Unit commitment using a new integer coded genetic algorithm
This paper proposes a new Integer‐Coded Genetic Algorithm (ICGA) for the solution of the thermal unit commitment problem. The thermal generating units scheduling consists of the sequence of operation/reservation times of the generating units, which is coded into a sequence of alternating sign intege...
Uloženo v:
| Vydáno v: | European transactions on electrical power Ročník 19; číslo 8; s. 1161 - 1176 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Chichester, UK
John Wiley & Sons, Ltd
01.11.2009
Wiley |
| Témata: | |
| ISSN: | 1430-144X, 1546-3109 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper proposes a new Integer‐Coded Genetic Algorithm (ICGA) for the solution of the thermal unit commitment problem. The thermal generating units scheduling consists of the sequence of operation/reservation times of the generating units, which is coded into a sequence of alternating sign integer numbers in the proposed ICGA. The minimum up and down time constraints of the generating units are directly coded in the chromosome structure of the ICGA. The proposed ICGA has a new hybrid crossover composed of modified average bound and swapping operators. In addition, a combination of uniform and non‐uniform mutations is used as the mutation operator. As a result, the algorithm robustness is improved. Test results with systems of up to 300 units and 24 hours scheduling horizon are presented. The comparison of the obtained results with those of other Unit Commitment (UC) methods justifies the effectiveness of the proposed method in light of minimizing the total operation cost. Copyright © 2008 John Wiley & Sons, Ltd. |
|---|---|
| AbstractList | This paper proposes a new Integer-Coded Genetic Algorithm (ICGA) for the solution of the thermal unit commitment problem. The thermal generating units scheduling consists of the sequence of operation/reservation times of the generating units, which is coded into a sequence of alternating sign integer numbers in the proposed ICGA. The minimum up and down time constraints of the generating units are directly coded in the chromosome structure of the ICGA. The proposed ICGA has a new hybrid crossover composed of modified average bound and swapping operators. In addition, a combination of uniform and non-uniform mutations is used as the mutation operator. As a result, the algorithm robustness is improved. Test results with systems of up to 300 units and 24 hours scheduling horizon are presented. The comparison of the obtained results with those of other Unit Commitment (UC) methods justifies the effectiveness of the proposed method in light of minimizing the total operation cost. This paper proposes a new Integer‐Coded Genetic Algorithm (ICGA) for the solution of the thermal unit commitment problem. The thermal generating units scheduling consists of the sequence of operation/reservation times of the generating units, which is coded into a sequence of alternating sign integer numbers in the proposed ICGA. The minimum up and down time constraints of the generating units are directly coded in the chromosome structure of the ICGA. The proposed ICGA has a new hybrid crossover composed of modified average bound and swapping operators. In addition, a combination of uniform and non‐uniform mutations is used as the mutation operator. As a result, the algorithm robustness is improved. Test results with systems of up to 300 units and 24 hours scheduling horizon are presented. The comparison of the obtained results with those of other Unit Commitment (UC) methods justifies the effectiveness of the proposed method in light of minimizing the total operation cost. Copyright © 2008 John Wiley & Sons, Ltd. |
| Author | Amjady, Nima Shirzadi, Ali |
| Author_xml | – sequence: 1 givenname: Nima surname: Amjady fullname: Amjady, Nima email: amjady@tavanir.org.ir organization: Department of Electrical Engineering, Semnan University, Semnan, Iran – sequence: 2 givenname: Ali surname: Shirzadi fullname: Shirzadi, Ali organization: Department of Electrical Engineering, Semnan University, Semnan, Iran |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22195067$$DView record in Pascal Francis |
| BookMark | eNp10FtLHDEUB_AgCl7BjzAvpX2ZbS6TyQSfimxtQaorK_oWzmTPbNPOZNYky9Zvb2RtQalPOZDfufA_JLt-9EjIKaMTRin_jAlXE67VDjlgsqpLwajezXUlaMmq6n6fHMb4K0ulGnlAzm69S4Udh8GlAX0q1tH5ZQGFx03hfMIlhvy9wEWxRI_J2QL65Rhc-jkck70O-ognL-8Ruf06nZ9_Ky-vLr6ff7ksrailKltZW2DWcoHQCdpSpilYroDLTgOVTFcLyRXjILpat9jwpm6xha5BDZ224oh83M5dhfFhjTGZwUWLfQ8ex3U0SuY9vFYsyw8vEqKFvgvgrYtmFdwA4dFwzrSktcpusnU2jDEG7Ix1CZIbfQrgesOoeQ7TPIdpcpi54dObhr8z_0PLLd24Hh_fdWY6n16_8i4m_PPPQ_ht8qVKmrsfF0Y01d0Nm92bmXgCS7qU_A |
| CitedBy_id | crossref_primary_10_1016_j_anucene_2013_04_023 crossref_primary_10_1016_j_engappai_2014_09_014 crossref_primary_10_1080_01496395_2011_595473 crossref_primary_10_1002_etep_1913 crossref_primary_10_1016_j_cie_2022_108876 crossref_primary_10_1016_j_ijepes_2014_04_038 crossref_primary_10_1016_j_anucene_2021_108331 crossref_primary_10_1016_j_apenergy_2016_07_117 crossref_primary_10_1007_s00158_017_1839_5 crossref_primary_10_1002_etep_2046 crossref_primary_10_1155_2011_589862 crossref_primary_10_1016_j_petrol_2018_10_005 crossref_primary_10_1002_etep_2164 crossref_primary_10_1007_s12206_011_1038_z crossref_primary_10_1155_2015_710876 crossref_primary_10_1155_2014_583157 crossref_primary_10_1016_j_epsr_2022_107961 |
| Cites_doi | 10.1023/A:1018947401538 10.1016/j.epsr.2005.10.005 10.1109/TPWRS.2003.820707 10.1109/59.867163 10.1109/TPAS.1983.317714 10.1049/ip-d.1980.0044 10.1016/S0142-0615(03)00003-6 10.1016/S0378-7796(03)00147-0 10.1016/j.epsr.2005.07.002 10.1080/15325000500419185 10.1109/TPWRS.2007.907443 10.1109/TPWRS.2005.860907 10.1109/ICIT.2003.1290244 10.1109/59.485989 10.1109/59.589804 10.1109/59.43211 10.1002/047122412X.ch8 10.1109/TPWRS.2003.811000 10.1016/S0142-0615(01)00048-5 10.1109/TPWRS.2003.821625 10.1049/ip-gtd:20045190 10.1109/TPWRS.1987.4335130 10.1109/TPWRS.2006.876672 10.1016/j.ijepes.2006.02.011 10.1049/ip-gtd:20020460 10.1109/IJCNN.2005.1556046 10.1109/59.801925 10.1109/ICPST.2004.1460285 10.1109/TPAS.1978.354719 10.1016/0378-7796(94)90006-X 10.1109/PESW.2002.984954 10.1023/A:1017960507177 |
| ContentType | Journal Article |
| Copyright | Copyright © 2008 John Wiley & Sons, Ltd. 2015 INIST-CNRS |
| Copyright_xml | – notice: Copyright © 2008 John Wiley & Sons, Ltd. – notice: 2015 INIST-CNRS |
| DBID | BSCLL AAYXX CITATION IQODW 7SP 7TB 8FD FR3 KR7 L7M |
| DOI | 10.1002/etep.297 |
| DatabaseName | Istex CrossRef Pascal-Francis Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Applied Sciences |
| EISSN | 1546-3109 |
| EndPage | 1176 |
| ExternalDocumentID | 22195067 10_1002_etep_297 ETEP297 ark_67375_WNG_384WR1QX_Q |
| Genre | article |
| GroupedDBID | .3N .GA .Y3 1L6 1OB 1OC 24P 31~ 3WU 4.4 52M 52O 52T 52W 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 AAEVG AAMMB AANHP AAZKR ABCUV ABIJN ACAHQ ACBWZ ACCMX ACPOU ACRPL ACXQS ACYXJ ADEOM ADIZJ ADMGS ADNMO ADOZA AEFGJ AEIMD AFBPY AFGKR AFZJQ AGQPQ AGXDD AIDQK AIDYY AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZFZN BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BSCLL CMOOK CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F21 FEDTE G-S G.N GNP GODZA HF~ HHY HVGLF IX1 JPC LATKE LAW LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM OIG P2P P2X P4D PALCI QB0 QRW RIWAO ROL RX1 RYL SAMSI SUPJJ UB1 V2E W8V W99 WIH WIK WXSBR XV2 ~IA 33P AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE HGLYW RWI WWI AAYXX CITATION O8X IQODW 7SP 7TB 8FD FR3 KR7 L7M |
| ID | FETCH-LOGICAL-c3657-b56ca1cc23eaf30b0190ac27a25f9a05194d52712a3f69be8286bebaf8e9af9c3 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000272929500012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1430-144X |
| IngestDate | Fri Jul 11 16:10:44 EDT 2025 Mon Jul 21 09:15:46 EDT 2025 Sat Nov 29 02:35:46 EST 2025 Tue Nov 18 22:14:54 EST 2025 Wed Jan 22 16:20:31 EST 2025 Tue Sep 09 05:32:20 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | Performance evaluation Dispatching problem mutation crossover integer-coded genetic algorithm unit commitment Stopping time Genetic algorithm Power distribution planning Effectiveness factor Comparative study |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3657-b56ca1cc23eaf30b0190ac27a25f9a05194d52712a3f69be8286bebaf8e9af9c3 |
| Notes | ArticleID:ETEP297 istex:F4E9ED121E42BDF5D318C7000A6F6D273C3F0C0F ark:/67375/WNG-384WR1QX-Q ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
| PQID | 753652671 |
| PQPubID | 23500 |
| PageCount | 16 |
| ParticipantIDs | proquest_miscellaneous_753652671 pascalfrancis_primary_22195067 crossref_citationtrail_10_1002_etep_297 crossref_primary_10_1002_etep_297 wiley_primary_10_1002_etep_297_ETEP297 istex_primary_ark_67375_WNG_384WR1QX_Q |
| PublicationCentury | 2000 |
| PublicationDate | November 2009 |
| PublicationDateYYYYMMDD | 2009-11-01 |
| PublicationDate_xml | – month: 11 year: 2009 text: November 2009 |
| PublicationDecade | 2000 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK – name: Chichester |
| PublicationTitle | European transactions on electrical power |
| PublicationTitleAlternate | Euro. Trans. Electr. Power |
| PublicationYear | 2009 |
| Publisher | John Wiley & Sons, Ltd Wiley |
| Publisher_xml | – name: John Wiley & Sons, Ltd – name: Wiley |
| References | Swarup KS, Yamashiro S. A genetic algorithm approach to generator unit commitment. Electrical Power and Energy Systems 2003; 25: 679-687. Kazarlis SA, Bakirtzis AG, Petridis V. A genetic algorithm solution to the unit commitment problem. IEEE Transactions on Power Systems 1996; 11: 29-36. Valenzuela J, Smith AE. A seeded memetic algorithm for large unit commitment problems. Journal of Heuristic 2002; 8: 173-195. Snyder WL, Powell HD, Rayburn JC. Dynamic programming approach to unit commitment. IEEE Transactions on Power Systems 1987; 2(2): 339-350. Yamin HY, Shabidehpour SM. Unit commitment using a hybrid model between Lagrangian relaxation and genetic algorithm in competitive electricity markets. Electric Power Systems Research 2003; 68: 83-92. Goldberg DE. Genetic Algorithms in Search Optimization and Machine Learning. Addison-Wesley: Reading, MA, 1989. Senjyu T, Saber AY, Miyagi T, Urasaki N, Funabashi T. Absolutely stochastic simulated annealing approach to large scale unit commitment problem. Electric Power Components and Systems 2006; 34(6): 619-637. Gollmer R, Nowak MP, Romisch W, Schultz R. Unit commitment in power generation-a basic model and some extensions. Annals of Operation Research 2000; 96: 167-189. Sheble GB, Maifeld TT. Unit commitment by genetic algorithm and expert-system. Electric Power Systems Research 1994; 30(2): 115-121. Carrión M, Arroyo JM. A Computationally efficient mixed-integer linear formulation for the thermal unit commitment problem. IEEE Transactions on Power Systems 2006; 21(3): 1371-1378. Saneifard S, Prasad NR, Smollech HA. A fuzzy logic approach to unit commitment. IEEE Transactions on Power Systems 1997; 12(2): 988-995. Balci HH, Valenzuela JF. Scheduling electric power generators using particle swarm optimization combined with the Lagrangian relaxation method. International Journal of Applied Mathematics and Computer Science 2004; 14(3): 411-421. Senjyu T, Miyagi T, Saber AY, Urasaki N, Funabashi T. Emerging solution of large-scale unit commitment problem by stochastic priority list. Electric Power Systems Research 2006; 76: 283-292. Dang C, Li M. A floating-point genetic algorithm for solving the unit commitment problem. European Journal of Operational Research 2006; 1370-1395. Available online at: http://www.sciencedirect.com/ (in press). Cohen AI, Yoshimura M. A branch-and-bound algorithm for unit commitment. IEEE Transactions on Power Systems 1983; PAS-102(2): 444-451. Sun L, Zhang Y, Jiang C. A matrix real-coded genetic algorithm to the unit commitment problem. Electric Power Systems Research 2006; 76: 716-728. Juste KA, Kitu H, Tunaka E, Hasegawa J. An evolutionary programming solution to the unit commitment problem. IEEE Transactions on Power Systems 1999; 14(4): 1452-1459. Dillon TS, Edwin KW. Integer programming approach to the problem of optimal unit commitment with probabilistic reserve determination. IEEE Transactions on Power Systems 1978; PAS-97(6): 2154-2166. Victoire TAA, Jeyakumar AE. Unit commitment by a tabusearch-based hybrid-optimisation technique. IET Proceedings Generation, Transmission and Distribution 2005; 152(4): 563-574. Damousis IG, Bakirtzis AG, Dokopoulos PS. A solution to the unit commitment problem using integer-coded genetic algorithm. IEEE Transactions on Power Systems 2004; 19(2): 1165-1172. Senjyu T, Shimabukuro K, Uezato K, Funabashi T. A fast technique for unit commitment problem by extended priority list. IEEE Transactions on Power Systems 2003; 18(2): 882-888. Baptistella LFB, Geromel JC. A decomposition approach to problem of unit commitment schedule for hydrothermal systems. Proceedings of IEEE, Vol. 149, no. 5, 1980; 250. Ting TO, Rao MVC, Loo CK. A novel approach for unit commitment problem via an effective hybrid particle swarm optimization. IEEE Transactions on Power Systems 2006; 21(1): 411-418. Wood AJ, Wollenberg BF. Power Generation, Operation, and Control, 2nd edn. Wiley: New York, 1996. Ongsakul W, Petcharaks N. Unit commitment by enhanced adaptive Lagrangian relaxation. IEEE Transactions on Power Systems 2004; 19(1): 620-628. Xing W, Wu FF. Genetic algorithm based unit commitment with energy contracts. Electrical Power and Energy Systems 2002; 24: 329-336. Cheng CP, Liu CW, Liu GC. Unit commitment by Lagrangian relaxation and genetic algorithms. IEEE Transactions on Power Systems 2000; 15: 707-714. Shahidehpour M, Yamin H, Li Z. Market Operations in Electric Power Systems: Forecasting, Scheduling, and Risk Management. Wiley: New York, 2002; 275-310. Mokhtari S, Sing J, Wollenberg B. A unit commitment expert system (power system control). IEEE Transactions on Power Systems 1988; 3(1): 272-277. Hosseini SH, Khodaei A, Aminifar F. A novel straightforward unit commitment method for large-scale power systems. IEEE Transactions on Power Systems 2007; 22(4): 2134-2143. Zhao B, Guo CX, Bai BR, Cao YJ. An improved particle swarm optimization algorithm for unit commitment. International Journal of Electrical Power and Energy Systems 2006; 28: 482-490. 1987; 2 1983; PAS‐102 2005; 152 2006; 34 2006; 76 2002; 8 1996 2006 2005 2003; 18 2004 2003 2002 1996; 11 1980; 149 1988; 3 2004; 19 2000; 15 2006; 21 2004; 14 2002; 24 2006; 28 2000; 96 1997; 12 1999; 14 2003; 68 2003; 25 1978; PAS‐97 2007; 22 1994; 30 1989 Dang C (e_1_2_1_28_2) 2006 e_1_2_1_22_2 e_1_2_1_23_2 e_1_2_1_20_2 e_1_2_1_21_2 e_1_2_1_26_2 e_1_2_1_27_2 e_1_2_1_24_2 e_1_2_1_25_2 Wood AJ (e_1_2_1_2_2) 1996 Goldberg DE (e_1_2_1_29_2) 1989 Balci HH (e_1_2_1_36_2) 2004; 14 e_1_2_1_6_2 e_1_2_1_30_2 e_1_2_1_7_2 e_1_2_1_4_2 e_1_2_1_5_2 e_1_2_1_11_2 e_1_2_1_34_2 e_1_2_1_3_2 e_1_2_1_12_2 e_1_2_1_33_2 e_1_2_1_32_2 e_1_2_1_10_2 e_1_2_1_31_2 e_1_2_1_15_2 e_1_2_1_38_2 e_1_2_1_16_2 e_1_2_1_37_2 e_1_2_1_13_2 e_1_2_1_14_2 e_1_2_1_35_2 e_1_2_1_19_2 e_1_2_1_8_2 e_1_2_1_17_2 e_1_2_1_9_2 e_1_2_1_18_2 e_1_2_1_39_2 |
| References_xml | – reference: Hosseini SH, Khodaei A, Aminifar F. A novel straightforward unit commitment method for large-scale power systems. IEEE Transactions on Power Systems 2007; 22(4): 2134-2143. – reference: Senjyu T, Miyagi T, Saber AY, Urasaki N, Funabashi T. Emerging solution of large-scale unit commitment problem by stochastic priority list. Electric Power Systems Research 2006; 76: 283-292. – reference: Senjyu T, Shimabukuro K, Uezato K, Funabashi T. A fast technique for unit commitment problem by extended priority list. IEEE Transactions on Power Systems 2003; 18(2): 882-888. – reference: Saneifard S, Prasad NR, Smollech HA. A fuzzy logic approach to unit commitment. IEEE Transactions on Power Systems 1997; 12(2): 988-995. – reference: Zhao B, Guo CX, Bai BR, Cao YJ. An improved particle swarm optimization algorithm for unit commitment. International Journal of Electrical Power and Energy Systems 2006; 28: 482-490. – reference: Snyder WL, Powell HD, Rayburn JC. Dynamic programming approach to unit commitment. IEEE Transactions on Power Systems 1987; 2(2): 339-350. – reference: Wood AJ, Wollenberg BF. Power Generation, Operation, and Control, 2nd edn. Wiley: New York, 1996. – reference: Ting TO, Rao MVC, Loo CK. A novel approach for unit commitment problem via an effective hybrid particle swarm optimization. IEEE Transactions on Power Systems 2006; 21(1): 411-418. – reference: Yamin HY, Shabidehpour SM. Unit commitment using a hybrid model between Lagrangian relaxation and genetic algorithm in competitive electricity markets. Electric Power Systems Research 2003; 68: 83-92. – reference: Sun L, Zhang Y, Jiang C. A matrix real-coded genetic algorithm to the unit commitment problem. Electric Power Systems Research 2006; 76: 716-728. – reference: Balci HH, Valenzuela JF. Scheduling electric power generators using particle swarm optimization combined with the Lagrangian relaxation method. International Journal of Applied Mathematics and Computer Science 2004; 14(3): 411-421. – reference: Sheble GB, Maifeld TT. Unit commitment by genetic algorithm and expert-system. Electric Power Systems Research 1994; 30(2): 115-121. – reference: Victoire TAA, Jeyakumar AE. Unit commitment by a tabusearch-based hybrid-optimisation technique. IET Proceedings Generation, Transmission and Distribution 2005; 152(4): 563-574. – reference: Swarup KS, Yamashiro S. A genetic algorithm approach to generator unit commitment. Electrical Power and Energy Systems 2003; 25: 679-687. – reference: Cohen AI, Yoshimura M. A branch-and-bound algorithm for unit commitment. IEEE Transactions on Power Systems 1983; PAS-102(2): 444-451. – reference: Juste KA, Kitu H, Tunaka E, Hasegawa J. An evolutionary programming solution to the unit commitment problem. IEEE Transactions on Power Systems 1999; 14(4): 1452-1459. – reference: Dillon TS, Edwin KW. Integer programming approach to the problem of optimal unit commitment with probabilistic reserve determination. IEEE Transactions on Power Systems 1978; PAS-97(6): 2154-2166. – reference: Baptistella LFB, Geromel JC. A decomposition approach to problem of unit commitment schedule for hydrothermal systems. Proceedings of IEEE, Vol. 149, no. 5, 1980; 250. – reference: Mokhtari S, Sing J, Wollenberg B. A unit commitment expert system (power system control). IEEE Transactions on Power Systems 1988; 3(1): 272-277. – reference: Cheng CP, Liu CW, Liu GC. Unit commitment by Lagrangian relaxation and genetic algorithms. IEEE Transactions on Power Systems 2000; 15: 707-714. – reference: Ongsakul W, Petcharaks N. Unit commitment by enhanced adaptive Lagrangian relaxation. IEEE Transactions on Power Systems 2004; 19(1): 620-628. – reference: Xing W, Wu FF. Genetic algorithm based unit commitment with energy contracts. Electrical Power and Energy Systems 2002; 24: 329-336. – reference: Senjyu T, Saber AY, Miyagi T, Urasaki N, Funabashi T. Absolutely stochastic simulated annealing approach to large scale unit commitment problem. Electric Power Components and Systems 2006; 34(6): 619-637. – reference: Kazarlis SA, Bakirtzis AG, Petridis V. A genetic algorithm solution to the unit commitment problem. IEEE Transactions on Power Systems 1996; 11: 29-36. – reference: Damousis IG, Bakirtzis AG, Dokopoulos PS. A solution to the unit commitment problem using integer-coded genetic algorithm. IEEE Transactions on Power Systems 2004; 19(2): 1165-1172. – reference: Shahidehpour M, Yamin H, Li Z. Market Operations in Electric Power Systems: Forecasting, Scheduling, and Risk Management. Wiley: New York, 2002; 275-310. – reference: Dang C, Li M. A floating-point genetic algorithm for solving the unit commitment problem. European Journal of Operational Research 2006; 1370-1395. Available online at: http://www.sciencedirect.com/ (in press). – reference: Goldberg DE. Genetic Algorithms in Search Optimization and Machine Learning. Addison-Wesley: Reading, MA, 1989. – reference: Gollmer R, Nowak MP, Romisch W, Schultz R. Unit commitment in power generation-a basic model and some extensions. Annals of Operation Research 2000; 96: 167-189. – reference: Carrión M, Arroyo JM. A Computationally efficient mixed-integer linear formulation for the thermal unit commitment problem. IEEE Transactions on Power Systems 2006; 21(3): 1371-1378. – reference: Valenzuela J, Smith AE. A seeded memetic algorithm for large unit commitment problems. Journal of Heuristic 2002; 8: 173-195. – volume: 19 start-page: 620 issue: 1 year: 2004 end-page: 628 article-title: Unit commitment by enhanced adaptive Lagrangian relaxation publication-title: IEEE Transactions on Power Systems – volume: 76 start-page: 716 year: 2006 end-page: 728 article-title: A matrix real‐coded genetic algorithm to the unit commitment problem publication-title: Electric Power Systems Research – volume: 152 start-page: 563 issue: 4 year: 2005 end-page: 574 article-title: Unit commitment by a tabusearch‐based hybrid‐optimisation technique publication-title: IET Proceedings Generation, Transmission and Distribution – start-page: 593 year: 2002 end-page: 599 – volume: 19 start-page: 1165 issue: 2 year: 2004 end-page: 1172 article-title: A solution to the unit commitment problem using integer‐coded genetic algorithm publication-title: IEEE Transactions on Power Systems – year: 1989 – year: 1996 – volume: 96 start-page: 167 year: 2000 end-page: 189 article-title: Unit commitment in power generation—a basic model and some extensions publication-title: Annals of Operation Research – start-page: 72 year: 2003 end-page: 77 – start-page: 275 year: 2002 end-page: 310 – volume: 18 start-page: 882 issue: 2 year: 2003 end-page: 888 article-title: A fast technique for unit commitment problem by extended priority list publication-title: IEEE Transactions on Power Systems – volume: 24 start-page: 329 year: 2002 end-page: 336 article-title: Genetic algorithm based unit commitment with energy contracts publication-title: Electrical Power and Energy Systems – volume: 14 start-page: 1452 issue: 4 year: 1999 end-page: 1459 article-title: An evolutionary programming solution to the unit commitment problem publication-title: IEEE Transactions on Power Systems – volume: 68 start-page: 83 year: 2003 end-page: 92 article-title: Unit commitment using a hybrid model between Lagrangian relaxation and genetic algorithm in competitive electricity markets publication-title: Electric Power Systems Research – start-page: 58 year: 2002 end-page: 63 – volume: 21 start-page: 411 issue: 1 year: 2006 end-page: 418 article-title: A novel approach for unit commitment problem via an effective hybrid particle swarm optimization publication-title: IEEE Transactions on Power Systems – volume: 21 start-page: 1371 issue: 3 year: 2006 end-page: 1378 article-title: A Computationally efficient mixed‐integer linear formulation for the thermal unit commitment problem publication-title: IEEE Transactions on Power Systems – volume: 25 start-page: 679 year: 2003 end-page: 687 article-title: A genetic algorithm approach to generator unit commitment publication-title: Electrical Power and Energy Systems – volume: 14 start-page: 411 issue: 3 year: 2004 end-page: 421 article-title: Scheduling electric power generators using particle swarm optimization combined with the Lagrangian relaxation method publication-title: International Journal of Applied Mathematics and Computer Science – volume: 30 start-page: 115 issue: 2 year: 1994 end-page: 121 article-title: Unit commitment by genetic algorithm and expert‐system publication-title: Electric Power Systems Research – volume: 22 start-page: 2134 issue: 4 year: 2007 end-page: 2143 article-title: A novel straightforward unit commitment method for large‐scale power systems publication-title: IEEE Transactions on Power Systems – start-page: 1325 year: 2005 end-page: 1330 – volume: PAS‐102 start-page: 444 issue: 2 year: 1983 end-page: 451 article-title: A branch‐and‐bound algorithm for unit commitment publication-title: IEEE Transactions on Power Systems – start-page: 418 year: 2003 end-page: 424 – volume: 2 start-page: 339 issue: 2 year: 1987 end-page: 350 article-title: Dynamic programming approach to unit commitment publication-title: IEEE Transactions on Power Systems – volume: 149 start-page: 250 year: 1980 article-title: A decomposition approach to problem of unit commitment schedule for hydrothermal systems publication-title: Proceedings of IEEE – volume: 8 start-page: 173 year: 2002 end-page: 195 article-title: A seeded memetic algorithm for large unit commitment problems publication-title: Journal of Heuristic – volume: PAS‐97 start-page: 2154 issue: 6 year: 1978 end-page: 2166 article-title: Integer programming approach to the problem of optimal unit commitment with probabilistic reserve determination publication-title: IEEE Transactions on Power Systems – volume: 11 start-page: 29 year: 1996 end-page: 36 article-title: A genetic algorithm solution to the unit commitment problem publication-title: IEEE Transactions on Power Systems – start-page: 1746 year: 2004 end-page: 1751 – volume: 34 start-page: 619 issue: 6 year: 2006 end-page: 637 article-title: Absolutely stochastic simulated annealing approach to large scale unit commitment problem publication-title: Electric Power Components and Systems – volume: 28 start-page: 482 year: 2006 end-page: 490 article-title: An improved particle swarm optimization algorithm for unit commitment publication-title: International Journal of Electrical Power and Energy Systems – volume: 3 start-page: 272 issue: 1 year: 1988 end-page: 277 article-title: A unit commitment expert system (power system control) publication-title: IEEE Transactions on Power Systems – volume: 15 start-page: 707 year: 2000 end-page: 714 article-title: Unit commitment by Lagrangian relaxation and genetic algorithms publication-title: IEEE Transactions on Power Systems – start-page: 1370 year: 2006 end-page: 1395 article-title: A floating‐point genetic algorithm for solving the unit commitment problem publication-title: European Journal of Operational Research – volume: 76 start-page: 283 year: 2006 end-page: 292 article-title: Emerging solution of large‐scale unit commitment problem by stochastic priority list publication-title: Electric Power Systems Research – volume: 12 start-page: 988 issue: 2 year: 1997 end-page: 995 article-title: A fuzzy logic approach to unit commitment publication-title: IEEE Transactions on Power Systems – ident: e_1_2_1_3_2 doi: 10.1023/A:1018947401538 – ident: e_1_2_1_31_2 doi: 10.1016/j.epsr.2005.10.005 – ident: e_1_2_1_10_2 doi: 10.1109/TPWRS.2003.820707 – ident: e_1_2_1_27_2 doi: 10.1109/59.867163 – ident: e_1_2_1_11_2 doi: 10.1109/TPAS.1983.317714 – ident: e_1_2_1_14_2 doi: 10.1049/ip-d.1980.0044 – ident: e_1_2_1_22_2 doi: 10.1016/S0142-0615(03)00003-6 – ident: e_1_2_1_23_2 doi: 10.1016/S0378-7796(03)00147-0 – ident: e_1_2_1_8_2 doi: 10.1016/j.epsr.2005.07.002 – ident: e_1_2_1_15_2 doi: 10.1080/15325000500419185 – ident: e_1_2_1_6_2 doi: 10.1109/TPWRS.2007.907443 – ident: e_1_2_1_34_2 doi: 10.1109/TPWRS.2005.860907 – ident: e_1_2_1_5_2 – ident: e_1_2_1_37_2 doi: 10.1109/ICIT.2003.1290244 – volume: 14 start-page: 411 issue: 3 year: 2004 ident: e_1_2_1_36_2 article-title: Scheduling electric power generators using particle swarm optimization combined with the Lagrangian relaxation method publication-title: International Journal of Applied Mathematics and Computer Science – ident: e_1_2_1_20_2 doi: 10.1109/59.485989 – volume-title: Power Generation, Operation, and Control year: 1996 ident: e_1_2_1_2_2 – start-page: 1370 year: 2006 ident: e_1_2_1_28_2 article-title: A floating‐point genetic algorithm for solving the unit commitment problem publication-title: European Journal of Operational Research – ident: e_1_2_1_19_2 doi: 10.1109/59.589804 – ident: e_1_2_1_35_2 – ident: e_1_2_1_18_2 doi: 10.1109/59.43211 – ident: e_1_2_1_4_2 doi: 10.1002/047122412X.ch8 – ident: e_1_2_1_7_2 doi: 10.1109/TPWRS.2003.811000 – ident: e_1_2_1_21_2 doi: 10.1016/S0142-0615(01)00048-5 – ident: e_1_2_1_25_2 doi: 10.1109/TPWRS.2003.821625 – ident: e_1_2_1_38_2 doi: 10.1049/ip-gtd:20045190 – ident: e_1_2_1_9_2 doi: 10.1109/TPWRS.1987.4335130 – ident: e_1_2_1_13_2 doi: 10.1109/TPWRS.2006.876672 – ident: e_1_2_1_24_2 doi: 10.1016/j.ijepes.2006.02.011 – volume-title: Genetic Algorithms in Search Optimization and Machine Learning year: 1989 ident: e_1_2_1_29_2 – ident: e_1_2_1_16_2 doi: 10.1049/ip-gtd:20020460 – ident: e_1_2_1_30_2 doi: 10.1109/IJCNN.2005.1556046 – ident: e_1_2_1_32_2 doi: 10.1109/59.801925 – ident: e_1_2_1_33_2 doi: 10.1109/ICPST.2004.1460285 – ident: e_1_2_1_12_2 doi: 10.1109/TPAS.1978.354719 – ident: e_1_2_1_17_2 doi: 10.1016/0378-7796(94)90006-X – ident: e_1_2_1_26_2 doi: 10.1109/PESW.2002.984954 – ident: e_1_2_1_39_2 doi: 10.1023/A:1017960507177 |
| SSID | ssj0027785 |
| Score | 1.8780407 |
| Snippet | This paper proposes a new Integer‐Coded Genetic Algorithm (ICGA) for the solution of the thermal unit commitment problem. The thermal generating units... This paper proposes a new Integer-Coded Genetic Algorithm (ICGA) for the solution of the thermal unit commitment problem. The thermal generating units... |
| SourceID | proquest pascalfrancis crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1161 |
| SubjectTerms | Applied sciences Cost engineering crossover Electrical engineering. Electrical power engineering Electrical power engineering Exact sciences and technology Genetic algorithms integer-coded genetic algorithm Integers mutation Mutations Operation. Load control. Reliability Operators Power networks and lines Robustness Scheduling Unit commitment |
| Title | Unit commitment using a new integer coded genetic algorithm |
| URI | https://api.istex.fr/ark:/67375/WNG-384WR1QX-Q/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fetep.297 https://www.proquest.com/docview/753652671 |
| Volume | 19 |
| WOSCitedRecordID | wos000272929500012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1546-3109 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0027785 issn: 1430-144X databaseCode: DRFUL dateStart: 20040101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1546-3109 dateEnd: 20121231 omitProxy: false ssIdentifier: ssj0027785 issn: 1430-144X databaseCode: 24P dateStart: 20040101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3BThsxELVa0kN7KJS2agpEroToaUt27F3H4oQgaQ9VFBCI3KyxY9OokKBNqPr59XiTQKRWqsRpL2PLGs-s39gzbxjbd1Z7KRVkwgeRSd0eZXS9EN0di6BEIE6t1GxC9fud4VAPFlmVVAtT80OsLtzIM9L_mhwc7ezwgTQ0Ysq7L6DVc9bIc6HIokEOHoItldpxRjjQzmLQMFwSz7bhcDly7ShqkFZ_U2okzqJ2Qt3WYg13Pkav6fjpbT5l4Vvs9QJ08uPaSt6wZ36yzV49oiJ8y44IfPI41e045Z1zSoi_5sgj7OaJU8JXnOrfRzyaHFU-cry5nlbj-Y_bd-yy1704-ZYtGitkTpSFymxROsydA-ExCLoK1W10oBCKoJFAnRwVoHJAEUptPZWaW28xdLzGoJ14zzYm04n_wLgN6FwHrKW4S0tAZQElSmehjOJ5k31e6ti4Bes4Nb-4MTVfMhhSh4nqaLJPK8m7mmnjLzIHaZtWAlj9pMw0VZir_lcjOvLqPD8bmrMma63t42oAAPW9LeNMfLmxJjoUvZLgxE_vZybGb2UBpYpLP0jb-M_VmO5FdxC_H_9XcIe9TI9RqZRxl23Mq3u_x164X_PxrGol-22xxul57_L7H43h9m8 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB6VBAk48EaERzESKqdtE9u7jtUTgoQiQtRWqZqbNXbsEtEm1SZF_Hw83mzaSCAhcdrL2LLmsZ4Zz3wD8M5Z7aVUPBM-iEzq9iSj9EI0d8yDEoEwtdKwCTUcdsdjfbgF-3UvTIUPsU64kWWk_zUZOCWk965RQ6NTebnLtboFTRm1KG9A89Nx_2RwHW-pNJEzegTtLMYN4xp7ts336rUbt1GTGPuLqiNxERkUqskWG67nTQc23UD9B_919odwf-V4sg-VpjyCLT97DPduwBE-gX1yQFnc62Kaas8ZFcWfMWTR9WYJV8KXjHrgJyyqHXU_Mjw_m5fT5feLp3DS740-HmSr4QqZE0WuMpsXDjvOceExCEqH6jY6rpDnQSM5dnKSc9XhKEKhrad2c-sthq7XGLQTz6Axm8_8c2A2oHNdbi3FXlpyVJajROksLyJ5pwXvayYbt0IepwEY56bCTOaG2GEiO1rwdk15WaFt_IFmJ8lpTYDlD6pOU7k5HX42oitPjztHY3PUgu0NQa4XcE6zb4u4E6sla6JR0UsJzvz8amFiDFfkvFDx6DtJjn89jemNeofx--JfCd_AnYPRt4EZfBl-fQl30-NUam18BY1leeVfw233czldlNsrdf4N4mf6TA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fbxMxDLbGhtB4YPwUhW0ECY2nY22SuzTa07S1gEBVh4bWt8hJk1Fta6trh_jziXO9bpWYNImne_FFkR0nnxP7M8AHZ7WXUvFM-CAyqZvDjK4XortjHpQIxKmVmk2oXq89GOj-GhzUtTAVP8Tywo08I-3X5OB-Ogz7N6yhEVROP3GtHsCGzOMWS7TOsn8TbanUjzPigWYWo4ZBzTzb5Pv1nytn0Qap9Q_lRuIsqidUfS1WgOdt-JrOn-7Wf838KTxZwE52WK2TZ7Dmx8_h8S0ywhdwQPCTxbGuRinznFFK_DlDFoE3S6wSvmRUAT9kcdFR7SPDy_NJOZr_unoJP7ud06Mv2aK1QuZEkavM5oXDlnNceAyCLkN1Ex1XyPOgkWCdHOZctTiKUGjrqdjceouh7TUG7cQrWB9Pxv41MBvQuTa3liIvLTkqy1GidJYXUbzVgI-1ko1b8I5T-4tLUzEmc0PqMFEdDXi_lJxWXBv_kNlLdloKYHlBuWkqN2e9z0a05dmP1snAnDRgd8WQyx84p863RRyJ1ZY10aXonQTHfnI9MzGCK3JeqDj1vWTHO2djOqedfvy-ua_gO3jUP-6a7197397CZnqZSnWN27A-L6_9Djx0v-ejWbmb1vJfDN74NQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unit+commitment+using+a+new+integer+coded+genetic+algorithm&rft.jtitle=European+transactions+on+electrical+power&rft.au=Amjady%2C+Nima&rft.au=Shirzadi%2C+Ali&rft.date=2009-11-01&rft.issn=1430-144X&rft.volume=19&rft.issue=8&rft.spage=1161&rft.epage=1176&rft_id=info:doi/10.1002%2Fetep.297&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1430-144X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1430-144X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1430-144X&client=summon |