Protein-protein docking by simulating the process of association subject to biochemical constraints
We present a computational procedure for modeling protein–protein association and predicting the structures of protein–protein complexes. The initial sampling stage is based on an efficient Brownian dynamics algorithm that mimics the physical process of diffusional association. Relevant biochemical...
Gespeichert in:
| Veröffentlicht in: | Proteins, structure, function, and bioinformatics Jg. 71; H. 4; S. 1955 - 1969 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.06.2008
|
| Schlagworte: | |
| ISSN: | 0887-3585, 1097-0134, 1097-0134 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | We present a computational procedure for modeling protein–protein association and predicting the structures of protein–protein complexes. The initial sampling stage is based on an efficient Brownian dynamics algorithm that mimics the physical process of diffusional association. Relevant biochemical data can be directly incorporated as distance constraints at this stage. The docked configurations are then grouped with a hierarchical clustering algorithm into ensembles that represent potential protein–protein encounter complexes. Flexible refinement of selected representative structures is done by molecular dynamics simulation. The protein–protein docking procedure was thoroughly tested on 10 structurally and functionally diverse protein–protein complexes. Starting from X‐ray crystal structures of the unbound proteins, in 9 out of 10 cases it yields structures of protein–protein complexes close to those determined experimentally with the percentage of correct contacts >30% and interface backbone RMSD <4 Å. Detailed examination of all the docking cases gives insights into important determinants of the performance of the computational approach in modeling protein–protein association and predicting of protein–protein complex structures. Proteins 2008. © 2008 Wiley‐Liss, Inc. |
|---|---|
| AbstractList | We present a computational procedure for modeling protein-protein association and predicting the structures of protein-protein complexes. The initial sampling stage is based on an efficient Brownian dynamics algorithm that mimics the physical process of diffusional association. Relevant biochemical data can be directly incorporated as distance constraints at this stage. The docked configurations are then grouped with a hierarchical clustering algorithm into ensembles that represent potential protein-protein encounter complexes. Flexible refinement of selected representative structures is done by molecular dynamics simulation. The protein-protein docking procedure was thoroughly tested on 10 structurally and functionally diverse protein-protein complexes. Starting from X-ray crystal structures of the unbound proteins, in 9 out of 10 cases it yields structures of protein-protein complexes close to those determined experimentally with the percentage of correct contacts >30% and interface backbone RMSD <4 A. Detailed examination of all the docking cases gives insights into important determinants of the performance of the computational approach in modeling protein-protein association and predicting of protein-protein complex structures.We present a computational procedure for modeling protein-protein association and predicting the structures of protein-protein complexes. The initial sampling stage is based on an efficient Brownian dynamics algorithm that mimics the physical process of diffusional association. Relevant biochemical data can be directly incorporated as distance constraints at this stage. The docked configurations are then grouped with a hierarchical clustering algorithm into ensembles that represent potential protein-protein encounter complexes. Flexible refinement of selected representative structures is done by molecular dynamics simulation. The protein-protein docking procedure was thoroughly tested on 10 structurally and functionally diverse protein-protein complexes. Starting from X-ray crystal structures of the unbound proteins, in 9 out of 10 cases it yields structures of protein-protein complexes close to those determined experimentally with the percentage of correct contacts >30% and interface backbone RMSD <4 A. Detailed examination of all the docking cases gives insights into important determinants of the performance of the computational approach in modeling protein-protein association and predicting of protein-protein complex structures. We present a computational procedure for modeling protein–protein association and predicting the structures of protein–protein complexes. The initial sampling stage is based on an efficient Brownian dynamics algorithm that mimics the physical process of diffusional association. Relevant biochemical data can be directly incorporated as distance constraints at this stage. The docked configurations are then grouped with a hierarchical clustering algorithm into ensembles that represent potential protein–protein encounter complexes. Flexible refinement of selected representative structures is done by molecular dynamics simulation. The protein–protein docking procedure was thoroughly tested on 10 structurally and functionally diverse protein–protein complexes. Starting from X‐ray crystal structures of the unbound proteins, in 9 out of 10 cases it yields structures of protein–protein complexes close to those determined experimentally with the percentage of correct contacts >30% and interface backbone RMSD <4 Å. Detailed examination of all the docking cases gives insights into important determinants of the performance of the computational approach in modeling protein–protein association and predicting of protein–protein complex structures. Proteins 2008. © 2008 Wiley‐Liss, Inc. We present a computational procedure for modeling protein-protein association and predicting the structures of protein-protein complexes. The initial sampling stage is based on an efficient Brownian dynamics algorithm that mimics the physical process of diffusional association. Relevant biochemical data can be directly incorporated as distance constraints at this stage. The docked configurations are then grouped with a hierarchical clustering algorithm into ensembles that represent potential protein-protein encounter complexes. Flexible refinement of selected representative structures is done by molecular dynamics simulation. The protein-protein docking procedure was thoroughly tested on 10 structurally and functionally diverse protein-protein complexes. Starting from X-ray crystal structures of the unbound proteins, in 9 out of 10 cases it yields structures of protein-protein complexes close to those determined experimentally with the percentage of correct contacts >30% and interface backbone RMSD <4 A. Detailed examination of all the docking cases gives insights into important determinants of the performance of the computational approach in modeling protein-protein association and predicting of protein-protein complex structures. |
| Author | Gabdoulline, Razif Wang, Ting Winn, Peter J. Feldman-Salit, Anna Johann, Tim Wade, Rebecca C. Motiejunas, Domantas |
| Author_xml | – sequence: 1 givenname: Domantas surname: Motiejunas fullname: Motiejunas, Domantas email: domantas.motiejunas@eml-r.villa-bosch.de organization: EML Research gGmbH, Schloss-Wolfsbrunnenweg 33, 69118 Heidelberg, Germany – sequence: 2 givenname: Razif surname: Gabdoulline fullname: Gabdoulline, Razif organization: EML Research gGmbH, Schloss-Wolfsbrunnenweg 33, 69118 Heidelberg, Germany – sequence: 3 givenname: Ting surname: Wang fullname: Wang, Ting organization: EML Research gGmbH, Schloss-Wolfsbrunnenweg 33, 69118 Heidelberg, Germany – sequence: 4 givenname: Anna surname: Feldman-Salit fullname: Feldman-Salit, Anna organization: EML Research gGmbH, Schloss-Wolfsbrunnenweg 33, 69118 Heidelberg, Germany – sequence: 5 givenname: Tim surname: Johann fullname: Johann, Tim organization: EML Research gGmbH, Schloss-Wolfsbrunnenweg 33, 69118 Heidelberg, Germany – sequence: 6 givenname: Peter J. surname: Winn fullname: Winn, Peter J. organization: EML Research gGmbH, Schloss-Wolfsbrunnenweg 33, 69118 Heidelberg, Germany – sequence: 7 givenname: Rebecca C. surname: Wade fullname: Wade, Rebecca C. email: rebecca.wade@eml-r.villa-bosch.de organization: EML Research gGmbH, Schloss-Wolfsbrunnenweg 33, 69118 Heidelberg, Germany |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/18186463$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kE1P3DAQhi1EBQv00h9Q-dQDUug4TuzkWFE-qqKyKlQgLpbtnRRDEm9jR-3-e7wEilShnkajeZ7RzLtDNnvfIyHvGBwwgPzjcvDxIGeVkBtkxqCWGTBebJIZVJXMeFmV22QnhDsAEDUXW2SbVYkuBJ8RO08yuj5bTpUuvL13_U9qVjS4bmx1XHfxFmkiLIZAfUN1CN66NPI9DaO5Qxtp9NQ4b2-xc1a31Po-xEG7PoY98qbRbcC3T3WX_Dg-ujw8zc7OT74cfjrLLBelzOoSGpCyMZIZIRelzAVorguhayNqIzG3OYe8LiqJpmGYa2nBNNpaiaxJ3-ySD9PedOmvEUNUnQsW21b36MegJBOcswIS-P4JHE2HC7UcXKeHlXqOJQH7E2AHH8KAzQsCap25WselHjNPMPwDWxcfs1n_376usEn57Vpc_We5mn8_v3x2sslxIeKfv44e7lWaylJdfTtR15-_zvObi2N1xR8AuyulrQ |
| CitedBy_id | crossref_primary_10_1111_jipb_12803 crossref_primary_10_1155_2012_121034 crossref_primary_10_1002_wcms_1649 crossref_primary_10_1038_s42003_020_01568_y crossref_primary_10_1093_nar_gkr101 crossref_primary_10_1038_s42003_024_06880_5 crossref_primary_10_1016_j_jmb_2008_08_075 crossref_primary_10_1016_j_jmb_2016_05_015 crossref_primary_10_1287_ijoc_2014_0596 crossref_primary_10_1093_nar_gkv335 crossref_primary_10_1002_jcc_23971 crossref_primary_10_1016_j_bpj_2009_02_054 crossref_primary_10_1038_nsmb_2615 |
| Cites_doi | 10.1002/prot.1070 10.1110/ps.0217002 10.1093/bioinformatics/bti322 10.1016/j.jmb.2005.01.058 10.1002/(SICI)1097-0134(20000601)39:4<372::AID-PROT100>3.0.CO;2-Q 10.1073/pnas.89.6.2195 10.1002/(SICI)1097-0134(199612)26:4<363::AID-PROT1>3.0.CO;2-D 10.1006/jmbi.1997.1203 10.1093/nar/gkh039 10.1016/0021-9991(77)90098-5 10.1002/prot.21321 10.1016/S0969-2126(00)00528-1 10.1016/0010-4655(95)00043-F 10.1110/ps.041222905 10.1002/prot.20562 10.1016/S0959-440X(02)00287-7 10.1021/ja026939x 10.1021/bi000079k 10.1002/prot.10248 10.1006/meth.1998.0588 10.1002/prot.20272 10.1021/jp953109f 10.1002/jcc.10329 10.1002/(SICI)1099-1352(199907/08)12:4<226::AID-JMR462>3.0.CO;2-P 10.1093/nar/gki481 10.1093/nar/28.1.235 10.1021/ja9739906 10.1021/jm049314d 10.1016/S0959-440X(02)00311-1 10.1016/j.tibtech.2004.01.006 10.1038/nsb0698-422 10.1002/prot.21391 10.1093/protein/12.8.639 10.1002/jcc.20035 10.1073/pnas.90.24.11613 10.1006/jmbi.2000.4404 10.1006/jmbi.2000.4154 10.1093/proeng/gzg021 10.1002/prot.20551 10.1016/0263-7855(90)80070-V 10.1002/jcc.20290 10.1021/ct0501607 10.1038/77929 10.1016/S0065-3233(03)66002-X 10.1038/nbt1018 10.1021/ja9621760 |
| ContentType | Journal Article |
| Copyright | Copyright © 2008 Wiley‐Liss, Inc. (c) 2008 Wiley-Liss, Inc. |
| Copyright_xml | – notice: Copyright © 2008 Wiley‐Liss, Inc. – notice: (c) 2008 Wiley-Liss, Inc. |
| DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1002/prot.21867 |
| DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology Chemistry Biology |
| EISSN | 1097-0134 |
| EndPage | 1969 |
| ExternalDocumentID | 18186463 10_1002_prot_21867 PROT21867 ark_67375_WNG_XDKP2ZSF_W |
| Genre | article Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Klaus Tschira Foundation – fundername: BIOMS |
| GroupedDBID | -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5RE 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ABLJU ACAHQ ACBWZ ACCZN ACFBH ACGFS ACIWK ACPOU ACPRK ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFPM AFGKR AFRAH AFWVQ AFZJQ AGHNM AGQPQ AGYGG AHBTC AHMBA AIQQE AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BNHUX BROTX BRXPI BSCLL BY8 CS3 D-E D-F D0L DCZOG DPXWK DR1 DR2 DRFUL DRSTM EBD EBS EJD EMOBN F00 F01 F04 F5P FA8 FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HHZ HVGLF HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LH6 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NDZJH NF~ NNB O66 O9- P2P P2W P2X P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RIWAO RJQFR RNS ROL RX1 SAMSI SUPJJ SV3 UB1 V2E W8V W99 WBFHL WBKPD WIB WIH WIK WJL WOHZO WQJ WXSBR WYISQ XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAYXX CITATION O8X CGR CUY CVF ECM EIF NPM 7X8 |
| ID | FETCH-LOGICAL-c3657-950f077fb71b67d57260a3a46a9b69b7e2c23029487ebf1e2a7c0bfacc7e1f463 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 24 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000255920600029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0887-3585 1097-0134 |
| IngestDate | Sun Nov 09 09:16:07 EST 2025 Mon Jul 21 06:00:39 EDT 2025 Sat Nov 29 06:06:07 EST 2025 Tue Nov 18 21:06:57 EST 2025 Wed Aug 20 07:25:58 EDT 2025 Sun Sep 21 06:17:32 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor (c) 2008 Wiley-Liss, Inc. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3657-950f077fb71b67d57260a3a46a9b69b7e2c23029487ebf1e2a7c0bfacc7e1f463 |
| Notes | BIOMS ark:/67375/WNG-XDKP2ZSF-W ArticleID:PROT21867 istex:E32464563977F50AC97791E3D3BFA6B0884CAB25 Klaus Tschira Foundation BIOMS, University of Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany Genome Center, University of California, Davis, 451 East Health Science Drive, 95616 Davis CA, USA ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 18186463 |
| PQID | 71633140 |
| PQPubID | 23479 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_71633140 pubmed_primary_18186463 crossref_primary_10_1002_prot_21867 crossref_citationtrail_10_1002_prot_21867 wiley_primary_10_1002_prot_21867_PROT21867 istex_primary_ark_67375_WNG_XDKP2ZSF_W |
| PublicationCentury | 2000 |
| PublicationDate | 2008-06 June 2008 2008-06-00 2008-Jun 20080601 |
| PublicationDateYYYYMMDD | 2008-06-01 |
| PublicationDate_xml | – month: 06 year: 2008 text: 2008-06 |
| PublicationDecade | 2000 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken – name: United States |
| PublicationTitle | Proteins, structure, function, and bioinformatics |
| PublicationTitleAlternate | Proteins |
| PublicationYear | 2008 |
| Publisher | Wiley Subscription Services, Inc., A Wiley Company |
| Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
| References | Aloy P,Russell RB. Ten thousand interactions for the molecular biologist. Nat Biotechnol 2004; 22: 1317-1321. Palma PN,Krippahl L,Wampler JE,Moura JJ. BiGGER: a new (soft) docking algorithm for predicting protein interactions. Proteins 2000; 39: 372-384. Schreiber G. Kinetic studies of protein-protein interactions. Curr Opin Struct Biol 2002; 12: 41-47. Ehrlich LP,Nilges M,Wade RC. The impact of protein flexibility on protein-protein docking. Proteins 2005; 58: 126-133. Katchalski-Katzir E,Shariv I,Eisenstein M,Friesem AA,Aflalo C,Vakser IA. Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proc Natl Acad Sci USA 1992; 89: 2195-2199. Huang L,Hofer F,Martin GS,Kim SH. Structural basis for the interaction of Ras with RalGDS. Nat Struct Biol 1998; 5: 422-426. Madura JD,Briggs JM,Wade RC,Davis ME,Luty BA,Ilin A,Antosiewicz J,Gilson MK,Bagheri B,Scott LR,McCammon JA. Electrostatics and diffusion of molecules in solution: simulations with the University of Houston Brownian Dynamics program. Comput Phys Commun 1995; 91: 57-95. Gabb HA,Jackson RM,Sternberg MJ. Modelling protein docking using shape complementarity, electrostatics and biochemical information. J Mol Biol 1997; 272: 106-120. Schneidman-Duhovny D,Inbar Y,Nussinov R,Wolfson HJ. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 2005; 33 (web server issue): W363-W367. Wang T,Wade RC. Implicit solvent models for flexible protein-protein docking by molecular dynamics simulation. Proteins 2003; 50: 158-169. Vriend G. WHAT IF: a molecular modeling and drug design program. J Mol Graph 1990; 8: 52-56,29. Camacho CJ,Zhang C. FastContact: rapid estimate of contact and binding free energies. Bioinformatics 2005; 21: 2534-2536. Case DA,Cheatham TE,IIIDarden T,Gohlke H,Luo R,Merz KM,JrOnufriev A,Simmerling C,Wang B,Woods RJ. The Amber biomolecular simulation programs. J Comput Chem 2005; 26: 1668-1688. Bewley MC,Springer K,Zhang YB,Freimuth P,Flanagan JM. Structural analysis of the mechanism of adenovirus binding to its human cellular receptor. CAR Science 1999; 286: 1579-1583. Luirink J,Sinning I SRP-mediated protein targeting: structure and function revisited. Biochim Biophys Acta 2004; 1694: 17-35. Andreeva A,Howorth D,Brenner SE,Hubbard TJ,Chothia C,Murzin AG. SCOP database in 2004: refinements integrate structure and sequence family data. Nucleic Acids Res 2004; 32 (database issue): D226-D229. Gabdoulline RR,Wade RC. Effective charges for macromolecules in solvent. J Phys Chem 1996; 100: 3868-3878. Gabdoulline RR,Wade RC. On the protein-protein diffusional encounter complex. J Mol Recognit 1999; 12: 226-234. Gabdoulline RR,Wade RC. Brownian dynamics simulation of protein-protein diffusional encounter. Methods 1998; 14: 329-341. Zhou H,Zhou Y. Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Sci 2002; 11: 2714-2726. Wang C,Schueler-Furman O,Baker D. Improved side-chain modeling for protein-protein docking. Protein Sci 2005; 14: 1328-1339. Wang J,Wolf RM,Caldwell JW,Kollman PA,Case DA. Development and testing of a general amber force field. J Comput Chem 2004; 25: 1157-1174. Gabdoulline RR,Wade RC. Biomolecular diffusional association. Curr Opin Struct Biol 2002; 12: 204-213. Mendez R,Leplae R,Lensink MF,Wodak SJ. Assessment of CAPRI predictions in rounds 3-5 shows progress in docking procedures. Proteins 2005; 60: 150-169. van Raaij MJ,Chouin E,van der Zandt H,Bergelson JM,Cusack S. Dimeric structure of the coxsackievirus and adenovirus receptor D1 domain at 1.7 A resolution. Structure 2000; 8: 1147-1155. Schneidman-Duhovny D,Inbar Y,Nussinov R,Wolfson HJ. Geometry-based flexible and symmetric protein docking. Proteins 2005; 60: 224-231. Ryckaert JP,Ciccotti G,Berendsen HJC. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 1977; 23: 327-341. Smith GR,Sternberg MJ,Bates PA. The relationship between the flexibility of proteins and their conformational states on forming protein-protein complexes with an application to protein-protein docking. J Mol Biol 2005; 347: 1077-1101. Ponder JW,Case DA. Force fields for protein simulations. Adv Protein Chem 2003; 66: 27-85. Ludemann SK,Lounnas V,Wade RC. How do substrates enter and products exit the buried active site of cytochrome P450cam? I. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms. J Mol Biol 2000; 303: 797-811. Hooft RW,Sander C,Vriend G. Positioning hydrogen atoms by optimizing hydrogen-bond networks in protein structures. Proteins 1996; 26: 363-376. Heifetz A,Eisenstein M. Effect of local shape modifications of molecular surfaces on rigid-body protein-protein docking. Protein Eng 2003; 16: 179-185. Bastard K,Thureau A,Lavery R,Prevost C. Docking macromolecules with flexible segments. J Comput Chem 2003; 24: 1910-1920. Jorgensen WL,Maxwell DS,Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 1996; 118: 11225-11236. Berman HM,Westbrook J,Feng Z,Gilliland G,Bhat TN,Weissig H,Shindyalov IN,Bourne PE. The protein data bank. Nucleic Acids Res 2000; 28: 235-242. Vajda S,Camacho CJ. Protein-protein docking: is the glass half-full or half-empty? Trends Biotechnol 2004; 22: 110-116. Hou T,Wang J,Chen L,Xu X. Automated docking of peptides and proteins by using a genetic algorithm combined with a tabu search. Protein Eng 1999; 12: 639-648. Ziegler GA,Schulz GE. Crystal structures of adrenodoxin reductase in complex with NADP+ and NADPH suggesting a mechanism for the electron transfer of an enzyme family. Biochemistry 2000; 39: 10986-10995. Krol M,Tournier AL,Bates PA. Flexible relaxation of rigid-body docking solutions. Proteins 2007; 68: 159-169. Wang T,Wade RC. Force field effects on a beta-sheet protein domain structure in thermal unfolding simulations. J Chem Theory Comput 2006; 2: 140-148. Arulanandam AR,Withka JM,Wyss DF,Wagner G,Kister A,Pallai P,Recny MA,Reinherz EL. The CD58 (LFA-3) binding site is a localized and highly charged surface area on the AGFCC'C" face of the human CD2 adhesion domain. Proc Natl Acad Sci USA 1993; 90: 11613-11617. Gardiner EJ,Willett P,Artymiuk PJ. Protein docking using a genetic algorithm. Proteins 2001; 44: 44-56. Dominguez C,Boelens R,Bonvin AM. HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 2003; 125: 1731-1737. Tomic S,Bertosa B,Wang T,Wade RC. COMBINE analysis of the specificity of binding of Ras proteins to their effectors. Proteins 2007; 67: 435-447. Zhang C,Liu S,Zhu Q,Zhou Y. A knowledge-based energy function for protein-ligand, protein-protein, and protein-DNA complexes. J Med Chem 2005; 48: 2325-2335. Verdecia MA,Bowman ME,Lu KP,Hunter T,Noel JP. Structural basis for phosphoserine-proline recognition by group IV WW domains. Nat Struct Biol 2000; 7: 639-643. Roitberg AE,Holden MJ,Mayhew MP,Kurnikov IV,Beratan DN,Vilker VL. Binding and electron transfer between putidaredoxin and cytochrome P450cam. Theory and experiments. J Am Chem Soc 1998; 120: 8927-8932. Gabdoulline RR,Wade RC. Protein-protein association: investigation of factors influencing association rates by brownian dynamics simulations. J Mol Biol 2001; 306: 1139-1155. 2004; 22 1995; 91 2000; 28 1997; 272 2004; 25 2002; 12 2000; 8 2002; 11 2000; 7 1999; 286 2005; 21 2003; 16 1996; 100 1993; 90 2005; 60 2006; 2 1977; 23 2001; 44 2001; 306 2005; 26 2005; 48 2003; 50 2004; 32 2000; 39 2000; 303 2005; 347 2003; 24 1999; 12 2004; 1694 2003; 125 1998; 5 1992; 89 1990; 8 1996; 26 2007; 67 2005; 33 2007; 68 1996; 118 1998; 120 1998; 14 2003; 66 2005; 14 2005; 58 e_1_2_8_27_2 e_1_2_8_28_2 e_1_2_8_49_2 e_1_2_8_29_2 e_1_2_8_23_2 Bewley MC (e_1_2_8_35_2) 1999; 286 e_1_2_8_46_2 e_1_2_8_24_2 e_1_2_8_45_2 e_1_2_8_25_2 e_1_2_8_48_2 e_1_2_8_26_2 e_1_2_8_47_2 e_1_2_8_9_2 e_1_2_8_2_2 e_1_2_8_4_2 e_1_2_8_3_2 e_1_2_8_6_2 e_1_2_8_5_2 e_1_2_8_8_2 e_1_2_8_7_2 e_1_2_8_42_2 e_1_2_8_20_2 e_1_2_8_41_2 e_1_2_8_21_2 e_1_2_8_44_2 e_1_2_8_22_2 e_1_2_8_43_2 e_1_2_8_16_2 e_1_2_8_39_2 e_1_2_8_17_2 e_1_2_8_38_2 e_1_2_8_18_2 e_1_2_8_19_2 e_1_2_8_12_2 e_1_2_8_13_2 e_1_2_8_34_2 e_1_2_8_14_2 e_1_2_8_37_2 e_1_2_8_15_2 e_1_2_8_36_2 Luirink J (e_1_2_8_40_2) 2004; 1694 e_1_2_8_31_2 e_1_2_8_30_2 e_1_2_8_10_2 e_1_2_8_33_2 e_1_2_8_11_2 e_1_2_8_32_2 |
| References_xml | – reference: Schneidman-Duhovny D,Inbar Y,Nussinov R,Wolfson HJ. Geometry-based flexible and symmetric protein docking. Proteins 2005; 60: 224-231. – reference: Andreeva A,Howorth D,Brenner SE,Hubbard TJ,Chothia C,Murzin AG. SCOP database in 2004: refinements integrate structure and sequence family data. Nucleic Acids Res 2004; 32 (database issue): D226-D229. – reference: Arulanandam AR,Withka JM,Wyss DF,Wagner G,Kister A,Pallai P,Recny MA,Reinherz EL. The CD58 (LFA-3) binding site is a localized and highly charged surface area on the AGFCC'C" face of the human CD2 adhesion domain. Proc Natl Acad Sci USA 1993; 90: 11613-11617. – reference: Mendez R,Leplae R,Lensink MF,Wodak SJ. Assessment of CAPRI predictions in rounds 3-5 shows progress in docking procedures. Proteins 2005; 60: 150-169. – reference: Berman HM,Westbrook J,Feng Z,Gilliland G,Bhat TN,Weissig H,Shindyalov IN,Bourne PE. The protein data bank. Nucleic Acids Res 2000; 28: 235-242. – reference: Roitberg AE,Holden MJ,Mayhew MP,Kurnikov IV,Beratan DN,Vilker VL. Binding and electron transfer between putidaredoxin and cytochrome P450cam. Theory and experiments. J Am Chem Soc 1998; 120: 8927-8932. – reference: Case DA,Cheatham TE,IIIDarden T,Gohlke H,Luo R,Merz KM,JrOnufriev A,Simmerling C,Wang B,Woods RJ. The Amber biomolecular simulation programs. J Comput Chem 2005; 26: 1668-1688. – reference: Wang C,Schueler-Furman O,Baker D. Improved side-chain modeling for protein-protein docking. Protein Sci 2005; 14: 1328-1339. – reference: Krol M,Tournier AL,Bates PA. Flexible relaxation of rigid-body docking solutions. Proteins 2007; 68: 159-169. – reference: Hou T,Wang J,Chen L,Xu X. Automated docking of peptides and proteins by using a genetic algorithm combined with a tabu search. Protein Eng 1999; 12: 639-648. – reference: Wang T,Wade RC. Implicit solvent models for flexible protein-protein docking by molecular dynamics simulation. Proteins 2003; 50: 158-169. – reference: Bewley MC,Springer K,Zhang YB,Freimuth P,Flanagan JM. Structural analysis of the mechanism of adenovirus binding to its human cellular receptor. CAR Science 1999; 286: 1579-1583. – reference: Ludemann SK,Lounnas V,Wade RC. How do substrates enter and products exit the buried active site of cytochrome P450cam? I. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms. J Mol Biol 2000; 303: 797-811. – reference: Heifetz A,Eisenstein M. Effect of local shape modifications of molecular surfaces on rigid-body protein-protein docking. Protein Eng 2003; 16: 179-185. – reference: van Raaij MJ,Chouin E,van der Zandt H,Bergelson JM,Cusack S. Dimeric structure of the coxsackievirus and adenovirus receptor D1 domain at 1.7 A resolution. Structure 2000; 8: 1147-1155. – reference: Katchalski-Katzir E,Shariv I,Eisenstein M,Friesem AA,Aflalo C,Vakser IA. Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proc Natl Acad Sci USA 1992; 89: 2195-2199. – reference: Vajda S,Camacho CJ. Protein-protein docking: is the glass half-full or half-empty? Trends Biotechnol 2004; 22: 110-116. – reference: Gabdoulline RR,Wade RC. Protein-protein association: investigation of factors influencing association rates by brownian dynamics simulations. J Mol Biol 2001; 306: 1139-1155. – reference: Wang J,Wolf RM,Caldwell JW,Kollman PA,Case DA. Development and testing of a general amber force field. J Comput Chem 2004; 25: 1157-1174. – reference: Ponder JW,Case DA. Force fields for protein simulations. Adv Protein Chem 2003; 66: 27-85. – reference: Aloy P,Russell RB. Ten thousand interactions for the molecular biologist. Nat Biotechnol 2004; 22: 1317-1321. – reference: Hooft RW,Sander C,Vriend G. Positioning hydrogen atoms by optimizing hydrogen-bond networks in protein structures. Proteins 1996; 26: 363-376. – reference: Gardiner EJ,Willett P,Artymiuk PJ. Protein docking using a genetic algorithm. Proteins 2001; 44: 44-56. – reference: Gabdoulline RR,Wade RC. On the protein-protein diffusional encounter complex. J Mol Recognit 1999; 12: 226-234. – reference: Ehrlich LP,Nilges M,Wade RC. The impact of protein flexibility on protein-protein docking. Proteins 2005; 58: 126-133. – reference: Gabdoulline RR,Wade RC. Biomolecular diffusional association. Curr Opin Struct Biol 2002; 12: 204-213. – reference: Vriend G. WHAT IF: a molecular modeling and drug design program. J Mol Graph 1990; 8: 52-56,29. – reference: Zhou H,Zhou Y. Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Sci 2002; 11: 2714-2726. – reference: Gabb HA,Jackson RM,Sternberg MJ. Modelling protein docking using shape complementarity, electrostatics and biochemical information. J Mol Biol 1997; 272: 106-120. – reference: Luirink J,Sinning I SRP-mediated protein targeting: structure and function revisited. Biochim Biophys Acta 2004; 1694: 17-35. – reference: Ziegler GA,Schulz GE. Crystal structures of adrenodoxin reductase in complex with NADP+ and NADPH suggesting a mechanism for the electron transfer of an enzyme family. Biochemistry 2000; 39: 10986-10995. – reference: Dominguez C,Boelens R,Bonvin AM. HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 2003; 125: 1731-1737. – reference: Camacho CJ,Zhang C. FastContact: rapid estimate of contact and binding free energies. Bioinformatics 2005; 21: 2534-2536. – reference: Schreiber G. Kinetic studies of protein-protein interactions. Curr Opin Struct Biol 2002; 12: 41-47. – reference: Jorgensen WL,Maxwell DS,Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 1996; 118: 11225-11236. – reference: Bastard K,Thureau A,Lavery R,Prevost C. Docking macromolecules with flexible segments. J Comput Chem 2003; 24: 1910-1920. – reference: Verdecia MA,Bowman ME,Lu KP,Hunter T,Noel JP. Structural basis for phosphoserine-proline recognition by group IV WW domains. Nat Struct Biol 2000; 7: 639-643. – reference: Tomic S,Bertosa B,Wang T,Wade RC. COMBINE analysis of the specificity of binding of Ras proteins to their effectors. Proteins 2007; 67: 435-447. – reference: Madura JD,Briggs JM,Wade RC,Davis ME,Luty BA,Ilin A,Antosiewicz J,Gilson MK,Bagheri B,Scott LR,McCammon JA. Electrostatics and diffusion of molecules in solution: simulations with the University of Houston Brownian Dynamics program. Comput Phys Commun 1995; 91: 57-95. – reference: Gabdoulline RR,Wade RC. Effective charges for macromolecules in solvent. J Phys Chem 1996; 100: 3868-3878. – reference: Gabdoulline RR,Wade RC. Brownian dynamics simulation of protein-protein diffusional encounter. Methods 1998; 14: 329-341. – reference: Palma PN,Krippahl L,Wampler JE,Moura JJ. BiGGER: a new (soft) docking algorithm for predicting protein interactions. Proteins 2000; 39: 372-384. – reference: Schneidman-Duhovny D,Inbar Y,Nussinov R,Wolfson HJ. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 2005; 33 (web server issue): W363-W367. – reference: Wang T,Wade RC. Force field effects on a beta-sheet protein domain structure in thermal unfolding simulations. J Chem Theory Comput 2006; 2: 140-148. – reference: Smith GR,Sternberg MJ,Bates PA. The relationship between the flexibility of proteins and their conformational states on forming protein-protein complexes with an application to protein-protein docking. J Mol Biol 2005; 347: 1077-1101. – reference: Ryckaert JP,Ciccotti G,Berendsen HJC. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 1977; 23: 327-341. – reference: Huang L,Hofer F,Martin GS,Kim SH. Structural basis for the interaction of Ras with RalGDS. Nat Struct Biol 1998; 5: 422-426. – reference: Zhang C,Liu S,Zhu Q,Zhou Y. A knowledge-based energy function for protein-ligand, protein-protein, and protein-DNA complexes. J Med Chem 2005; 48: 2325-2335. – volume: 67 start-page: 435 year: 2007 end-page: 447 article-title: COMBINE analysis of the specificity of binding of Ras proteins to their effectors publication-title: Proteins – volume: 11 start-page: 2714 year: 2002 end-page: 2726 article-title: Distance‐scaled, finite ideal‐gas reference state improves structure‐derived potentials of mean force for structure selection and stability prediction publication-title: Protein Sci – volume: 50 start-page: 158 year: 2003 end-page: 169 article-title: Implicit solvent models for flexible protein‐protein docking by molecular dynamics simulation publication-title: Proteins – volume: 26 start-page: 363 year: 1996 end-page: 376 article-title: Positioning hydrogen atoms by optimizing hydrogen‐bond networks in protein structures publication-title: Proteins – volume: 44 start-page: 44 year: 2001 end-page: 56 article-title: Protein docking using a genetic algorithm publication-title: Proteins – volume: 60 start-page: 224 year: 2005 end-page: 231 article-title: Geometry‐based flexible and symmetric protein docking publication-title: Proteins – volume: 12 start-page: 226 year: 1999 end-page: 234 article-title: On the protein‐protein diffusional encounter complex publication-title: J Mol Recognit – volume: 32 start-page: D226 issue: database issue year: 2004 end-page: D229 article-title: SCOP database in 2004: refinements integrate structure and sequence family data publication-title: Nucleic Acids Res – volume: 39 start-page: 10986 year: 2000 end-page: 10995 article-title: Crystal structures of adrenodoxin reductase in complex with NADP+ and NADPH suggesting a mechanism for the electron transfer of an enzyme family publication-title: Biochemistry – volume: 91 start-page: 57 year: 1995 end-page: 95 article-title: Electrostatics and diffusion of molecules in solution: simulations with the University of Houston Brownian Dynamics program publication-title: Comput Phys Commun – volume: 2 start-page: 140 year: 2006 end-page: 148 article-title: Force field effects on a beta‐sheet protein domain structure in thermal unfolding simulations publication-title: J Chem Theory Comput – volume: 68 start-page: 159 year: 2007 end-page: 169 article-title: Flexible relaxation of rigid‐body docking solutions publication-title: Proteins – volume: 90 start-page: 11613 year: 1993 end-page: 11617 article-title: The CD58 (LFA‐3) binding site is a localized and highly charged surface area on the AGFCC'C” face of the human CD2 adhesion domain publication-title: Proc Natl Acad Sci USA – volume: 1694 start-page: 17 year: 2004 end-page: 35 article-title: SRP‐mediated protein targeting: structure and function revisited publication-title: Biochim Biophys Acta – volume: 14 start-page: 329 year: 1998 end-page: 341 article-title: Brownian dynamics simulation of protein‐protein diffusional encounter publication-title: Methods – volume: 7 start-page: 639 year: 2000 end-page: 643 article-title: Structural basis for phosphoserine‐proline recognition by group IV WW domains publication-title: Nat Struct Biol – volume: 33 start-page: W363 issue: web server issue year: 2005 end-page: W367 article-title: PatchDock and SymmDock: servers for rigid and symmetric docking publication-title: Nucleic Acids Res – volume: 60 start-page: 150 year: 2005 end-page: 169 article-title: Assessment of CAPRI predictions in rounds 3–5 shows progress in docking procedures publication-title: Proteins – volume: 8 start-page: 1147 year: 2000 end-page: 1155 article-title: Dimeric structure of the coxsackievirus and adenovirus receptor D1 domain at 1.7 A resolution publication-title: Structure – volume: 22 start-page: 110 year: 2004 end-page: 116 article-title: Protein‐protein docking: is the glass half‐full or half‐empty? publication-title: Trends Biotechnol – volume: 28 start-page: 235 year: 2000 end-page: 242 article-title: The protein data bank publication-title: Nucleic Acids Res – volume: 12 start-page: 41 year: 2002 end-page: 47 article-title: Kinetic studies of protein‐protein interactions publication-title: Curr Opin Struct Biol – volume: 272 start-page: 106 year: 1997 end-page: 120 article-title: Modelling protein docking using shape complementarity, electrostatics and biochemical information publication-title: J Mol Biol – volume: 48 start-page: 2325 year: 2005 end-page: 2335 article-title: A knowledge‐based energy function for protein‐ligand, protein‐protein, and protein‐DNA complexes publication-title: J Med Chem – volume: 25 start-page: 1157 year: 2004 end-page: 1174 article-title: Development and testing of a general amber force field publication-title: J Comput Chem – volume: 26 start-page: 1668 year: 2005 end-page: 1688 article-title: The Amber biomolecular simulation programs publication-title: J Comput Chem – volume: 5 start-page: 422 year: 1998 end-page: 426 article-title: Structural basis for the interaction of Ras with RalGDS publication-title: Nat Struct Biol – volume: 286 start-page: 1579 year: 1999 end-page: 1583 article-title: Structural analysis of the mechanism of adenovirus binding to its human cellular receptor publication-title: CAR Science – volume: 16 start-page: 179 year: 2003 end-page: 185 article-title: Effect of local shape modifications of molecular surfaces on rigid‐body protein‐protein docking publication-title: Protein Eng – volume: 125 start-page: 1731 year: 2003 end-page: 1737 article-title: HADDOCK: a protein‐protein docking approach based on biochemical or biophysical information publication-title: J Am Chem Soc – volume: 118 start-page: 11225 year: 1996 end-page: 11236 article-title: Development and testing of the OPLS all‐atom force field on conformational energetics and properties of organic liquids publication-title: J Am Chem Soc – volume: 22 start-page: 1317 year: 2004 end-page: 1321 article-title: Ten thousand interactions for the molecular biologist publication-title: Nat Biotechnol – volume: 89 start-page: 2195 year: 1992 end-page: 2199 article-title: Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques publication-title: Proc Natl Acad Sci USA – volume: 39 start-page: 372 year: 2000 end-page: 384 article-title: BiGGER: a new (soft) docking algorithm for predicting protein interactions publication-title: Proteins – volume: 21 start-page: 2534 year: 2005 end-page: 2536 article-title: FastContact: rapid estimate of contact and binding free energies publication-title: Bioinformatics – volume: 347 start-page: 1077 year: 2005 end-page: 1101 article-title: The relationship between the flexibility of proteins and their conformational states on forming protein‐protein complexes with an application to protein‐protein docking publication-title: J Mol Biol – volume: 120 start-page: 8927 year: 1998 end-page: 8932 article-title: Binding and electron transfer between putidaredoxin and cytochrome P450cam. Theory and experiments publication-title: J Am Chem Soc – volume: 306 start-page: 1139 year: 2001 end-page: 1155 article-title: Protein‐protein association: investigation of factors influencing association rates by brownian dynamics simulations publication-title: J Mol Biol – volume: 303 start-page: 797 year: 2000 end-page: 811 article-title: How do substrates enter and products exit the buried active site of cytochrome P450cam? I. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms publication-title: J Mol Biol – volume: 8 start-page: 52 year: 1990 end-page: 56 article-title: WHAT IF: a molecular modeling and drug design program publication-title: J Mol Graph – volume: 12 start-page: 639 year: 1999 end-page: 648 article-title: Automated docking of peptides and proteins by using a genetic algorithm combined with a tabu search publication-title: Protein Eng – volume: 100 start-page: 3868 year: 1996 end-page: 3878 article-title: Effective charges for macromolecules in solvent publication-title: J Phys Chem – volume: 24 start-page: 1910 year: 2003 end-page: 1920 article-title: Docking macromolecules with flexible segments publication-title: J Comput Chem – volume: 23 start-page: 327 year: 1977 end-page: 341 article-title: Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of ‐alkanes publication-title: J Comput Phys – volume: 58 start-page: 126 year: 2005 end-page: 133 article-title: The impact of protein flexibility on protein‐protein docking publication-title: Proteins – volume: 12 start-page: 204 year: 2002 end-page: 213 article-title: Biomolecular diffusional association publication-title: Curr Opin Struct Biol – volume: 66 start-page: 27 year: 2003 end-page: 85 article-title: Force fields for protein simulations publication-title: Adv Protein Chem – volume: 14 start-page: 1328 year: 2005 end-page: 1339 article-title: Improved side‐chain modeling for protein‐protein docking publication-title: Protein Sci – ident: e_1_2_8_9_2 doi: 10.1002/prot.1070 – ident: e_1_2_8_33_2 doi: 10.1110/ps.0217002 – ident: e_1_2_8_30_2 doi: 10.1093/bioinformatics/bti322 – ident: e_1_2_8_49_2 doi: 10.1016/j.jmb.2005.01.058 – ident: e_1_2_8_6_2 doi: 10.1002/(SICI)1097-0134(20000601)39:4<372::AID-PROT100>3.0.CO;2-Q – ident: e_1_2_8_4_2 doi: 10.1073/pnas.89.6.2195 – ident: e_1_2_8_16_2 doi: 10.1002/(SICI)1097-0134(199612)26:4<363::AID-PROT1>3.0.CO;2-D – ident: e_1_2_8_44_2 doi: 10.1006/jmbi.1997.1203 – ident: e_1_2_8_13_2 doi: 10.1093/nar/gkh039 – ident: e_1_2_8_29_2 doi: 10.1016/0021-9991(77)90098-5 – ident: e_1_2_8_21_2 doi: 10.1002/prot.21321 – ident: e_1_2_8_36_2 doi: 10.1016/S0969-2126(00)00528-1 – ident: e_1_2_8_17_2 doi: 10.1016/0010-4655(95)00043-F – ident: e_1_2_8_5_2 doi: 10.1110/ps.041222905 – volume: 1694 start-page: 17 year: 2004 ident: e_1_2_8_40_2 article-title: SRP‐mediated protein targeting: structure and function revisited publication-title: Biochim Biophys Acta – ident: e_1_2_8_10_2 doi: 10.1002/prot.20562 – ident: e_1_2_8_42_2 doi: 10.1016/S0959-440X(02)00287-7 – ident: e_1_2_8_7_2 doi: 10.1021/ja026939x – ident: e_1_2_8_37_2 doi: 10.1021/bi000079k – ident: e_1_2_8_22_2 doi: 10.1002/prot.10248 – ident: e_1_2_8_24_2 doi: 10.1006/meth.1998.0588 – ident: e_1_2_8_48_2 doi: 10.1002/prot.20272 – ident: e_1_2_8_23_2 doi: 10.1021/jp953109f – ident: e_1_2_8_47_2 doi: 10.1002/jcc.10329 – ident: e_1_2_8_41_2 doi: 10.1002/(SICI)1099-1352(199907/08)12:4<226::AID-JMR462>3.0.CO;2-P – ident: e_1_2_8_11_2 doi: 10.1093/nar/gki481 – ident: e_1_2_8_14_2 doi: 10.1093/nar/28.1.235 – ident: e_1_2_8_19_2 doi: 10.1021/ja9739906 – ident: e_1_2_8_31_2 doi: 10.1021/jm049314d – ident: e_1_2_8_32_2 doi: 10.1016/S0959-440X(02)00311-1 – ident: e_1_2_8_3_2 doi: 10.1016/j.tibtech.2004.01.006 – ident: e_1_2_8_34_2 doi: 10.1038/nsb0698-422 – ident: e_1_2_8_43_2 doi: 10.1002/prot.21391 – ident: e_1_2_8_8_2 doi: 10.1093/protein/12.8.639 – ident: e_1_2_8_20_2 doi: 10.1002/jcc.20035 – ident: e_1_2_8_38_2 doi: 10.1073/pnas.90.24.11613 – ident: e_1_2_8_25_2 doi: 10.1006/jmbi.2000.4404 – ident: e_1_2_8_45_2 doi: 10.1006/jmbi.2000.4154 – ident: e_1_2_8_46_2 doi: 10.1093/proeng/gzg021 – ident: e_1_2_8_12_2 doi: 10.1002/prot.20551 – volume: 286 start-page: 1579 year: 1999 ident: e_1_2_8_35_2 article-title: Structural analysis of the mechanism of adenovirus binding to its human cellular receptor publication-title: CAR Science – ident: e_1_2_8_15_2 doi: 10.1016/0263-7855(90)80070-V – ident: e_1_2_8_27_2 doi: 10.1002/jcc.20290 – ident: e_1_2_8_28_2 doi: 10.1021/ct0501607 – ident: e_1_2_8_39_2 doi: 10.1038/77929 – ident: e_1_2_8_26_2 doi: 10.1016/S0065-3233(03)66002-X – ident: e_1_2_8_2_2 doi: 10.1038/nbt1018 – ident: e_1_2_8_18_2 doi: 10.1021/ja9621760 |
| SSID | ssj0006936 |
| Score | 2.0381436 |
| Snippet | We present a computational procedure for modeling protein–protein association and predicting the structures of protein–protein complexes. The initial sampling... We present a computational procedure for modeling protein-protein association and predicting the structures of protein-protein complexes. The initial sampling... |
| SourceID | proquest pubmed crossref wiley istex |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1955 |
| SubjectTerms | Algorithms Amino Acid Sequence Animals Biochemical Phenomena Biochemistry Brownian dynamics clustering Computational Biology - methods Computer Simulation Crystallography, X-Ray Databases, Factual Diffusion encounter complex flexible refinement Fourier Analysis Humans Hydrogen Bonding Models, Biological molecular dynamics Molecular Sequence Data Osmolar Concentration Protein Conformation Protein Structure, Secondary Protein Structure, Tertiary protein-protein association protein-protein docking Proteins - chemistry Proteins - metabolism Static Electricity |
| Title | Protein-protein docking by simulating the process of association subject to biochemical constraints |
| URI | https://api.istex.fr/ark:/67375/WNG-XDKP2ZSF-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprot.21867 https://www.ncbi.nlm.nih.gov/pubmed/18186463 https://www.proquest.com/docview/71633140 |
| Volume | 71 |
| WOSCitedRecordID | wos000255920600029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1097-0134 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006936 issn: 0887-3585 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1faxQxEB_aO0Vf_NNW3ao1oBQUtr39m13wpbaeguU8aksPX0KSTeDQ7h23d9K--R38hn4SZ7K3exSKIL5lYZbNJjOZ30yS3wC8UjaT6OeNb3VU-LHk2ldJEfgJQlmriNBEOcr8Yz4YZKNRPlyDt81dmJofok24kWW49ZoMXKpqf0UaSjwGe1RRia9DN0TFjTvQPTrpnx23K3GauxKBtSEhLm7pScP91dvXHFKXxvbyJrR5Hbw679O__3_9fgD3lqiTHdRq8hDWTLkBmwclRtwXV2yXuXOgLsG-AbffNa07h001uE0wQyJ0GJe_f_6a1i1W4FKKjo-pK1aNL1wZMHxCQMmm9e0DNrFMrqafVQtFWR82nzA1pkpdjqqAaYKoVKliXm3BWf_96eFHf1miwddRmtDmb8_2OLeKByrlRcIxPJKRjFOZqzRX3IQaY5wwx7DIKBuYEJWhp6zUmpvAxmn0CDrlpDRPgMVpL8tloWWCiMNiGIgyPMqsCQrEKTLx4HUzT0Iv-cupc99FzbwcCvp94UbWg5et7LRm7bhRatdNdysiZ9_onBtPxPnggxgdfRqGX7_0xbkHLxp9EDjstKUiSzNZVAKjzSjCGNWDx7WarD5HVIH4gx68cdrwl36I4cnnU9fa_hfhp3C3PrxCKaFn0JnPFuY53NI_5uNqtgPrfJTtLC3iD98gEUM |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1tb9MwED5BC9q-8LLX8DZLoEkgZWuSJm4-jo0ytFKq0WkVXyzbsaUKllZNi9g3_gP_kF_CnZOmmjQhIb450kVx7Dv7ufP5OYBXynYk7vPGtzrK_Lbk2ldxFvgxQlmriNBEOcr8Hu_3O6NROqhyc-guTMkPUQfcyDLcek0GTgHpwxVrKBEZHFBJJX4Xmm3Uo7gBzZPz7kWvXoqT1NUILC0JgXHNTxoert6-sSM1aXB_3AY3b6JXt_10H_5nxx_Bgwp3sqNSUR7DHZNvwOZRjj731TXbZy4T1IXYN-D-22Vr7XhZD24TzIAoHcb575-_pmWLZbiY4tbH1DUrxleuEBg-IaRk0_L-AZtYJlcKwIqForgPm0-YGlOtLkdWwDSBVKpVMS-24KL7bnh86ldFGnwdJTEd_7Zsi3OreKASnsUcHSQZyXYiU5WkiptQo5cTpugYGWUDE6I6tJSVWnMTWJy2bWjkk9zsAmsnrU4qMy1jxBwWHUGU4VHHmiBDpCJjD14vJ0roisGcOvdNlNzLoaDfF25kPXhZy05L3o5bpfbdfNcicvaVMt14LC7778Xo5GwQfvncFZce7C0VQuCw06GKzM1kUQj0N6MIvVQPdko9WX2OyALxBz1449ThL_0Qg_NPQ9d68i_Ce7B2OvzYE70P_bOnsF6mslCA6Bk05rOFeQ739Pf5uJi9qAzjD7d1FEs |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwEB1Bl9sLl5ZCuNUSqBJIoZurN4-lSwB1tUSlVVe8WLZjS6vS7GoviL7xD_whX8KMk82qUoWEeHOkieLYM_aZ8fgMwCtlexL3eeNbHZV-LLn2VVIGfoJQ1ioiNFGOMn_Ah8PeaJQVTW4O3YWp-SHagBtZhluvycDNtLR7a9ZQIjJ4SyWV-HXoxEmWol12-kf5yaBditPM1QisLQmBcctPGu6t3760I3VocH9cBTcvo1e3_eT3_rPj9-FugzvZfq0oD-CaqTZha79Cn_v8gu0ylwnqQuybcPPdqnX7YFUPbgtMQZQO4-r3z1_TusVKXExx62Pqgs3H564QGD4hpGTT-v4Bm1gm1wrA5ktFcR-2mDA1plpdjqyAaQKpVKtiMX8IJ_n744OPflOkwddRmtDxb9d2ObeKByrlZcLRQZKRjFOZqTRT3IQavZwwQ8fIKBuYENWhq6zUmpvAxmm0DRvVpDKPgcVpt5fJUssEMYdFRxBleNSzJigRqcjEg9eriRK6YTCnzn0TNfdyKOj3hRtZD162stOat-NKqV03362InJ1RphtPxOnwgxj1D4vw65dcnHqws1IIgcNOhyqyMpPlXKC_GUXopXrwqNaT9eeILBB_0IM3Th3-0g9RHH0-dq0n_yK8A7eKfi4Gn4aHT-FOnclC8aFnsLGYLc1zuKG_L8bz2YvGLv4AJ1oTxg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protein-protein+docking+by+simulating+the+process+of+association+subject+to+biochemical+constraints&rft.jtitle=Proteins%2C+structure%2C+function%2C+and+bioinformatics&rft.au=Motiejunas%2C+Domantas&rft.au=Gabdoulline%2C+Razif&rft.au=Wang%2C+Ting&rft.au=Feldman-Salit%2C+Anna&rft.date=2008-06-01&rft.eissn=1097-0134&rft.volume=71&rft.issue=4&rft.spage=1955&rft_id=info:doi/10.1002%2Fprot.21867&rft_id=info%3Apmid%2F18186463&rft.externalDocID=18186463 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-3585&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-3585&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-3585&client=summon |