Protein-protein docking by simulating the process of association subject to biochemical constraints

We present a computational procedure for modeling protein–protein association and predicting the structures of protein–protein complexes. The initial sampling stage is based on an efficient Brownian dynamics algorithm that mimics the physical process of diffusional association. Relevant biochemical...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proteins, structure, function, and bioinformatics Jg. 71; H. 4; S. 1955 - 1969
Hauptverfasser: Motiejunas, Domantas, Gabdoulline, Razif, Wang, Ting, Feldman-Salit, Anna, Johann, Tim, Winn, Peter J., Wade, Rebecca C.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.06.2008
Schlagworte:
ISSN:0887-3585, 1097-0134, 1097-0134
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract We present a computational procedure for modeling protein–protein association and predicting the structures of protein–protein complexes. The initial sampling stage is based on an efficient Brownian dynamics algorithm that mimics the physical process of diffusional association. Relevant biochemical data can be directly incorporated as distance constraints at this stage. The docked configurations are then grouped with a hierarchical clustering algorithm into ensembles that represent potential protein–protein encounter complexes. Flexible refinement of selected representative structures is done by molecular dynamics simulation. The protein–protein docking procedure was thoroughly tested on 10 structurally and functionally diverse protein–protein complexes. Starting from X‐ray crystal structures of the unbound proteins, in 9 out of 10 cases it yields structures of protein–protein complexes close to those determined experimentally with the percentage of correct contacts >30% and interface backbone RMSD <4 Å. Detailed examination of all the docking cases gives insights into important determinants of the performance of the computational approach in modeling protein–protein association and predicting of protein–protein complex structures. Proteins 2008. © 2008 Wiley‐Liss, Inc.
AbstractList We present a computational procedure for modeling protein-protein association and predicting the structures of protein-protein complexes. The initial sampling stage is based on an efficient Brownian dynamics algorithm that mimics the physical process of diffusional association. Relevant biochemical data can be directly incorporated as distance constraints at this stage. The docked configurations are then grouped with a hierarchical clustering algorithm into ensembles that represent potential protein-protein encounter complexes. Flexible refinement of selected representative structures is done by molecular dynamics simulation. The protein-protein docking procedure was thoroughly tested on 10 structurally and functionally diverse protein-protein complexes. Starting from X-ray crystal structures of the unbound proteins, in 9 out of 10 cases it yields structures of protein-protein complexes close to those determined experimentally with the percentage of correct contacts >30% and interface backbone RMSD <4 A. Detailed examination of all the docking cases gives insights into important determinants of the performance of the computational approach in modeling protein-protein association and predicting of protein-protein complex structures.We present a computational procedure for modeling protein-protein association and predicting the structures of protein-protein complexes. The initial sampling stage is based on an efficient Brownian dynamics algorithm that mimics the physical process of diffusional association. Relevant biochemical data can be directly incorporated as distance constraints at this stage. The docked configurations are then grouped with a hierarchical clustering algorithm into ensembles that represent potential protein-protein encounter complexes. Flexible refinement of selected representative structures is done by molecular dynamics simulation. The protein-protein docking procedure was thoroughly tested on 10 structurally and functionally diverse protein-protein complexes. Starting from X-ray crystal structures of the unbound proteins, in 9 out of 10 cases it yields structures of protein-protein complexes close to those determined experimentally with the percentage of correct contacts >30% and interface backbone RMSD <4 A. Detailed examination of all the docking cases gives insights into important determinants of the performance of the computational approach in modeling protein-protein association and predicting of protein-protein complex structures.
We present a computational procedure for modeling protein–protein association and predicting the structures of protein–protein complexes. The initial sampling stage is based on an efficient Brownian dynamics algorithm that mimics the physical process of diffusional association. Relevant biochemical data can be directly incorporated as distance constraints at this stage. The docked configurations are then grouped with a hierarchical clustering algorithm into ensembles that represent potential protein–protein encounter complexes. Flexible refinement of selected representative structures is done by molecular dynamics simulation. The protein–protein docking procedure was thoroughly tested on 10 structurally and functionally diverse protein–protein complexes. Starting from X‐ray crystal structures of the unbound proteins, in 9 out of 10 cases it yields structures of protein–protein complexes close to those determined experimentally with the percentage of correct contacts >30% and interface backbone RMSD <4 Å. Detailed examination of all the docking cases gives insights into important determinants of the performance of the computational approach in modeling protein–protein association and predicting of protein–protein complex structures. Proteins 2008. © 2008 Wiley‐Liss, Inc.
We present a computational procedure for modeling protein-protein association and predicting the structures of protein-protein complexes. The initial sampling stage is based on an efficient Brownian dynamics algorithm that mimics the physical process of diffusional association. Relevant biochemical data can be directly incorporated as distance constraints at this stage. The docked configurations are then grouped with a hierarchical clustering algorithm into ensembles that represent potential protein-protein encounter complexes. Flexible refinement of selected representative structures is done by molecular dynamics simulation. The protein-protein docking procedure was thoroughly tested on 10 structurally and functionally diverse protein-protein complexes. Starting from X-ray crystal structures of the unbound proteins, in 9 out of 10 cases it yields structures of protein-protein complexes close to those determined experimentally with the percentage of correct contacts >30% and interface backbone RMSD <4 A. Detailed examination of all the docking cases gives insights into important determinants of the performance of the computational approach in modeling protein-protein association and predicting of protein-protein complex structures.
Author Gabdoulline, Razif
Wang, Ting
Winn, Peter J.
Feldman-Salit, Anna
Johann, Tim
Wade, Rebecca C.
Motiejunas, Domantas
Author_xml – sequence: 1
  givenname: Domantas
  surname: Motiejunas
  fullname: Motiejunas, Domantas
  email: domantas.motiejunas@eml-r.villa-bosch.de
  organization: EML Research gGmbH, Schloss-Wolfsbrunnenweg 33, 69118 Heidelberg, Germany
– sequence: 2
  givenname: Razif
  surname: Gabdoulline
  fullname: Gabdoulline, Razif
  organization: EML Research gGmbH, Schloss-Wolfsbrunnenweg 33, 69118 Heidelberg, Germany
– sequence: 3
  givenname: Ting
  surname: Wang
  fullname: Wang, Ting
  organization: EML Research gGmbH, Schloss-Wolfsbrunnenweg 33, 69118 Heidelberg, Germany
– sequence: 4
  givenname: Anna
  surname: Feldman-Salit
  fullname: Feldman-Salit, Anna
  organization: EML Research gGmbH, Schloss-Wolfsbrunnenweg 33, 69118 Heidelberg, Germany
– sequence: 5
  givenname: Tim
  surname: Johann
  fullname: Johann, Tim
  organization: EML Research gGmbH, Schloss-Wolfsbrunnenweg 33, 69118 Heidelberg, Germany
– sequence: 6
  givenname: Peter J.
  surname: Winn
  fullname: Winn, Peter J.
  organization: EML Research gGmbH, Schloss-Wolfsbrunnenweg 33, 69118 Heidelberg, Germany
– sequence: 7
  givenname: Rebecca C.
  surname: Wade
  fullname: Wade, Rebecca C.
  email: rebecca.wade@eml-r.villa-bosch.de
  organization: EML Research gGmbH, Schloss-Wolfsbrunnenweg 33, 69118 Heidelberg, Germany
BackLink https://www.ncbi.nlm.nih.gov/pubmed/18186463$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1P3DAQhi1EBQv00h9Q-dQDUug4TuzkWFE-qqKyKlQgLpbtnRRDEm9jR-3-e7wEilShnkajeZ7RzLtDNnvfIyHvGBwwgPzjcvDxIGeVkBtkxqCWGTBebJIZVJXMeFmV22QnhDsAEDUXW2SbVYkuBJ8RO08yuj5bTpUuvL13_U9qVjS4bmx1XHfxFmkiLIZAfUN1CN66NPI9DaO5Qxtp9NQ4b2-xc1a31Po-xEG7PoY98qbRbcC3T3WX_Dg-ujw8zc7OT74cfjrLLBelzOoSGpCyMZIZIRelzAVorguhayNqIzG3OYe8LiqJpmGYa2nBNNpaiaxJ3-ySD9PedOmvEUNUnQsW21b36MegJBOcswIS-P4JHE2HC7UcXKeHlXqOJQH7E2AHH8KAzQsCap25WselHjNPMPwDWxcfs1n_376usEn57Vpc_We5mn8_v3x2sslxIeKfv44e7lWaylJdfTtR15-_zvObi2N1xR8AuyulrQ
CitedBy_id crossref_primary_10_1111_jipb_12803
crossref_primary_10_1155_2012_121034
crossref_primary_10_1002_wcms_1649
crossref_primary_10_1038_s42003_020_01568_y
crossref_primary_10_1093_nar_gkr101
crossref_primary_10_1038_s42003_024_06880_5
crossref_primary_10_1016_j_jmb_2008_08_075
crossref_primary_10_1016_j_jmb_2016_05_015
crossref_primary_10_1287_ijoc_2014_0596
crossref_primary_10_1093_nar_gkv335
crossref_primary_10_1002_jcc_23971
crossref_primary_10_1016_j_bpj_2009_02_054
crossref_primary_10_1038_nsmb_2615
Cites_doi 10.1002/prot.1070
10.1110/ps.0217002
10.1093/bioinformatics/bti322
10.1016/j.jmb.2005.01.058
10.1002/(SICI)1097-0134(20000601)39:4<372::AID-PROT100>3.0.CO;2-Q
10.1073/pnas.89.6.2195
10.1002/(SICI)1097-0134(199612)26:4<363::AID-PROT1>3.0.CO;2-D
10.1006/jmbi.1997.1203
10.1093/nar/gkh039
10.1016/0021-9991(77)90098-5
10.1002/prot.21321
10.1016/S0969-2126(00)00528-1
10.1016/0010-4655(95)00043-F
10.1110/ps.041222905
10.1002/prot.20562
10.1016/S0959-440X(02)00287-7
10.1021/ja026939x
10.1021/bi000079k
10.1002/prot.10248
10.1006/meth.1998.0588
10.1002/prot.20272
10.1021/jp953109f
10.1002/jcc.10329
10.1002/(SICI)1099-1352(199907/08)12:4<226::AID-JMR462>3.0.CO;2-P
10.1093/nar/gki481
10.1093/nar/28.1.235
10.1021/ja9739906
10.1021/jm049314d
10.1016/S0959-440X(02)00311-1
10.1016/j.tibtech.2004.01.006
10.1038/nsb0698-422
10.1002/prot.21391
10.1093/protein/12.8.639
10.1002/jcc.20035
10.1073/pnas.90.24.11613
10.1006/jmbi.2000.4404
10.1006/jmbi.2000.4154
10.1093/proeng/gzg021
10.1002/prot.20551
10.1016/0263-7855(90)80070-V
10.1002/jcc.20290
10.1021/ct0501607
10.1038/77929
10.1016/S0065-3233(03)66002-X
10.1038/nbt1018
10.1021/ja9621760
ContentType Journal Article
Copyright Copyright © 2008 Wiley‐Liss, Inc.
(c) 2008 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2008 Wiley‐Liss, Inc.
– notice: (c) 2008 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1002/prot.21867
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
Biology
EISSN 1097-0134
EndPage 1969
ExternalDocumentID 18186463
10_1002_prot_21867
PROT21867
ark_67375_WNG_XDKP2ZSF_W
Genre article
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Klaus Tschira Foundation
– fundername: BIOMS
GroupedDBID -~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5RE
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ABLJU
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACIWK
ACPOU
ACPRK
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFRAH
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AHMBA
AIQQE
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BNHUX
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
D0L
DCZOG
DPXWK
DR1
DR2
DRFUL
DRSTM
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FA8
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LH6
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NDZJH
NF~
NNB
O66
O9-
P2P
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RIWAO
RJQFR
RNS
ROL
RX1
SAMSI
SUPJJ
SV3
UB1
V2E
W8V
W99
WBFHL
WBKPD
WIB
WIH
WIK
WJL
WOHZO
WQJ
WXSBR
WYISQ
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAYXX
CITATION
O8X
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c3657-950f077fb71b67d57260a3a46a9b69b7e2c23029487ebf1e2a7c0bfacc7e1f463
IEDL.DBID DRFUL
ISICitedReferencesCount 24
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000255920600029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0887-3585
1097-0134
IngestDate Sun Nov 09 09:16:07 EST 2025
Mon Jul 21 06:00:39 EDT 2025
Sat Nov 29 06:06:07 EST 2025
Tue Nov 18 21:06:57 EST 2025
Wed Aug 20 07:25:58 EDT 2025
Sun Sep 21 06:17:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
(c) 2008 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3657-950f077fb71b67d57260a3a46a9b69b7e2c23029487ebf1e2a7c0bfacc7e1f463
Notes BIOMS
ark:/67375/WNG-XDKP2ZSF-W
ArticleID:PROT21867
istex:E32464563977F50AC97791E3D3BFA6B0884CAB25
Klaus Tschira Foundation
BIOMS, University of Heidelberg, Im Neuenheimer Feld 368, 69120 Heidelberg, Germany
Genome Center, University of California, Davis, 451 East Health Science Drive, 95616 Davis CA, USA
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 18186463
PQID 71633140
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_71633140
pubmed_primary_18186463
crossref_primary_10_1002_prot_21867
crossref_citationtrail_10_1002_prot_21867
wiley_primary_10_1002_prot_21867_PROT21867
istex_primary_ark_67375_WNG_XDKP2ZSF_W
PublicationCentury 2000
PublicationDate 2008-06
June 2008
2008-06-00
2008-Jun
20080601
PublicationDateYYYYMMDD 2008-06-01
PublicationDate_xml – month: 06
  year: 2008
  text: 2008-06
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Proteins, structure, function, and bioinformatics
PublicationTitleAlternate Proteins
PublicationYear 2008
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Aloy P,Russell RB. Ten thousand interactions for the molecular biologist. Nat Biotechnol 2004; 22: 1317-1321.
Palma PN,Krippahl L,Wampler JE,Moura JJ. BiGGER: a new (soft) docking algorithm for predicting protein interactions. Proteins 2000; 39: 372-384.
Schreiber G. Kinetic studies of protein-protein interactions. Curr Opin Struct Biol 2002; 12: 41-47.
Ehrlich LP,Nilges M,Wade RC. The impact of protein flexibility on protein-protein docking. Proteins 2005; 58: 126-133.
Katchalski-Katzir E,Shariv I,Eisenstein M,Friesem AA,Aflalo C,Vakser IA. Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proc Natl Acad Sci USA 1992; 89: 2195-2199.
Huang L,Hofer F,Martin GS,Kim SH. Structural basis for the interaction of Ras with RalGDS. Nat Struct Biol 1998; 5: 422-426.
Madura JD,Briggs JM,Wade RC,Davis ME,Luty BA,Ilin A,Antosiewicz J,Gilson MK,Bagheri B,Scott LR,McCammon JA. Electrostatics and diffusion of molecules in solution: simulations with the University of Houston Brownian Dynamics program. Comput Phys Commun 1995; 91: 57-95.
Gabb HA,Jackson RM,Sternberg MJ. Modelling protein docking using shape complementarity, electrostatics and biochemical information. J Mol Biol 1997; 272: 106-120.
Schneidman-Duhovny D,Inbar Y,Nussinov R,Wolfson HJ. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 2005; 33 (web server issue): W363-W367.
Wang T,Wade RC. Implicit solvent models for flexible protein-protein docking by molecular dynamics simulation. Proteins 2003; 50: 158-169.
Vriend G. WHAT IF: a molecular modeling and drug design program. J Mol Graph 1990; 8: 52-56,29.
Camacho CJ,Zhang C. FastContact: rapid estimate of contact and binding free energies. Bioinformatics 2005; 21: 2534-2536.
Case DA,Cheatham TE,IIIDarden T,Gohlke H,Luo R,Merz KM,JrOnufriev A,Simmerling C,Wang B,Woods RJ. The Amber biomolecular simulation programs. J Comput Chem 2005; 26: 1668-1688.
Bewley MC,Springer K,Zhang YB,Freimuth P,Flanagan JM. Structural analysis of the mechanism of adenovirus binding to its human cellular receptor. CAR Science 1999; 286: 1579-1583.
Luirink J,Sinning I SRP-mediated protein targeting: structure and function revisited. Biochim Biophys Acta 2004; 1694: 17-35.
Andreeva A,Howorth D,Brenner SE,Hubbard TJ,Chothia C,Murzin AG. SCOP database in 2004: refinements integrate structure and sequence family data. Nucleic Acids Res 2004; 32 (database issue): D226-D229.
Gabdoulline RR,Wade RC. Effective charges for macromolecules in solvent. J Phys Chem 1996; 100: 3868-3878.
Gabdoulline RR,Wade RC. On the protein-protein diffusional encounter complex. J Mol Recognit 1999; 12: 226-234.
Gabdoulline RR,Wade RC. Brownian dynamics simulation of protein-protein diffusional encounter. Methods 1998; 14: 329-341.
Zhou H,Zhou Y. Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Sci 2002; 11: 2714-2726.
Wang C,Schueler-Furman O,Baker D. Improved side-chain modeling for protein-protein docking. Protein Sci 2005; 14: 1328-1339.
Wang J,Wolf RM,Caldwell JW,Kollman PA,Case DA. Development and testing of a general amber force field. J Comput Chem 2004; 25: 1157-1174.
Gabdoulline RR,Wade RC. Biomolecular diffusional association. Curr Opin Struct Biol 2002; 12: 204-213.
Mendez R,Leplae R,Lensink MF,Wodak SJ. Assessment of CAPRI predictions in rounds 3-5 shows progress in docking procedures. Proteins 2005; 60: 150-169.
van Raaij MJ,Chouin E,van der Zandt H,Bergelson JM,Cusack S. Dimeric structure of the coxsackievirus and adenovirus receptor D1 domain at 1.7 A resolution. Structure 2000; 8: 1147-1155.
Schneidman-Duhovny D,Inbar Y,Nussinov R,Wolfson HJ. Geometry-based flexible and symmetric protein docking. Proteins 2005; 60: 224-231.
Ryckaert JP,Ciccotti G,Berendsen HJC. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 1977; 23: 327-341.
Smith GR,Sternberg MJ,Bates PA. The relationship between the flexibility of proteins and their conformational states on forming protein-protein complexes with an application to protein-protein docking. J Mol Biol 2005; 347: 1077-1101.
Ponder JW,Case DA. Force fields for protein simulations. Adv Protein Chem 2003; 66: 27-85.
Ludemann SK,Lounnas V,Wade RC. How do substrates enter and products exit the buried active site of cytochrome P450cam? I. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms. J Mol Biol 2000; 303: 797-811.
Hooft RW,Sander C,Vriend G. Positioning hydrogen atoms by optimizing hydrogen-bond networks in protein structures. Proteins 1996; 26: 363-376.
Heifetz A,Eisenstein M. Effect of local shape modifications of molecular surfaces on rigid-body protein-protein docking. Protein Eng 2003; 16: 179-185.
Bastard K,Thureau A,Lavery R,Prevost C. Docking macromolecules with flexible segments. J Comput Chem 2003; 24: 1910-1920.
Jorgensen WL,Maxwell DS,Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 1996; 118: 11225-11236.
Berman HM,Westbrook J,Feng Z,Gilliland G,Bhat TN,Weissig H,Shindyalov IN,Bourne PE. The protein data bank. Nucleic Acids Res 2000; 28: 235-242.
Vajda S,Camacho CJ. Protein-protein docking: is the glass half-full or half-empty? Trends Biotechnol 2004; 22: 110-116.
Hou T,Wang J,Chen L,Xu X. Automated docking of peptides and proteins by using a genetic algorithm combined with a tabu search. Protein Eng 1999; 12: 639-648.
Ziegler GA,Schulz GE. Crystal structures of adrenodoxin reductase in complex with NADP+ and NADPH suggesting a mechanism for the electron transfer of an enzyme family. Biochemistry 2000; 39: 10986-10995.
Krol M,Tournier AL,Bates PA. Flexible relaxation of rigid-body docking solutions. Proteins 2007; 68: 159-169.
Wang T,Wade RC. Force field effects on a beta-sheet protein domain structure in thermal unfolding simulations. J Chem Theory Comput 2006; 2: 140-148.
Arulanandam AR,Withka JM,Wyss DF,Wagner G,Kister A,Pallai P,Recny MA,Reinherz EL. The CD58 (LFA-3) binding site is a localized and highly charged surface area on the AGFCC'C" face of the human CD2 adhesion domain. Proc Natl Acad Sci USA 1993; 90: 11613-11617.
Gardiner EJ,Willett P,Artymiuk PJ. Protein docking using a genetic algorithm. Proteins 2001; 44: 44-56.
Dominguez C,Boelens R,Bonvin AM. HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 2003; 125: 1731-1737.
Tomic S,Bertosa B,Wang T,Wade RC. COMBINE analysis of the specificity of binding of Ras proteins to their effectors. Proteins 2007; 67: 435-447.
Zhang C,Liu S,Zhu Q,Zhou Y. A knowledge-based energy function for protein-ligand, protein-protein, and protein-DNA complexes. J Med Chem 2005; 48: 2325-2335.
Verdecia MA,Bowman ME,Lu KP,Hunter T,Noel JP. Structural basis for phosphoserine-proline recognition by group IV WW domains. Nat Struct Biol 2000; 7: 639-643.
Roitberg AE,Holden MJ,Mayhew MP,Kurnikov IV,Beratan DN,Vilker VL. Binding and electron transfer between putidaredoxin and cytochrome P450cam. Theory and experiments. J Am Chem Soc 1998; 120: 8927-8932.
Gabdoulline RR,Wade RC. Protein-protein association: investigation of factors influencing association rates by brownian dynamics simulations. J Mol Biol 2001; 306: 1139-1155.
2004; 22
1995; 91
2000; 28
1997; 272
2004; 25
2002; 12
2000; 8
2002; 11
2000; 7
1999; 286
2005; 21
2003; 16
1996; 100
1993; 90
2005; 60
2006; 2
1977; 23
2001; 44
2001; 306
2005; 26
2005; 48
2003; 50
2004; 32
2000; 39
2000; 303
2005; 347
2003; 24
1999; 12
2004; 1694
2003; 125
1998; 5
1992; 89
1990; 8
1996; 26
2007; 67
2005; 33
2007; 68
1996; 118
1998; 120
1998; 14
2003; 66
2005; 14
2005; 58
e_1_2_8_27_2
e_1_2_8_28_2
e_1_2_8_49_2
e_1_2_8_29_2
e_1_2_8_23_2
Bewley MC (e_1_2_8_35_2) 1999; 286
e_1_2_8_46_2
e_1_2_8_24_2
e_1_2_8_45_2
e_1_2_8_25_2
e_1_2_8_48_2
e_1_2_8_26_2
e_1_2_8_47_2
e_1_2_8_9_2
e_1_2_8_2_2
e_1_2_8_4_2
e_1_2_8_3_2
e_1_2_8_6_2
e_1_2_8_5_2
e_1_2_8_8_2
e_1_2_8_7_2
e_1_2_8_42_2
e_1_2_8_20_2
e_1_2_8_41_2
e_1_2_8_21_2
e_1_2_8_44_2
e_1_2_8_22_2
e_1_2_8_43_2
e_1_2_8_16_2
e_1_2_8_39_2
e_1_2_8_17_2
e_1_2_8_38_2
e_1_2_8_18_2
e_1_2_8_19_2
e_1_2_8_12_2
e_1_2_8_13_2
e_1_2_8_34_2
e_1_2_8_14_2
e_1_2_8_37_2
e_1_2_8_15_2
e_1_2_8_36_2
Luirink J (e_1_2_8_40_2) 2004; 1694
e_1_2_8_31_2
e_1_2_8_30_2
e_1_2_8_10_2
e_1_2_8_33_2
e_1_2_8_11_2
e_1_2_8_32_2
References_xml – reference: Schneidman-Duhovny D,Inbar Y,Nussinov R,Wolfson HJ. Geometry-based flexible and symmetric protein docking. Proteins 2005; 60: 224-231.
– reference: Andreeva A,Howorth D,Brenner SE,Hubbard TJ,Chothia C,Murzin AG. SCOP database in 2004: refinements integrate structure and sequence family data. Nucleic Acids Res 2004; 32 (database issue): D226-D229.
– reference: Arulanandam AR,Withka JM,Wyss DF,Wagner G,Kister A,Pallai P,Recny MA,Reinherz EL. The CD58 (LFA-3) binding site is a localized and highly charged surface area on the AGFCC'C" face of the human CD2 adhesion domain. Proc Natl Acad Sci USA 1993; 90: 11613-11617.
– reference: Mendez R,Leplae R,Lensink MF,Wodak SJ. Assessment of CAPRI predictions in rounds 3-5 shows progress in docking procedures. Proteins 2005; 60: 150-169.
– reference: Berman HM,Westbrook J,Feng Z,Gilliland G,Bhat TN,Weissig H,Shindyalov IN,Bourne PE. The protein data bank. Nucleic Acids Res 2000; 28: 235-242.
– reference: Roitberg AE,Holden MJ,Mayhew MP,Kurnikov IV,Beratan DN,Vilker VL. Binding and electron transfer between putidaredoxin and cytochrome P450cam. Theory and experiments. J Am Chem Soc 1998; 120: 8927-8932.
– reference: Case DA,Cheatham TE,IIIDarden T,Gohlke H,Luo R,Merz KM,JrOnufriev A,Simmerling C,Wang B,Woods RJ. The Amber biomolecular simulation programs. J Comput Chem 2005; 26: 1668-1688.
– reference: Wang C,Schueler-Furman O,Baker D. Improved side-chain modeling for protein-protein docking. Protein Sci 2005; 14: 1328-1339.
– reference: Krol M,Tournier AL,Bates PA. Flexible relaxation of rigid-body docking solutions. Proteins 2007; 68: 159-169.
– reference: Hou T,Wang J,Chen L,Xu X. Automated docking of peptides and proteins by using a genetic algorithm combined with a tabu search. Protein Eng 1999; 12: 639-648.
– reference: Wang T,Wade RC. Implicit solvent models for flexible protein-protein docking by molecular dynamics simulation. Proteins 2003; 50: 158-169.
– reference: Bewley MC,Springer K,Zhang YB,Freimuth P,Flanagan JM. Structural analysis of the mechanism of adenovirus binding to its human cellular receptor. CAR Science 1999; 286: 1579-1583.
– reference: Ludemann SK,Lounnas V,Wade RC. How do substrates enter and products exit the buried active site of cytochrome P450cam? I. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms. J Mol Biol 2000; 303: 797-811.
– reference: Heifetz A,Eisenstein M. Effect of local shape modifications of molecular surfaces on rigid-body protein-protein docking. Protein Eng 2003; 16: 179-185.
– reference: van Raaij MJ,Chouin E,van der Zandt H,Bergelson JM,Cusack S. Dimeric structure of the coxsackievirus and adenovirus receptor D1 domain at 1.7 A resolution. Structure 2000; 8: 1147-1155.
– reference: Katchalski-Katzir E,Shariv I,Eisenstein M,Friesem AA,Aflalo C,Vakser IA. Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques. Proc Natl Acad Sci USA 1992; 89: 2195-2199.
– reference: Vajda S,Camacho CJ. Protein-protein docking: is the glass half-full or half-empty? Trends Biotechnol 2004; 22: 110-116.
– reference: Gabdoulline RR,Wade RC. Protein-protein association: investigation of factors influencing association rates by brownian dynamics simulations. J Mol Biol 2001; 306: 1139-1155.
– reference: Wang J,Wolf RM,Caldwell JW,Kollman PA,Case DA. Development and testing of a general amber force field. J Comput Chem 2004; 25: 1157-1174.
– reference: Ponder JW,Case DA. Force fields for protein simulations. Adv Protein Chem 2003; 66: 27-85.
– reference: Aloy P,Russell RB. Ten thousand interactions for the molecular biologist. Nat Biotechnol 2004; 22: 1317-1321.
– reference: Hooft RW,Sander C,Vriend G. Positioning hydrogen atoms by optimizing hydrogen-bond networks in protein structures. Proteins 1996; 26: 363-376.
– reference: Gardiner EJ,Willett P,Artymiuk PJ. Protein docking using a genetic algorithm. Proteins 2001; 44: 44-56.
– reference: Gabdoulline RR,Wade RC. On the protein-protein diffusional encounter complex. J Mol Recognit 1999; 12: 226-234.
– reference: Ehrlich LP,Nilges M,Wade RC. The impact of protein flexibility on protein-protein docking. Proteins 2005; 58: 126-133.
– reference: Gabdoulline RR,Wade RC. Biomolecular diffusional association. Curr Opin Struct Biol 2002; 12: 204-213.
– reference: Vriend G. WHAT IF: a molecular modeling and drug design program. J Mol Graph 1990; 8: 52-56,29.
– reference: Zhou H,Zhou Y. Distance-scaled, finite ideal-gas reference state improves structure-derived potentials of mean force for structure selection and stability prediction. Protein Sci 2002; 11: 2714-2726.
– reference: Gabb HA,Jackson RM,Sternberg MJ. Modelling protein docking using shape complementarity, electrostatics and biochemical information. J Mol Biol 1997; 272: 106-120.
– reference: Luirink J,Sinning I SRP-mediated protein targeting: structure and function revisited. Biochim Biophys Acta 2004; 1694: 17-35.
– reference: Ziegler GA,Schulz GE. Crystal structures of adrenodoxin reductase in complex with NADP+ and NADPH suggesting a mechanism for the electron transfer of an enzyme family. Biochemistry 2000; 39: 10986-10995.
– reference: Dominguez C,Boelens R,Bonvin AM. HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 2003; 125: 1731-1737.
– reference: Camacho CJ,Zhang C. FastContact: rapid estimate of contact and binding free energies. Bioinformatics 2005; 21: 2534-2536.
– reference: Schreiber G. Kinetic studies of protein-protein interactions. Curr Opin Struct Biol 2002; 12: 41-47.
– reference: Jorgensen WL,Maxwell DS,Tirado-Rives J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J Am Chem Soc 1996; 118: 11225-11236.
– reference: Bastard K,Thureau A,Lavery R,Prevost C. Docking macromolecules with flexible segments. J Comput Chem 2003; 24: 1910-1920.
– reference: Verdecia MA,Bowman ME,Lu KP,Hunter T,Noel JP. Structural basis for phosphoserine-proline recognition by group IV WW domains. Nat Struct Biol 2000; 7: 639-643.
– reference: Tomic S,Bertosa B,Wang T,Wade RC. COMBINE analysis of the specificity of binding of Ras proteins to their effectors. Proteins 2007; 67: 435-447.
– reference: Madura JD,Briggs JM,Wade RC,Davis ME,Luty BA,Ilin A,Antosiewicz J,Gilson MK,Bagheri B,Scott LR,McCammon JA. Electrostatics and diffusion of molecules in solution: simulations with the University of Houston Brownian Dynamics program. Comput Phys Commun 1995; 91: 57-95.
– reference: Gabdoulline RR,Wade RC. Effective charges for macromolecules in solvent. J Phys Chem 1996; 100: 3868-3878.
– reference: Gabdoulline RR,Wade RC. Brownian dynamics simulation of protein-protein diffusional encounter. Methods 1998; 14: 329-341.
– reference: Palma PN,Krippahl L,Wampler JE,Moura JJ. BiGGER: a new (soft) docking algorithm for predicting protein interactions. Proteins 2000; 39: 372-384.
– reference: Schneidman-Duhovny D,Inbar Y,Nussinov R,Wolfson HJ. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 2005; 33 (web server issue): W363-W367.
– reference: Wang T,Wade RC. Force field effects on a beta-sheet protein domain structure in thermal unfolding simulations. J Chem Theory Comput 2006; 2: 140-148.
– reference: Smith GR,Sternberg MJ,Bates PA. The relationship between the flexibility of proteins and their conformational states on forming protein-protein complexes with an application to protein-protein docking. J Mol Biol 2005; 347: 1077-1101.
– reference: Ryckaert JP,Ciccotti G,Berendsen HJC. Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes. J Comput Phys 1977; 23: 327-341.
– reference: Huang L,Hofer F,Martin GS,Kim SH. Structural basis for the interaction of Ras with RalGDS. Nat Struct Biol 1998; 5: 422-426.
– reference: Zhang C,Liu S,Zhu Q,Zhou Y. A knowledge-based energy function for protein-ligand, protein-protein, and protein-DNA complexes. J Med Chem 2005; 48: 2325-2335.
– volume: 67
  start-page: 435
  year: 2007
  end-page: 447
  article-title: COMBINE analysis of the specificity of binding of Ras proteins to their effectors
  publication-title: Proteins
– volume: 11
  start-page: 2714
  year: 2002
  end-page: 2726
  article-title: Distance‐scaled, finite ideal‐gas reference state improves structure‐derived potentials of mean force for structure selection and stability prediction
  publication-title: Protein Sci
– volume: 50
  start-page: 158
  year: 2003
  end-page: 169
  article-title: Implicit solvent models for flexible protein‐protein docking by molecular dynamics simulation
  publication-title: Proteins
– volume: 26
  start-page: 363
  year: 1996
  end-page: 376
  article-title: Positioning hydrogen atoms by optimizing hydrogen‐bond networks in protein structures
  publication-title: Proteins
– volume: 44
  start-page: 44
  year: 2001
  end-page: 56
  article-title: Protein docking using a genetic algorithm
  publication-title: Proteins
– volume: 60
  start-page: 224
  year: 2005
  end-page: 231
  article-title: Geometry‐based flexible and symmetric protein docking
  publication-title: Proteins
– volume: 12
  start-page: 226
  year: 1999
  end-page: 234
  article-title: On the protein‐protein diffusional encounter complex
  publication-title: J Mol Recognit
– volume: 32
  start-page: D226
  issue: database issue
  year: 2004
  end-page: D229
  article-title: SCOP database in 2004: refinements integrate structure and sequence family data
  publication-title: Nucleic Acids Res
– volume: 39
  start-page: 10986
  year: 2000
  end-page: 10995
  article-title: Crystal structures of adrenodoxin reductase in complex with NADP+ and NADPH suggesting a mechanism for the electron transfer of an enzyme family
  publication-title: Biochemistry
– volume: 91
  start-page: 57
  year: 1995
  end-page: 95
  article-title: Electrostatics and diffusion of molecules in solution: simulations with the University of Houston Brownian Dynamics program
  publication-title: Comput Phys Commun
– volume: 2
  start-page: 140
  year: 2006
  end-page: 148
  article-title: Force field effects on a beta‐sheet protein domain structure in thermal unfolding simulations
  publication-title: J Chem Theory Comput
– volume: 68
  start-page: 159
  year: 2007
  end-page: 169
  article-title: Flexible relaxation of rigid‐body docking solutions
  publication-title: Proteins
– volume: 90
  start-page: 11613
  year: 1993
  end-page: 11617
  article-title: The CD58 (LFA‐3) binding site is a localized and highly charged surface area on the AGFCC'C” face of the human CD2 adhesion domain
  publication-title: Proc Natl Acad Sci USA
– volume: 1694
  start-page: 17
  year: 2004
  end-page: 35
  article-title: SRP‐mediated protein targeting: structure and function revisited
  publication-title: Biochim Biophys Acta
– volume: 14
  start-page: 329
  year: 1998
  end-page: 341
  article-title: Brownian dynamics simulation of protein‐protein diffusional encounter
  publication-title: Methods
– volume: 7
  start-page: 639
  year: 2000
  end-page: 643
  article-title: Structural basis for phosphoserine‐proline recognition by group IV WW domains
  publication-title: Nat Struct Biol
– volume: 33
  start-page: W363
  issue: web server issue
  year: 2005
  end-page: W367
  article-title: PatchDock and SymmDock: servers for rigid and symmetric docking
  publication-title: Nucleic Acids Res
– volume: 60
  start-page: 150
  year: 2005
  end-page: 169
  article-title: Assessment of CAPRI predictions in rounds 3–5 shows progress in docking procedures
  publication-title: Proteins
– volume: 8
  start-page: 1147
  year: 2000
  end-page: 1155
  article-title: Dimeric structure of the coxsackievirus and adenovirus receptor D1 domain at 1.7 A resolution
  publication-title: Structure
– volume: 22
  start-page: 110
  year: 2004
  end-page: 116
  article-title: Protein‐protein docking: is the glass half‐full or half‐empty?
  publication-title: Trends Biotechnol
– volume: 28
  start-page: 235
  year: 2000
  end-page: 242
  article-title: The protein data bank
  publication-title: Nucleic Acids Res
– volume: 12
  start-page: 41
  year: 2002
  end-page: 47
  article-title: Kinetic studies of protein‐protein interactions
  publication-title: Curr Opin Struct Biol
– volume: 272
  start-page: 106
  year: 1997
  end-page: 120
  article-title: Modelling protein docking using shape complementarity, electrostatics and biochemical information
  publication-title: J Mol Biol
– volume: 48
  start-page: 2325
  year: 2005
  end-page: 2335
  article-title: A knowledge‐based energy function for protein‐ligand, protein‐protein, and protein‐DNA complexes
  publication-title: J Med Chem
– volume: 25
  start-page: 1157
  year: 2004
  end-page: 1174
  article-title: Development and testing of a general amber force field
  publication-title: J Comput Chem
– volume: 26
  start-page: 1668
  year: 2005
  end-page: 1688
  article-title: The Amber biomolecular simulation programs
  publication-title: J Comput Chem
– volume: 5
  start-page: 422
  year: 1998
  end-page: 426
  article-title: Structural basis for the interaction of Ras with RalGDS
  publication-title: Nat Struct Biol
– volume: 286
  start-page: 1579
  year: 1999
  end-page: 1583
  article-title: Structural analysis of the mechanism of adenovirus binding to its human cellular receptor
  publication-title: CAR Science
– volume: 16
  start-page: 179
  year: 2003
  end-page: 185
  article-title: Effect of local shape modifications of molecular surfaces on rigid‐body protein‐protein docking
  publication-title: Protein Eng
– volume: 125
  start-page: 1731
  year: 2003
  end-page: 1737
  article-title: HADDOCK: a protein‐protein docking approach based on biochemical or biophysical information
  publication-title: J Am Chem Soc
– volume: 118
  start-page: 11225
  year: 1996
  end-page: 11236
  article-title: Development and testing of the OPLS all‐atom force field on conformational energetics and properties of organic liquids
  publication-title: J Am Chem Soc
– volume: 22
  start-page: 1317
  year: 2004
  end-page: 1321
  article-title: Ten thousand interactions for the molecular biologist
  publication-title: Nat Biotechnol
– volume: 89
  start-page: 2195
  year: 1992
  end-page: 2199
  article-title: Molecular surface recognition: determination of geometric fit between proteins and their ligands by correlation techniques
  publication-title: Proc Natl Acad Sci USA
– volume: 39
  start-page: 372
  year: 2000
  end-page: 384
  article-title: BiGGER: a new (soft) docking algorithm for predicting protein interactions
  publication-title: Proteins
– volume: 21
  start-page: 2534
  year: 2005
  end-page: 2536
  article-title: FastContact: rapid estimate of contact and binding free energies
  publication-title: Bioinformatics
– volume: 347
  start-page: 1077
  year: 2005
  end-page: 1101
  article-title: The relationship between the flexibility of proteins and their conformational states on forming protein‐protein complexes with an application to protein‐protein docking
  publication-title: J Mol Biol
– volume: 120
  start-page: 8927
  year: 1998
  end-page: 8932
  article-title: Binding and electron transfer between putidaredoxin and cytochrome P450cam. Theory and experiments
  publication-title: J Am Chem Soc
– volume: 306
  start-page: 1139
  year: 2001
  end-page: 1155
  article-title: Protein‐protein association: investigation of factors influencing association rates by brownian dynamics simulations
  publication-title: J Mol Biol
– volume: 303
  start-page: 797
  year: 2000
  end-page: 811
  article-title: How do substrates enter and products exit the buried active site of cytochrome P450cam? I. Random expulsion molecular dynamics investigation of ligand access channels and mechanisms
  publication-title: J Mol Biol
– volume: 8
  start-page: 52
  year: 1990
  end-page: 56
  article-title: WHAT IF: a molecular modeling and drug design program
  publication-title: J Mol Graph
– volume: 12
  start-page: 639
  year: 1999
  end-page: 648
  article-title: Automated docking of peptides and proteins by using a genetic algorithm combined with a tabu search
  publication-title: Protein Eng
– volume: 100
  start-page: 3868
  year: 1996
  end-page: 3878
  article-title: Effective charges for macromolecules in solvent
  publication-title: J Phys Chem
– volume: 24
  start-page: 1910
  year: 2003
  end-page: 1920
  article-title: Docking macromolecules with flexible segments
  publication-title: J Comput Chem
– volume: 23
  start-page: 327
  year: 1977
  end-page: 341
  article-title: Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of ‐alkanes
  publication-title: J Comput Phys
– volume: 58
  start-page: 126
  year: 2005
  end-page: 133
  article-title: The impact of protein flexibility on protein‐protein docking
  publication-title: Proteins
– volume: 12
  start-page: 204
  year: 2002
  end-page: 213
  article-title: Biomolecular diffusional association
  publication-title: Curr Opin Struct Biol
– volume: 66
  start-page: 27
  year: 2003
  end-page: 85
  article-title: Force fields for protein simulations
  publication-title: Adv Protein Chem
– volume: 14
  start-page: 1328
  year: 2005
  end-page: 1339
  article-title: Improved side‐chain modeling for protein‐protein docking
  publication-title: Protein Sci
– ident: e_1_2_8_9_2
  doi: 10.1002/prot.1070
– ident: e_1_2_8_33_2
  doi: 10.1110/ps.0217002
– ident: e_1_2_8_30_2
  doi: 10.1093/bioinformatics/bti322
– ident: e_1_2_8_49_2
  doi: 10.1016/j.jmb.2005.01.058
– ident: e_1_2_8_6_2
  doi: 10.1002/(SICI)1097-0134(20000601)39:4<372::AID-PROT100>3.0.CO;2-Q
– ident: e_1_2_8_4_2
  doi: 10.1073/pnas.89.6.2195
– ident: e_1_2_8_16_2
  doi: 10.1002/(SICI)1097-0134(199612)26:4<363::AID-PROT1>3.0.CO;2-D
– ident: e_1_2_8_44_2
  doi: 10.1006/jmbi.1997.1203
– ident: e_1_2_8_13_2
  doi: 10.1093/nar/gkh039
– ident: e_1_2_8_29_2
  doi: 10.1016/0021-9991(77)90098-5
– ident: e_1_2_8_21_2
  doi: 10.1002/prot.21321
– ident: e_1_2_8_36_2
  doi: 10.1016/S0969-2126(00)00528-1
– ident: e_1_2_8_17_2
  doi: 10.1016/0010-4655(95)00043-F
– ident: e_1_2_8_5_2
  doi: 10.1110/ps.041222905
– volume: 1694
  start-page: 17
  year: 2004
  ident: e_1_2_8_40_2
  article-title: SRP‐mediated protein targeting: structure and function revisited
  publication-title: Biochim Biophys Acta
– ident: e_1_2_8_10_2
  doi: 10.1002/prot.20562
– ident: e_1_2_8_42_2
  doi: 10.1016/S0959-440X(02)00287-7
– ident: e_1_2_8_7_2
  doi: 10.1021/ja026939x
– ident: e_1_2_8_37_2
  doi: 10.1021/bi000079k
– ident: e_1_2_8_22_2
  doi: 10.1002/prot.10248
– ident: e_1_2_8_24_2
  doi: 10.1006/meth.1998.0588
– ident: e_1_2_8_48_2
  doi: 10.1002/prot.20272
– ident: e_1_2_8_23_2
  doi: 10.1021/jp953109f
– ident: e_1_2_8_47_2
  doi: 10.1002/jcc.10329
– ident: e_1_2_8_41_2
  doi: 10.1002/(SICI)1099-1352(199907/08)12:4<226::AID-JMR462>3.0.CO;2-P
– ident: e_1_2_8_11_2
  doi: 10.1093/nar/gki481
– ident: e_1_2_8_14_2
  doi: 10.1093/nar/28.1.235
– ident: e_1_2_8_19_2
  doi: 10.1021/ja9739906
– ident: e_1_2_8_31_2
  doi: 10.1021/jm049314d
– ident: e_1_2_8_32_2
  doi: 10.1016/S0959-440X(02)00311-1
– ident: e_1_2_8_3_2
  doi: 10.1016/j.tibtech.2004.01.006
– ident: e_1_2_8_34_2
  doi: 10.1038/nsb0698-422
– ident: e_1_2_8_43_2
  doi: 10.1002/prot.21391
– ident: e_1_2_8_8_2
  doi: 10.1093/protein/12.8.639
– ident: e_1_2_8_20_2
  doi: 10.1002/jcc.20035
– ident: e_1_2_8_38_2
  doi: 10.1073/pnas.90.24.11613
– ident: e_1_2_8_25_2
  doi: 10.1006/jmbi.2000.4404
– ident: e_1_2_8_45_2
  doi: 10.1006/jmbi.2000.4154
– ident: e_1_2_8_46_2
  doi: 10.1093/proeng/gzg021
– ident: e_1_2_8_12_2
  doi: 10.1002/prot.20551
– volume: 286
  start-page: 1579
  year: 1999
  ident: e_1_2_8_35_2
  article-title: Structural analysis of the mechanism of adenovirus binding to its human cellular receptor
  publication-title: CAR Science
– ident: e_1_2_8_15_2
  doi: 10.1016/0263-7855(90)80070-V
– ident: e_1_2_8_27_2
  doi: 10.1002/jcc.20290
– ident: e_1_2_8_28_2
  doi: 10.1021/ct0501607
– ident: e_1_2_8_39_2
  doi: 10.1038/77929
– ident: e_1_2_8_26_2
  doi: 10.1016/S0065-3233(03)66002-X
– ident: e_1_2_8_2_2
  doi: 10.1038/nbt1018
– ident: e_1_2_8_18_2
  doi: 10.1021/ja9621760
SSID ssj0006936
Score 2.0381436
Snippet We present a computational procedure for modeling protein–protein association and predicting the structures of protein–protein complexes. The initial sampling...
We present a computational procedure for modeling protein-protein association and predicting the structures of protein-protein complexes. The initial sampling...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1955
SubjectTerms Algorithms
Amino Acid Sequence
Animals
Biochemical Phenomena
Biochemistry
Brownian dynamics
clustering
Computational Biology - methods
Computer Simulation
Crystallography, X-Ray
Databases, Factual
Diffusion
encounter complex
flexible refinement
Fourier Analysis
Humans
Hydrogen Bonding
Models, Biological
molecular dynamics
Molecular Sequence Data
Osmolar Concentration
Protein Conformation
Protein Structure, Secondary
Protein Structure, Tertiary
protein-protein association
protein-protein docking
Proteins - chemistry
Proteins - metabolism
Static Electricity
Title Protein-protein docking by simulating the process of association subject to biochemical constraints
URI https://api.istex.fr/ark:/67375/WNG-XDKP2ZSF-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fprot.21867
https://www.ncbi.nlm.nih.gov/pubmed/18186463
https://www.proquest.com/docview/71633140
Volume 71
WOSCitedRecordID wos000255920600029&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1097-0134
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006936
  issn: 0887-3585
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1faxQxEB_aO0Vf_NNW3ao1oBQUtr39m13wpbaeguU8aksPX0KSTeDQ7h23d9K--R38hn4SZ7K3exSKIL5lYZbNJjOZ30yS3wC8UjaT6OeNb3VU-LHk2ldJEfgJQlmriNBEOcr8Yz4YZKNRPlyDt81dmJofok24kWW49ZoMXKpqf0UaSjwGe1RRia9DN0TFjTvQPTrpnx23K3GauxKBtSEhLm7pScP91dvXHFKXxvbyJrR5Hbw679O__3_9fgD3lqiTHdRq8hDWTLkBmwclRtwXV2yXuXOgLsG-AbffNa07h001uE0wQyJ0GJe_f_6a1i1W4FKKjo-pK1aNL1wZMHxCQMmm9e0DNrFMrqafVQtFWR82nzA1pkpdjqqAaYKoVKliXm3BWf_96eFHf1miwddRmtDmb8_2OLeKByrlRcIxPJKRjFOZqzRX3IQaY5wwx7DIKBuYEJWhp6zUmpvAxmn0CDrlpDRPgMVpL8tloWWCiMNiGIgyPMqsCQrEKTLx4HUzT0Iv-cupc99FzbwcCvp94UbWg5et7LRm7bhRatdNdysiZ9_onBtPxPnggxgdfRqGX7_0xbkHLxp9EDjstKUiSzNZVAKjzSjCGNWDx7WarD5HVIH4gx68cdrwl36I4cnnU9fa_hfhp3C3PrxCKaFn0JnPFuY53NI_5uNqtgPrfJTtLC3iD98gEUM
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1tb9MwED5BC9q-8LLX8DZLoEkgZWuSJm4-jo0ytFKq0WkVXyzbsaUKllZNi9g3_gP_kF_CnZOmmjQhIb450kVx7Dv7ufP5OYBXynYk7vPGtzrK_Lbk2ldxFvgxQlmriNBEOcr8Hu_3O6NROqhyc-guTMkPUQfcyDLcek0GTgHpwxVrKBEZHFBJJX4Xmm3Uo7gBzZPz7kWvXoqT1NUILC0JgXHNTxoert6-sSM1aXB_3AY3b6JXt_10H_5nxx_Bgwp3sqNSUR7DHZNvwOZRjj731TXbZy4T1IXYN-D-22Vr7XhZD24TzIAoHcb575-_pmWLZbiY4tbH1DUrxleuEBg-IaRk0_L-AZtYJlcKwIqForgPm0-YGlOtLkdWwDSBVKpVMS-24KL7bnh86ldFGnwdJTEd_7Zsi3OreKASnsUcHSQZyXYiU5WkiptQo5cTpugYGWUDE6I6tJSVWnMTWJy2bWjkk9zsAmsnrU4qMy1jxBwWHUGU4VHHmiBDpCJjD14vJ0roisGcOvdNlNzLoaDfF25kPXhZy05L3o5bpfbdfNcicvaVMt14LC7778Xo5GwQfvncFZce7C0VQuCw06GKzM1kUQj0N6MIvVQPdko9WX2OyALxBz1449ThL_0Qg_NPQ9d68i_Ce7B2OvzYE70P_bOnsF6mslCA6Bk05rOFeQ739Pf5uJi9qAzjD7d1FEs
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3bbtQwEB1Bl9sLl5ZCuNUSqBJIoZurN4-lSwB1tUSlVVe8WLZjS6vS7GoviL7xD_whX8KMk82qUoWEeHOkieLYM_aZ8fgMwCtlexL3eeNbHZV-LLn2VVIGfoJQ1ioiNFGOMn_Ah8PeaJQVTW4O3YWp-SHagBtZhluvycDNtLR7a9ZQIjJ4SyWV-HXoxEmWol12-kf5yaBditPM1QisLQmBcctPGu6t3760I3VocH9cBTcvo1e3_eT3_rPj9-FugzvZfq0oD-CaqTZha79Cn_v8gu0ylwnqQuybcPPdqnX7YFUPbgtMQZQO4-r3z1_TusVKXExx62Pqgs3H564QGD4hpGTT-v4Bm1gm1wrA5ktFcR-2mDA1plpdjqyAaQKpVKtiMX8IJ_n744OPflOkwddRmtDxb9d2ObeKByrlZcLRQZKRjFOZqTRT3IQavZwwQ8fIKBuYENWhq6zUmpvAxmm0DRvVpDKPgcVpt5fJUssEMYdFRxBleNSzJigRqcjEg9eriRK6YTCnzn0TNfdyKOj3hRtZD162stOat-NKqV03362InJ1RphtPxOnwgxj1D4vw65dcnHqws1IIgcNOhyqyMpPlXKC_GUXopXrwqNaT9eeILBB_0IM3Th3-0g9RHH0-dq0n_yK8A7eKfi4Gn4aHT-FOnclC8aFnsLGYLc1zuKG_L8bz2YvGLv4AJ1oTxg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Protein-protein+docking+by+simulating+the+process+of+association+subject+to+biochemical+constraints&rft.jtitle=Proteins%2C+structure%2C+function%2C+and+bioinformatics&rft.au=Motiejunas%2C+Domantas&rft.au=Gabdoulline%2C+Razif&rft.au=Wang%2C+Ting&rft.au=Feldman-Salit%2C+Anna&rft.date=2008-06-01&rft.eissn=1097-0134&rft.volume=71&rft.issue=4&rft.spage=1955&rft_id=info:doi/10.1002%2Fprot.21867&rft_id=info%3Apmid%2F18186463&rft.externalDocID=18186463
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0887-3585&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0887-3585&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0887-3585&client=summon