Local versus global stress constraint strategies in topology optimization: A comparative study

Stress‐constrained topology optimization requires techniques for handling thousands to millions of stress constraints. This work presents a comprehensive numerical study comparing local and global stress constraint strategies in topology optimization. Four local and four global solution strategies a...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal for numerical methods in engineering Ročník 122; číslo 21; s. 6003 - 6036
Hlavní autoři: da Silva, Gustavo Assis, Aage, Niels, Beck, André Teófilo, Sigmund, Ole
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken, USA John Wiley & Sons, Inc 15.11.2021
Wiley Subscription Services, Inc
Témata:
ISSN:0029-5981, 1097-0207, 1097-0207
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Stress‐constrained topology optimization requires techniques for handling thousands to millions of stress constraints. This work presents a comprehensive numerical study comparing local and global stress constraint strategies in topology optimization. Four local and four global solution strategies are presented and investigated. The local strategies are based on either the augmented Lagrangian or the pure exterior penalty method, whereas the global strategies are based on the P‐mean aggregation function. Extensive parametric studies are carried out on the L‐shaped design problem to identify the most promising parameters for each solution strategy. It is found that (1) the local strategies are less sensitive to the continuation procedure employed in standard density‐based topology optimization, allowing achievement of better quality results using less iterations when compared with the global strategies; (2) the global strategies become competitive when P values larger than 100 are employed, but for this to be possible a very slow continuation procedure should be used; (3) the local strategies based on the augmented Lagrangian method provide the best compromise between computational cost and performance, being able to achieve optimized topologies at the level of a pure P‐continuation global strategy with P=300, but using less iterations.
AbstractList Stress-constrained topology optimization requires techniques for handling thousands to millions of stress constraints. This work presents a comprehensive numerical study comparing local and global stress constraint strategies in topology optimization. Four local and four global solution strategies are presented and investigated. The local strategies are based on either the augmented Lagrangian or the pure exterior penalty method, whereas the global strategies are based on the P-mean aggregation function. Extensive parametric studies are carried out on the L-shaped design problem to identify the most promising parameters for each solution strategy. It is found that (1) the local strategies are less sensitive to the continuation procedure employed in standard density-based topology optimization, allowing achievement of better quality results using less iterations when compared with the global strategies; (2) the global strategies become competitive when P values larger than 100 are employed, but for this to be possible a very slow continuation procedure should be used; (3) the local strategies based on the augmented Lagrangian method provide the best compromise between computational cost and performance, being able to achieve optimized topologies at the level of a pure P-continuation global strategy with P=300, but using less iterations.
Stress‐constrained topology optimization requires techniques for handling thousands to millions of stress constraints. This work presents a comprehensive numerical study comparing local and global stress constraint strategies in topology optimization. Four local and four global solution strategies are presented and investigated. The local strategies are based on either the augmented Lagrangian or the pure exterior penalty method, whereas the global strategies are based on the P ‐mean aggregation function. Extensive parametric studies are carried out on the L‐shaped design problem to identify the most promising parameters for each solution strategy. It is found that (1) the local strategies are less sensitive to the continuation procedure employed in standard density‐based topology optimization, allowing achievement of better quality results using less iterations when compared with the global strategies; (2) the global strategies become competitive when P values larger than 100 are employed, but for this to be possible a very slow continuation procedure should be used; (3) the local strategies based on the augmented Lagrangian method provide the best compromise between computational cost and performance, being able to achieve optimized topologies at the level of a pure P ‐continuation global strategy with , but using less iterations.
Author Sigmund, Ole
Aage, Niels
da Silva, Gustavo Assis
Beck, André Teófilo
Author_xml – sequence: 1
  givenname: Gustavo Assis
  orcidid: 0000-0002-0684-9262
  surname: da Silva
  fullname: da Silva, Gustavo Assis
  email: gustavoas@usp.br
  organization: University of São Paulo
– sequence: 2
  givenname: Niels
  orcidid: 0000-0002-3042-0036
  surname: Aage
  fullname: Aage, Niels
  organization: Technical University of Denmark
– sequence: 3
  givenname: André Teófilo
  orcidid: 0000-0003-4127-5337
  surname: Beck
  fullname: Beck, André Teófilo
  organization: University of São Paulo
– sequence: 4
  givenname: Ole
  orcidid: 0000-0003-0344-7249
  surname: Sigmund
  fullname: Sigmund, Ole
  organization: Technical University of Denmark
BackLink https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-115893$$DView record from Swedish Publication Index (Örebro universitet)
BookMark eNp1kF9PwyAUxYnRxG2a-BGa-OJLJxRKqW_LnH-SqS_qo4RS2rB0pUK7pX566TZfjD4QuJffuTn3jMFxbWoFwAWCUwRhdF2v1ZQmDB2BEYJpEsIIJsdg5L_SME4ZOgVj51YQIhRDPAIfSyNFFWyUdZ0LyspkvnKtVc4F0tT-JXTdDh3RqlIrF-g6aE1jKlP2gWlavdZfotWmvglmXrFuhCf1RnlJl_dn4KQQlVPnh3sC3u4Wr_OHcPly_zifLUOJaYzCIstJgghOFcuSKKeM5kpgogTFeZzHCcMRIVIMLVkwSrCIC5FFKUmxSAWVeALC_Vy3VU2X8cbqtbA9N0LzW_0-48aW_nTcr81S7PnLPd9Y89kp1_KV6WztLfIoZohSRCDx1HRPSWucs6rgUre7ZYdYKo4gHzLnPnM-ZO4FV78EP0b-QA-Ot7pS_b8cf35a7PhvRISUOQ
CitedBy_id crossref_primary_10_1007_s00158_023_03693_8
crossref_primary_10_1007_s00419_024_02632_3
crossref_primary_10_1002_nme_70084
crossref_primary_10_1016_j_apm_2024_115730
crossref_primary_10_1016_j_cma_2025_118312
crossref_primary_10_1016_j_cma_2022_115161
crossref_primary_10_1080_15397734_2024_2411275
crossref_primary_10_1016_j_mechmachtheory_2022_105133
crossref_primary_10_1007_s00158_024_03953_1
crossref_primary_10_1016_j_cma_2023_116329
crossref_primary_10_1016_j_compstruc_2024_107564
crossref_primary_10_1007_s00158_025_04068_x
crossref_primary_10_1007_s10999_022_09598_6
crossref_primary_10_1002_nme_7561
crossref_primary_10_1016_j_engstruct_2022_115071
crossref_primary_10_1007_s00158_022_03209_w
crossref_primary_10_1007_s00158_022_03268_z
crossref_primary_10_1007_s00158_023_03702_w
crossref_primary_10_1016_j_cja_2023_03_019
crossref_primary_10_1016_j_advengsoft_2023_103591
crossref_primary_10_1007_s00158_022_03169_1
crossref_primary_10_1016_j_cma_2024_117570
crossref_primary_10_1007_s00366_025_02190_4
crossref_primary_10_1063_5_0281681
crossref_primary_10_1016_j_compstruct_2023_117006
crossref_primary_10_1007_s10409_025_25385_x
crossref_primary_10_1016_j_compstruc_2023_107113
crossref_primary_10_1016_j_cma_2025_117949
crossref_primary_10_1016_j_compstruct_2023_117041
crossref_primary_10_1002_nme_7230
crossref_primary_10_1016_j_compstruc_2025_107756
crossref_primary_10_1016_j_finel_2025_104401
crossref_primary_10_1016_j_apm_2025_115952
crossref_primary_10_1002_nme_70066
crossref_primary_10_1016_j_engstruct_2025_119656
crossref_primary_10_1016_j_cma_2024_116870
crossref_primary_10_1007_s00158_022_03313_x
crossref_primary_10_1007_s00366_025_02104_4
crossref_primary_10_1007_s00158_022_03357_z
crossref_primary_10_1016_j_jmps_2023_105477
crossref_primary_10_1016_j_addma_2025_104851
crossref_primary_10_1007_s00158_024_03954_0
crossref_primary_10_1016_j_pmatsci_2023_101129
crossref_primary_10_3390_app14167171
crossref_primary_10_1016_j_cma_2022_115610
crossref_primary_10_1080_15397734_2025_2524767
crossref_primary_10_1016_j_compstruc_2024_107469
crossref_primary_10_1007_s11081_023_09828_6
crossref_primary_10_1080_15376494_2024_2350680
crossref_primary_10_1016_j_cma_2025_117975
crossref_primary_10_1016_j_matdes_2022_110537
crossref_primary_10_1016_j_cma_2025_117731
crossref_primary_10_32604_cmes_2023_029876
crossref_primary_10_1016_j_cma_2024_117594
crossref_primary_10_1007_s00158_024_03930_8
crossref_primary_10_3390_ma17235970
crossref_primary_10_1016_j_engstruct_2024_118807
crossref_primary_10_1080_10255842_2023_2203293
crossref_primary_10_1007_s00158_022_03179_z
crossref_primary_10_1080_0305215X_2022_2129628
crossref_primary_10_1007_s00158_022_03403_w
crossref_primary_10_1016_j_cma_2022_115525
crossref_primary_10_1016_j_cma_2024_116817
crossref_primary_10_1007_s11831_023_10044_9
crossref_primary_10_1016_j_advengsoft_2022_103237
crossref_primary_10_1007_s00158_023_03658_x
crossref_primary_10_1007_s00158_024_03821_y
Cites_doi 10.1007/s00158‐012‐0759‐7
10.1016/j.cma.2019.112777
10.1007/s00158‐019‐02313‐8
10.1002/nme.6548
10.1007/s00158‐010‐0602‐y
10.1007/s00158‐013‐0978‐6
10.1002/nme.4676
10.1016/j.cma.2020.112972
10.1007/s00158‐020‐02760‐8
10.1016/j.cma.2017.06.025
10.1016/j.cma.2016.02.024
10.1007/BF01197454
10.1007/s00158‐009‐0440‐y
10.1007/s00158‐010‐0594‐7
10.1007/s00158‐012‐0869‐2
10.1007/s00158‐006‐0087‐x
10.1007/s00158‐018‐1915‐5
10.1007/s00158‐016‐1524‐0
10.1002/nme.5828
10.1016/j.compstruct.2016.05.058
10.1002/(SICI)1097‐0207(19981230)43:8<1453::AID‐NME480>3.0.CO;2‐2
10.1016/j.cma.2012.10.019
10.1007/s00158‐012‐0780‐x
10.1007/s00158‐014‐1171‐2
10.1016/j.cma.2018.10.004
10.1007/s00158‐012‐0880‐7
10.1016/j.cma.2016.09.049
10.1007/s00158‐008‐0336‐2
10.1007/s00158‐013‐1015‐5
10.1007/s00158‐006‐0019‐9
10.1007/s00158‐014‐1157‐0
10.1016/j.cma.2017.09.001
10.1002/nme.1620240207
10.1016/j.cma.2018.10.020
10.1137/1.9781611973365
10.1016/j.compstruc.2018.01.008
10.1016/j.cma.2013.07.001
10.1016/j.advengsoft.2009.03.006
10.1007/978-3-662-05086-6
10.1098/rspa.2019.0861
10.1007/s00158‐020‐02573‐9
10.1002/nme.3072
10.2514/1.J057777
10.1007/s00158‐017‐1833‐y
10.1137/141000671
10.1007/s00158‐003‐0301‐z
10.1016/j.probengmech.2020.103039
10.1007/s00158‐015‐1279‐z
10.1002/nme.5607
10.1016/j.cma.2019.05.046
10.2514/6.1998-4906
10.1016/j.compstruc.2011.10.008
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd.
2021 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons Ltd.
– notice: 2021 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ADTPV
AOWAS
D91
DOI 10.1002/nme.6781
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
SwePub
SwePub Articles
SWEPUB Örebro universitet
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Mathematics
EISSN 1097-0207
EndPage 6036
ExternalDocumentID oai_DiVA_org_oru_115893
10_1002_nme_6781
NME6781
Genre article
GrantInformation_xml – fundername: Villum Fonden
  funderid: Villum Investigator Project InnoTop
– fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
  funderid: Finance Code 001
– fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico
  funderid: 309107/2020‐2
– fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo
  funderid: 2018/16701‐1
GroupedDBID -~X
.3N
.4S
.DC
.GA
05W
0R~
10A
1L6
1OB
1OC
1ZS
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABIJN
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACIWK
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
F00
F01
F04
F5P
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HGLYW
HHY
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RWS
RX1
RYL
SUPJJ
TN5
TUS
UB1
V2E
W8V
W99
WBKPD
WIB
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XPP
XV2
ZZTAW
~02
~IA
~WT
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGXDD
AGYGG
AIDQK
AIDYY
CITATION
O8X
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
.Y3
31~
6TJ
AANHP
AASGY
ABDPE
ABEML
ACBWZ
ACKIV
ACRPL
ACSCC
ACYXJ
ADNMO
ADTPV
AGQPQ
AI.
AIQQE
AOWAS
ASPBG
AVWKF
AZFZN
BDRZF
D91
EJD
FEDTE
GBZZK
HF~
HVGLF
M6O
PALCI
RIWAO
RNS
SAMSI
VH1
VOH
ZY4
~A~
ID FETCH-LOGICAL-c3651-fbd471439e8b72d686dea34ea63d5d5783244caa34ecf8643a5fab29493a9a6c3
IEDL.DBID DRFUL
ISICitedReferencesCount 75
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000675265600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0029-5981
1097-0207
IngestDate Tue Nov 04 16:24:55 EST 2025
Fri Jul 25 12:05:10 EDT 2025
Tue Nov 18 21:52:32 EST 2025
Sat Nov 29 06:44:00 EST 2025
Wed Jan 22 16:27:45 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3651-fbd471439e8b72d686dea34ea63d5d5783244caa34ecf8643a5fab29493a9a6c3
Notes Funding information
Conselho Nacional de Desenvolvimento Científico e Tecnológico, 309107/2020‐2; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Finance Code 001; Fundação de Amparo à Pesquisa do Estado de São Paulo, 2018/16701‐1; Villum Fonden, Villum Investigator Project InnoTop
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0684-9262
0000-0003-0344-7249
0000-0003-4127-5337
0000-0002-3042-0036
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/nme.6781
PQID 2581661404
PQPubID 996376
PageCount 34
ParticipantIDs swepub_primary_oai_DiVA_org_oru_115893
proquest_journals_2581661404
crossref_citationtrail_10_1002_nme_6781
crossref_primary_10_1002_nme_6781
wiley_primary_10_1002_nme_6781_NME6781
PublicationCentury 2000
PublicationDate 15 November 2021
PublicationDateYYYYMMDD 2021-11-15
PublicationDate_xml – month: 11
  year: 2021
  text: 15 November 2021
  day: 15
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Bognor Regis
PublicationTitle International journal for numerical methods in engineering
PublicationYear 2021
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2006; 32
2020; 62
2016; 305
2020; 362
2019; 57
2004; 26
2020; 59
2020; 365
2018; 329
2021; 122
1998; 43
2007; 33
2017; 313
2019; 60
2012; 90‐91
1997; 13
2016; 156
2003; 1
2019; 354
2014; 99
2017; 325
2013; 48
2013; 47
2012
2015; 51
2015; 52
1998
2014; 49
2013; 265
2019; 344
1996
2004
2010; 41
1987; 24
2018; 198
2017; 59
2021
2017; 55
2018; 113
2018; 115
2011; 86
2013; 254
2011; 43
2014
2020; 476
2012; 46
2018; 58
2009; 39
2018; 57
e_1_2_10_23_1
e_1_2_10_46_1
e_1_2_10_21_1
e_1_2_10_44_1
e_1_2_10_42_1
e_1_2_10_40_1
Arora JS (e_1_2_10_54_1) 2012
e_1_2_10_2_1
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_53_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_39_1
e_1_2_10_55_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_37_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_32_1
e_1_2_10_30_1
e_1_2_10_51_1
Bathe KJ (e_1_2_10_33_1) 1996
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_25_1
e_1_2_10_48_1
e_1_2_10_24_1
e_1_2_10_45_1
e_1_2_10_22_1
e_1_2_10_43_1
e_1_2_10_20_1
e_1_2_10_41_1
Fancello EA (e_1_2_10_11_1) 2003; 1
e_1_2_10_52_1
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_56_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_36_1
e_1_2_10_12_1
e_1_2_10_35_1
e_1_2_10_9_1
e_1_2_10_10_1
e_1_2_10_31_1
e_1_2_10_50_1
e_1_2_10_28_1
e_1_2_10_49_1
e_1_2_10_26_1
e_1_2_10_47_1
References_xml – volume: 41
  start-page: 433
  issue: 3
  year: 2010
  end-page: 441
  article-title: Block aggregation of stress constraints in topology optimization of structures
  publication-title: Adv Eng Softw
– volume: 99
  start-page: 129
  issue: 2
  year: 2014
  end-page: 156
  article-title: A level set approach for topology optimization with local stress constraints
  publication-title: Int J Numer Methods Eng
– volume: 58
  start-page: 641
  issue: 2
  year: 2018
  end-page: 655
  article-title: On the influence of local and global stress constraint and filtering radius on the design of hinge‐free compliant mechanisms
  publication-title: Struct Multidiscip Optim
– volume: 43
  start-page: 767
  issue: 6
  year: 2011
  end-page: 784
  article-title: On projection methods, convergence and robust formulations in topology optimization
  publication-title: Struct Multidiscip Optim
– volume: 354
  start-page: 397
  year: 2019
  end-page: 421
  article-title: Topology optimization of compliant mechanisms with stress constraints and manufacturing error robustness
  publication-title: Comput Methods Appl Mech Eng
– volume: 48
  start-page: 1031
  issue: 6
  year: 2013
  end-page: 1055
  article-title: Topology optimization approaches
  publication-title: Struct Multidiscip Optim
– volume: 46
  start-page: 369
  issue: 3
  year: 2012
  end-page: 384
  article-title: Topology optimization for minimum weight with compliance and stress constraints
  publication-title: Struct Multidiscip Optim
– volume: 113
  start-page: 153
  issue: 1
  year: 2018
  end-page: 178
  article-title: Topology optimization of continuum structures with stress constraints and uncertainties in loading
  publication-title: Int J Numer Methods Eng
– year: 2014
– year: 1998
– volume: 476
  year: 2020
  article-title: A unified approach for topology optimization with local stress constraints considering various failure criteria: von Mises, Drucker‐Prager, Tresca, Mohr‐Coulomb Bresler‐Pister and Willam‐Warnke
  publication-title: Proc R Soc A
– volume: 254
  start-page: 31
  year: 2013
  end-page: 41
  article-title: An enhanced aggregation method for topology optimization with local stress constraints
  publication-title: Comput Methods Appl Mech Eng
– volume: 24
  start-page: 359
  issue: 2
  year: 1987
  end-page: 373
  article-title: The method of moving asymptotes ‐ a new method for structural optimization
  publication-title: Int J Numer Methods Eng
– volume: 39
  start-page: 419
  issue: 4
  year: 2009
  end-page: 437
  article-title: Topology optimization of continuum structures with local and global stress constraints
  publication-title: Struct Multidiscip Optim
– volume: 329
  start-page: 1
  year: 2018
  end-page: 23
  article-title: Stress‐based shape and topology optimization with the level set method
  publication-title: Comput Methods Appl Mech Eng
– volume: 344
  start-page: 569
  year: 2019
  end-page: 601
  article-title: Stress‐constrained level set topology optimization for design‐dependent pressure load problems
  publication-title: Comput Methods Appl Mech Eng
– volume: 1
  start-page: 3
  issue: 1
  year: 2003
  end-page: 24
  article-title: Structural topology optimization considering material failure constraints and multiple load conditions
  publication-title: Latin Am J Solids Struct
– volume: 33
  start-page: 401
  issue: 4‐5
  year: 2007
  end-page: 424
  article-title: Morphology‐based black and white filters for topology optimization
  publication-title: Struct Multidiscip Optim
– volume: 13
  start-page: 258
  issue: 4
  year: 1997
  end-page: 266
  article-title: ϵ relaxed approach in structural topology optimization
  publication-title: Struct Optim
– volume: 43
  start-page: 1
  year: 2011
  end-page: 16
  article-title: Efficient topology optimization in MATLAB using 88 lines of code
  publication-title: Struct Multidiscip Optim
– year: 2004
– volume: 51
  start-page: 613
  issue: 3
  year: 2015
  end-page: 629
  article-title: Interior value extrapolation: a new method for stress evaluation during topology optimization
  publication-title: Struct Multidiscip Optim
– volume: 47
  start-page: 493
  year: 2013
  end-page: 505
  article-title: Parallel framework for topology optimization using the method of moving asymptotes
  publication-title: Struct Multidiscip Optim
– volume: 60
  start-page: 2113
  year: 2019
  end-page: 2130
  article-title: An aggregation strategy of maximum size constraints in density‐based topology optimization
  publication-title: Struct Multidiscip Optim
– volume: 32
  start-page: 229
  issue: 3
  year: 2006
  end-page: 240
  article-title: Topology optimization for minimum mass design considering local failure constraints and contact boundary conditions
  publication-title: Struct Multidiscip Optim
– volume: 90‐91
  start-page: 65
  year: 2012
  end-page: 75
  article-title: Topology optimization of continuum structures with Drucker‐Prager yield stress constraints
  publication-title: Comput Struct
– volume: 362
  start-page: 112777
  year: 2020
  article-title: Stress‐constrained level set topology optimization for compliant mechanisms
  publication-title: Comput Methods Appl Mech Eng
– volume: 313
  start-page: 647
  year: 2017
  end-page: 672
  article-title: Stress‐based topology optimization of continuum structures under uncertainties
  publication-title: Comput Methods Appl Mech Eng
– volume: 55
  start-page: 663
  year: 2017
  end-page: 679
  article-title: A unified aggregation and relaxation approach for stress‐constrained topology optimization
  publication-title: Struct Multidiscip Optim
– volume: 46
  start-page: 647
  year: 2012
  end-page: 661
  article-title: Stress‐constrained topology optimization with design‐dependent loading
  publication-title: Struct Multidiscip Optim
– year: 1996
– volume: 52
  start-page: 929
  issue: 5
  year: 2015
  end-page: 943
  article-title: Stress‐constrained topology optimization for compliant mechanism design
  publication-title: Struct Multidiscip Optim
– volume: 365
  start-page: 112972
  year: 2020
  article-title: Topology optimization of compliant mechanisms considering stress constraints, manufacturing uncertainty and geometric nonlinearity
  publication-title: Comput Methods Appl Mech Eng
– volume: 41
  start-page: 605
  issue: 4
  year: 2010
  end-page: 620
  article-title: Stress‐based topology optimization for continua
  publication-title: Struct Multidiscip Optim
– volume: 59
  start-page: 65
  issue: 1
  year: 2017
  end-page: 98
  article-title: Julia: a fresh approach to numerical computing
  publication-title: SIAM Rev
– volume: 115
  start-page: 849
  issue: 7
  year: 2018
  end-page: 871
  article-title: Heaviside projection‐based aggregation in stress‐constrained topology optimization
  publication-title: Int J Numer Methods Eng
– volume: 26
  start-page: 50
  issue: 1‐2
  year: 2004
  end-page: 66
  article-title: Topology optimization of continuum structures with material failure constraints
  publication-title: Struct Multidiscip Optim
– volume: 325
  start-page: 1
  year: 2017
  end-page: 21
  article-title: Stress‐based topology optimization with discrete geometric components
  publication-title: Comput Methods Appl Mech Eng
– year: 2012
– volume: 198
  start-page: 23
  year: 2018
  end-page: 39
  article-title: Stress‐constrained topology optimization based on maximum stress measures
  publication-title: Comput Struct
– volume: 48
  start-page: 33
  issue: 1
  year: 2013
  end-page: 47
  article-title: Stress constrained topology optimization
  publication-title: Struct Multidiscip Optim
– volume: 59
  start-page: 103039
  year: 2020
  article-title: Comparison of robust, reliability‐based and non‐probabilistic topology optimization under uncertain loads and stress constraints
  publication-title: Probab Eng Mech
– volume: 62
  start-page: 1639
  year: 2020
  end-page: 1668
  article-title: Topology optimization with local stress constraints: a stress aggregation‐free approach
  publication-title: Struct Multidiscip Optim
– volume: 51
  start-page: 565
  year: 2015
  end-page: 572
  article-title: Topology optimization using PETSc: an easy‐to‐use, fully parallel, open source topology optimization framework
  publication-title: Struct Multidiscip Optim
– volume: 265
  start-page: 226
  year: 2013
  end-page: 241
  article-title: A newly developed qp‐relaxation method for element connectivity parameterization to achieve stress‐based topology optimization for geometrically nonlinear structures
  publication-title: Comput Methods Appl Mech Eng
– volume: 156
  start-page: 10
  year: 2016
  end-page: 19
  article-title: A new multi‐p‐norm formulation approach for stress‐based topology optimization design
  publication-title: Compos Struct
– volume: 344
  start-page: 512
  year: 2019
  end-page: 537
  article-title: Stress‐constrained topology optimization considering uniform manufacturing uncertainties
  publication-title: Comput Methods Appl Mech Eng
– volume: 86
  start-page: 765
  year: 2011
  end-page: 781
  article-title: Filters in topology optimization based on Helmholtz‐type differential equations
  publication-title: Int J Numer Methods Eng
– volume: 43
  start-page: 1453
  issue: 8
  year: 1998
  end-page: 1478
  article-title: Topology optimization of continuum structures with local stress constraints
  publication-title: Int J Numer Methods Eng
– volume: 305
  start-page: 62
  year: 2016
  end-page: 88
  article-title: Topology optimization with local stress constraint based on level set evolution via reaction‐diffusion
  publication-title: Comput Methods Appl Mech Eng
– volume: 57
  start-page: 17
  year: 2018
  end-page: 38
  article-title: Stress‐based topology optimization using spatial gradient stabilized XFEM
  publication-title: Struct Multidiscip Optim
– volume: 122
  start-page: 548
  year: 2021
  end-page: 578
  article-title: Three‐dimensional manufacturing tolerant topology optimization with hundreds of millions of local stress constraints
  publication-title: Int J Numer Methods Eng
– volume: 49
  start-page: 815
  year: 2014
  end-page: 829
  article-title: On multigrid‐CG for efficient topology optimization
  publication-title: Struct Multidiscip Optim
– volume: 57
  start-page: 3562
  issue: 8
  year: 2019
  end-page: 3578
  article-title: High‐resolution topology optimization with stress and natural frequency constraints
  publication-title: AIAA J
– year: 2021
  article-title: PolyStress: a Matlab implementation for local stress‐constrained topology optimization using the augmented Lagrangian method
  publication-title: Struct Multidiscip Optim
– ident: e_1_2_10_31_1
  doi: 10.1007/s00158‐012‐0759‐7
– ident: e_1_2_10_24_1
  doi: 10.1016/j.cma.2019.112777
– ident: e_1_2_10_26_1
  doi: 10.1007/s00158‐019‐02313‐8
– ident: e_1_2_10_25_1
  doi: 10.1002/nme.6548
– ident: e_1_2_10_36_1
  doi: 10.1007/s00158‐010‐0602‐y
– ident: e_1_2_10_32_1
  doi: 10.1007/s00158‐013‐0978‐6
– ident: e_1_2_10_21_1
  doi: 10.1002/nme.4676
– ident: e_1_2_10_17_1
  doi: 10.1016/j.cma.2020.112972
– ident: e_1_2_10_20_1
  doi: 10.1007/s00158‐020‐02760‐8
– ident: e_1_2_10_43_1
  doi: 10.1016/j.cma.2017.06.025
– ident: e_1_2_10_22_1
  doi: 10.1016/j.cma.2016.02.024
– ident: e_1_2_10_35_1
  doi: 10.1007/BF01197454
– ident: e_1_2_10_4_1
  doi: 10.1007/s00158‐009‐0440‐y
– ident: e_1_2_10_56_1
  doi: 10.1007/s00158‐010‐0594‐7
– ident: e_1_2_10_49_1
  doi: 10.1007/s00158‐012‐0869‐2
– ident: e_1_2_10_52_1
  doi: 10.1007/s00158‐006‐0087‐x
– ident: e_1_2_10_28_1
  doi: 10.1007/s00158‐018‐1915‐5
– ident: e_1_2_10_8_1
  doi: 10.1007/s00158‐016‐1524‐0
– ident: e_1_2_10_46_1
  doi: 10.1002/nme.5828
– ident: e_1_2_10_42_1
  doi: 10.1016/j.compstruct.2016.05.058
– ident: e_1_2_10_3_1
  doi: 10.1002/(SICI)1097‐0207(19981230)43:8<1453::AID‐NME480>3.0.CO;2‐2
– ident: e_1_2_10_39_1
  doi: 10.1016/j.cma.2012.10.019
– volume-title: Finite Element Procedures
  year: 1996
  ident: e_1_2_10_33_1
– ident: e_1_2_10_51_1
  doi: 10.1007/s00158‐012‐0780‐x
– ident: e_1_2_10_5_1
  doi: 10.1007/s00158‐014‐1171‐2
– ident: e_1_2_10_23_1
  doi: 10.1016/j.cma.2018.10.004
– ident: e_1_2_10_10_1
  doi: 10.1007/s00158‐012‐0880‐7
– ident: e_1_2_10_14_1
  doi: 10.1016/j.cma.2016.09.049
– volume: 1
  start-page: 3
  issue: 1
  year: 2003
  ident: e_1_2_10_11_1
  article-title: Structural topology optimization considering material failure constraints and multiple load conditions
  publication-title: Latin Am J Solids Struct
– ident: e_1_2_10_27_1
  doi: 10.1007/s00158‐008‐0336‐2
– ident: e_1_2_10_34_1
  doi: 10.1007/s00158‐013‐1015‐5
– ident: e_1_2_10_13_1
  doi: 10.1007/s00158‐006‐0019‐9
– ident: e_1_2_10_55_1
  doi: 10.1007/s00158‐014‐1157‐0
– ident: e_1_2_10_44_1
  doi: 10.1016/j.cma.2017.09.001
– ident: e_1_2_10_2_1
  doi: 10.1002/nme.1620240207
– ident: e_1_2_10_6_1
  doi: 10.1016/j.cma.2018.10.020
– ident: e_1_2_10_48_1
  doi: 10.1137/1.9781611973365
– ident: e_1_2_10_50_1
  doi: 10.1016/j.compstruc.2018.01.008
– ident: e_1_2_10_40_1
  doi: 10.1016/j.cma.2013.07.001
– ident: e_1_2_10_9_1
  doi: 10.1016/j.advengsoft.2009.03.006
– ident: e_1_2_10_29_1
  doi: 10.1007/978-3-662-05086-6
– ident: e_1_2_10_18_1
  doi: 10.1098/rspa.2019.0861
– ident: e_1_2_10_19_1
  doi: 10.1007/s00158‐020‐02573‐9
– ident: e_1_2_10_37_1
  doi: 10.1002/nme.3072
– ident: e_1_2_10_47_1
  doi: 10.2514/1.J057777
– ident: e_1_2_10_45_1
  doi: 10.1007/s00158‐017‐1833‐y
– ident: e_1_2_10_53_1
  doi: 10.1137/141000671
– ident: e_1_2_10_12_1
  doi: 10.1007/s00158‐003‐0301‐z
– ident: e_1_2_10_16_1
  doi: 10.1016/j.probengmech.2020.103039
– ident: e_1_2_10_41_1
  doi: 10.1007/s00158‐015‐1279‐z
– volume-title: Introduction to Optimum Design
  year: 2012
  ident: e_1_2_10_54_1
– ident: e_1_2_10_30_1
  doi: 10.1002/nme.5607
– ident: e_1_2_10_15_1
  doi: 10.1016/j.cma.2019.05.046
– ident: e_1_2_10_7_1
  doi: 10.2514/6.1998-4906
– ident: e_1_2_10_38_1
  doi: 10.1016/j.compstruc.2011.10.008
SSID ssj0011503
Score 2.6078131
Snippet Stress‐constrained topology optimization requires techniques for handling thousands to millions of stress constraints. This work presents a comprehensive...
Stress-constrained topology optimization requires techniques for handling thousands to millions of stress constraints. This work presents a comprehensive...
SourceID swepub
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 6003
SubjectTerms augmented Lagrangian
Business competition
Comparative studies
Constraints
global stress constraint
local stress constraints
Optimization
Parameter identification
Strategy
stress aggregation function
Topology optimization
Title Local versus global stress constraint strategies in topology optimization: A comparative study
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.6781
https://www.proquest.com/docview/2581661404
https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-115893
Volume 122
WOSCitedRecordID wos000675265600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1097-0207
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011503
  issn: 1097-0207
  databaseCode: DRFUL
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT9swFMefUOEAhwFlaGUMGQmxU0aa2K69W7VS7QAVQnTiROTYLqo02qlJkfbfzy92QiuBhLRDFCVyftl-9tfx8-cBnImYm26sRMQsjyNKlY6kMF30ItRSaDdikXkVbKI3Gon7e3kTvCpxLYznQzQ_3NAyqvYaDVzlxcUKNPTJfnMtrRv5bCau2rIWbA5uh-OrZg7BSZ20dvBgUnRr9GycXNTXrndGKwrTU0PXBWvV4wx3_-dd9-BD0Jmk7yvGPmzYWRt2g-YkwaKLNuysAAnd0XVDcS0O4OEKOzqCjhvLgnh0CPGLS4hGXYnhJUpSlDVugkxnpPRRF_6SuWuMnsIqz--kT_QLZ5xUUNuPMB5e3v34GYV4DJFOOetGk9xQDJcurch7ieGCG6tSahVPDTPO9J04o1rhKT0RTuooNlF5IqlMlVRcp4fQms1n9hMQkcZW5ZQZanrU6ERx0ZOTXKucp8oa3YGvdcFkOsDK8aN-Zx6znGQuSzPM0g6cNin_eEDHK2mO67LNgokWWcJwyhTpQh049-Xd3ACZ24Ppr342Xzy6benGScwJO5ewKuU3H5SNri9xf_TehJ9hO0EnGfQrZMfQKhdL-wW29HM5LRYnoUb_A1bi_KY
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ra9swED5CM9j6sK7dytKlmwaje_Lq2JIirU-hbehoEkZJR58mZEkZgTYpsTPYv5_Ost0UNhjswRibs2Xr7qRP0uk7gA8i5rYXaxExx-OIUm0iKWwPowiNFMaPWGRWJpvoTybi5kZ-bcFJvRcm8EM0E27oGWV7jQ6OE9LHG6yhd-6Tb2r90KdNvRV5826fXQ2vR80igsc6aR3hwaTo1dyzcXJcP_u4N9qAmIE29DFiLbuc4c5_fewLeF4hTTIIprELLbfYg50KdZLKp_M92N6gJPRX44bHNX8J30fY1REM3VjnJJCHkLC9hBhElphgoiB5URNOkPmCFCHvwi-y9M3RXbXP8zMZEPPANE5KWttXcD08n55eRFVGhsiknPWiWWYpJkyXTmT9xHLBrdMpdZqnllnv_B6eUaPxlpkJD3Y0m-kskVSmWmpu0n3YWiwX7jUQkcZOZ5RZavvUmkRz0ZezzOiMp9pZ04GPtWaUqejK8aduVSBaTpSvUoVV2oH3jeR9oOj4g0y3Vq6qnDRXCcNFU-QX6sBRUHjzAmTdPpt_G6jl6oc_1n6kxDy084Klmv9akJqMz_F88K-C7-DpxXQ8UqMvk8s38CzBkBmMMmRd2CpWa3cIT8zPYp6v3lbm_RtokgCl
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fa9swEMePko6xPrRbt7J07abB2J68OrakSO1TWBpaloYy1tKnClmSR6BNSuwU-t9PZ9luChsM9mCMjfxL0klfWafPAXwSMbe9WIuIOR5HlGoTSWF76EVopDB-xCKzKthEfzIRV1fyfA2OmrUwgQ_R_nBDy6jaazRwd2fzgxVq6K376ptaP_RZpxhDpgPrwx-ji3E7ieC1Ttp4eDApeg17Nk4Ommuf9kYrEjNgQ58q1qrLGW3918u-hM1aaZJBqBqvYM3NtmGrVp2ktuliGzZWkIT-6KzluBav4XqMXR1B141lQQI8hITlJcSgssQAEyUpygY4QaYzUoa4Cw9k7puj23qd5yEZEPNIGicV1vYNXIyOf347ieqIDJFJOetFeWYpBkyXTmT9xHLBrdMpdZqnlllv_F6eUaPxlMmFFzua5TpLJJWplpqbdAc6s_nMvQUi0tjpjDJLbZ9ak2gu-jLPjM54qp01XfjSlIwyNa4cP-pGBdByonyWKszSLnxsU94FRMcf0uw1hatqIy1UwnDSFPlCXfgcCry9AVK3h9PLgZovfvlt6UdKzEs7n7Aq5r8-SE3OjnG_-68JP8Dz8-FIjU8n39_BiwQ9ZtDJkO1Bp1ws3T48M_fltFi8r2v3b_S0ACA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+versus+global+stress+constraint+strategies+in+topology+optimization%3A+A+comparative+study&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=da+Silva%2C+Gustavo+Assis&rft.au=Aage%2C+Niels&rft.au=Beck%2C+Andr%C3%A9+Te%C3%B3filo&rft.au=Sigmund%2C+Ole&rft.date=2021-11-15&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=122&rft.issue=21&rft.spage=6003&rft.epage=6036&rft_id=info:doi/10.1002%2Fnme.6781&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_nme_6781
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon