SSID ssj0027785
Score 1.8780407
Snippet This paper proposes a new Integer‐Coded Genetic Algorithm (ICGA) for the solution of the thermal unit commitment problem. The thermal generating units...
This paper proposes a new Integer-Coded Genetic Algorithm (ICGA) for the solution of the thermal unit commitment problem. The thermal generating units...
SourceID proquest
pascalfrancis
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1161
SubjectTerms Applied sciences
Cost engineering
crossover
Electrical engineering. Electrical power engineering
Electrical power engineering
Exact sciences and technology
Genetic algorithms
integer-coded genetic algorithm
Integers
mutation
Mutations
Operation. Load control. Reliability
Operators
Power networks and lines
Robustness
Scheduling
Unit commitment
Title Unit commitment using a new integer coded genetic algorithm
URI https://api.istex.fr/ark:/67375/WNG-384WR1QX-Q/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fetep.297
https://www.proquest.com/docview/753652671
Volume 19
WOSCitedRecordID wos000272929500012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1546-3109
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0027785
  issn: 1430-144X
  databaseCode: DRFUL
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
– providerCode: PRVWIB
  databaseName: Wiley Online Library Open Access
  customDbUrl:
  eissn: 1546-3109
  dateEnd: 20121231
  omitProxy: false
  ssIdentifier: ssj0027785
  issn: 1430-144X
  databaseCode: 24P
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BThsxELVa0kN7KJS2agpEroToaUt27F3H4oQgaQ9VFBCI3KyxY9OokKBNqPr59XiTQKRWqsRpL2PLGs-s39gzbxjbd1Z7KRVkwgeRSd0eZXS9EN0di6BEIE6t1GxC9fud4VAPFlmVVAtT80OsLtzIM9L_mhwc7ezwgTQ0Ysq7L6DVc9bIc6HIokEOHoItldpxRjjQzmLQMFwSz7bhcDly7ShqkFZ_U2okzqJ2Qt3WYg13Pkav6fjpbT5l4Vvs9QJ08uPaSt6wZ36yzV49oiJ8y44IfPI41e045Z1zSoi_5sgj7OaJU8JXnOrfRzyaHFU-cry5nlbj-Y_bd-yy1704-ZYtGitkTpSFymxROsydA-ExCLoK1W10oBCKoJFAnRwVoHJAEUptPZWaW28xdLzGoJ14zzYm04n_wLgN6FwHrKW4S0tAZQElSmehjOJ5k31e6ti4Bes4Nb-4MTVfMhhSh4nqaLJPK8m7mmnjLzIHaZtWAlj9pMw0VZir_lcjOvLqPD8bmrMma63t42oAAPW9LeNMfLmxJjoUvZLgxE_vZybGb2UBpYpLP0jb-M_VmO5FdxC_H_9XcIe9TI9RqZRxl23Mq3u_x164X_PxrGol-22xxul57_L7H43h9m8
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB6VBAk48EaERzESKqdtE9u7jtUTgoQiQtRWqZqbNXbsEtEm1SZF_Hw83mzaSCAhcdrL2LLmsZ4Zz3wD8M5Z7aVUPBM-iEzq9iSj9EI0d8yDEoEwtdKwCTUcdsdjfbgF-3UvTIUPsU64kWWk_zUZOCWk965RQ6NTebnLtboFTRm1KG9A89Nx_2RwHW-pNJEzegTtLMYN4xp7ts336rUbt1GTGPuLqiNxERkUqskWG67nTQc23UD9B_919odwf-V4sg-VpjyCLT97DPduwBE-gX1yQFnc62Kaas8ZFcWfMWTR9WYJV8KXjHrgJyyqHXU_Mjw_m5fT5feLp3DS740-HmSr4QqZE0WuMpsXDjvOceExCEqH6jY6rpDnQSM5dnKSc9XhKEKhrad2c-sthq7XGLQTz6Axm8_8c2A2oHNdbi3FXlpyVJajROksLyJ5pwXvayYbt0IepwEY56bCTOaG2GEiO1rwdk15WaFt_IFmJ8lpTYDlD6pOU7k5HX42oitPjztHY3PUgu0NQa4XcE6zb4u4E6sla6JR0UsJzvz8amFiDFfkvFDx6DtJjn89jemNeofx--JfCd_AnYPRt4EZfBl-fQl30-NUam18BY1leeVfw233czldlNsrdf4N4mf6TA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fbxMxDLbGhtB4YPwUhW0ECY2nY22SuzTa07S1gEBVh4bWt8hJk1Fta6trh_jziXO9bpWYNImne_FFkR0nnxP7M8AHZ7WXUvFM-CAyqZvDjK4XortjHpQIxKmVmk2oXq89GOj-GhzUtTAVP8Tywo08I-3X5OB-Ogz7N6yhEVROP3GtHsCGzOMWS7TOsn8TbanUjzPigWYWo4ZBzTzb5Pv1nytn0Qap9Q_lRuIsqidUfS1WgOdt-JrOn-7Wf838KTxZwE52WK2TZ7Dmx8_h8S0ywhdwQPCTxbGuRinznFFK_DlDFoE3S6wSvmRUAT9kcdFR7SPDy_NJOZr_unoJP7ud06Mv2aK1QuZEkavM5oXDlnNceAyCLkN1Ex1XyPOgkWCdHOZctTiKUGjrqdjceouh7TUG7cQrWB9Pxv41MBvQuTa3liIvLTkqy1GidJYXUbzVgI-1ko1b8I5T-4tLUzEmc0PqMFEdDXi_lJxWXBv_kNlLdloKYHlBuWkqN2e9z0a05dmP1snAnDRgd8WQyx84p863RRyJ1ZY10aXonQTHfnI9MzGCK3JeqDj1vWTHO2djOqedfvy-ua_gO3jUP-6a7197397CZnqZSnWN27A-L6_9Djx0v-ejWbmb1vJfDN74NQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unit+commitment+using+a+new+integer+coded+genetic+algorithm&rft.jtitle=European+transactions+on+electrical+power&rft.au=Amjady%2C+Nima&rft.au=Shirzadi%2C+Ali&rft.date=2009-11-01&rft.issn=1430-144X&rft.volume=19&rft.issue=8&rft.spage=1161&rft.epage=1176&rft_id=info:doi/10.1002%2Fetep.297&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1430-144X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1430-144X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1430-144X&client=summon