Local versus global stress constraint strategies in topology optimization: A comparative study
Stress‐constrained topology optimization requires techniques for handling thousands to millions of stress constraints. This work presents a comprehensive numerical study comparing local and global stress constraint strategies in topology optimization. Four local and four global solution strategies a...
Uloženo v:
| Vydáno v: | International journal for numerical methods in engineering Ročník 122; číslo 21; s. 6003 - 6036 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken, USA
John Wiley & Sons, Inc
15.11.2021
Wiley Subscription Services, Inc |
| Témata: | |
| ISSN: | 0029-5981, 1097-0207, 1097-0207 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Stress‐constrained topology optimization requires techniques for handling thousands to millions of stress constraints. This work presents a comprehensive numerical study comparing local and global stress constraint strategies in topology optimization. Four local and four global solution strategies are presented and investigated. The local strategies are based on either the augmented Lagrangian or the pure exterior penalty method, whereas the global strategies are based on the P‐mean aggregation function. Extensive parametric studies are carried out on the L‐shaped design problem to identify the most promising parameters for each solution strategy. It is found that (1) the local strategies are less sensitive to the continuation procedure employed in standard density‐based topology optimization, allowing achievement of better quality results using less iterations when compared with the global strategies; (2) the global strategies become competitive when P values larger than 100 are employed, but for this to be possible a very slow continuation procedure should be used; (3) the local strategies based on the augmented Lagrangian method provide the best compromise between computational cost and performance, being able to achieve optimized topologies at the level of a pure P‐continuation global strategy with P=300, but using less iterations. |
|---|---|
| AbstractList | Stress-constrained topology optimization requires techniques for handling thousands to millions of stress constraints. This work presents a comprehensive numerical study comparing local and global stress constraint strategies in topology optimization. Four local and four global solution strategies are presented and investigated. The local strategies are based on either the augmented Lagrangian or the pure exterior penalty method, whereas the global strategies are based on the P-mean aggregation function. Extensive parametric studies are carried out on the L-shaped design problem to identify the most promising parameters for each solution strategy. It is found that (1) the local strategies are less sensitive to the continuation procedure employed in standard density-based topology optimization, allowing achievement of better quality results using less iterations when compared with the global strategies; (2) the global strategies become competitive when P values larger than 100 are employed, but for this to be possible a very slow continuation procedure should be used; (3) the local strategies based on the augmented Lagrangian method provide the best compromise between computational cost and performance, being able to achieve optimized topologies at the level of a pure P-continuation global strategy with P=300, but using less iterations. Stress‐constrained topology optimization requires techniques for handling thousands to millions of stress constraints. This work presents a comprehensive numerical study comparing local and global stress constraint strategies in topology optimization. Four local and four global solution strategies are presented and investigated. The local strategies are based on either the augmented Lagrangian or the pure exterior penalty method, whereas the global strategies are based on the P ‐mean aggregation function. Extensive parametric studies are carried out on the L‐shaped design problem to identify the most promising parameters for each solution strategy. It is found that (1) the local strategies are less sensitive to the continuation procedure employed in standard density‐based topology optimization, allowing achievement of better quality results using less iterations when compared with the global strategies; (2) the global strategies become competitive when P values larger than 100 are employed, but for this to be possible a very slow continuation procedure should be used; (3) the local strategies based on the augmented Lagrangian method provide the best compromise between computational cost and performance, being able to achieve optimized topologies at the level of a pure P ‐continuation global strategy with , but using less iterations. |
| Author | Sigmund, Ole Aage, Niels da Silva, Gustavo Assis Beck, André Teófilo |
| Author_xml | – sequence: 1 givenname: Gustavo Assis orcidid: 0000-0002-0684-9262 surname: da Silva fullname: da Silva, Gustavo Assis email: gustavoas@usp.br organization: University of São Paulo – sequence: 2 givenname: Niels orcidid: 0000-0002-3042-0036 surname: Aage fullname: Aage, Niels organization: Technical University of Denmark – sequence: 3 givenname: André Teófilo orcidid: 0000-0003-4127-5337 surname: Beck fullname: Beck, André Teófilo organization: University of São Paulo – sequence: 4 givenname: Ole orcidid: 0000-0003-0344-7249 surname: Sigmund fullname: Sigmund, Ole organization: Technical University of Denmark |
| BackLink | https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-115893$$DView record from Swedish Publication Index (Örebro universitet) |
| BookMark | eNp1kF9PwyAUxYnRxG2a-BGa-OJLJxRKqW_LnH-SqS_qo4RS2rB0pUK7pX566TZfjD4QuJffuTn3jMFxbWoFwAWCUwRhdF2v1ZQmDB2BEYJpEsIIJsdg5L_SME4ZOgVj51YQIhRDPAIfSyNFFWyUdZ0LyspkvnKtVc4F0tT-JXTdDh3RqlIrF-g6aE1jKlP2gWlavdZfotWmvglmXrFuhCf1RnlJl_dn4KQQlVPnh3sC3u4Wr_OHcPly_zifLUOJaYzCIstJgghOFcuSKKeM5kpgogTFeZzHCcMRIVIMLVkwSrCIC5FFKUmxSAWVeALC_Vy3VU2X8cbqtbA9N0LzW_0-48aW_nTcr81S7PnLPd9Y89kp1_KV6WztLfIoZohSRCDx1HRPSWucs6rgUre7ZYdYKo4gHzLnPnM-ZO4FV78EP0b-QA-Ot7pS_b8cf35a7PhvRISUOQ |
| CitedBy_id | crossref_primary_10_1007_s00158_023_03693_8 crossref_primary_10_1007_s00419_024_02632_3 crossref_primary_10_1002_nme_70084 crossref_primary_10_1016_j_apm_2024_115730 crossref_primary_10_1016_j_cma_2025_118312 crossref_primary_10_1016_j_cma_2022_115161 crossref_primary_10_1080_15397734_2024_2411275 crossref_primary_10_1016_j_mechmachtheory_2022_105133 crossref_primary_10_1007_s00158_024_03953_1 crossref_primary_10_1016_j_cma_2023_116329 crossref_primary_10_1016_j_compstruc_2024_107564 crossref_primary_10_1007_s00158_025_04068_x crossref_primary_10_1007_s10999_022_09598_6 crossref_primary_10_1002_nme_7561 crossref_primary_10_1016_j_engstruct_2022_115071 crossref_primary_10_1007_s00158_022_03209_w crossref_primary_10_1007_s00158_022_03268_z crossref_primary_10_1007_s00158_023_03702_w crossref_primary_10_1016_j_cja_2023_03_019 crossref_primary_10_1016_j_advengsoft_2023_103591 crossref_primary_10_1007_s00158_022_03169_1 crossref_primary_10_1016_j_cma_2024_117570 crossref_primary_10_1007_s00366_025_02190_4 crossref_primary_10_1063_5_0281681 crossref_primary_10_1016_j_compstruct_2023_117006 crossref_primary_10_1007_s10409_025_25385_x crossref_primary_10_1016_j_compstruc_2023_107113 crossref_primary_10_1016_j_cma_2025_117949 crossref_primary_10_1016_j_compstruct_2023_117041 crossref_primary_10_1002_nme_7230 crossref_primary_10_1016_j_compstruc_2025_107756 crossref_primary_10_1016_j_finel_2025_104401 crossref_primary_10_1016_j_apm_2025_115952 crossref_primary_10_1002_nme_70066 crossref_primary_10_1016_j_engstruct_2025_119656 crossref_primary_10_1016_j_cma_2024_116870 crossref_primary_10_1007_s00158_022_03313_x crossref_primary_10_1007_s00366_025_02104_4 crossref_primary_10_1007_s00158_022_03357_z crossref_primary_10_1016_j_jmps_2023_105477 crossref_primary_10_1016_j_addma_2025_104851 crossref_primary_10_1007_s00158_024_03954_0 crossref_primary_10_1016_j_pmatsci_2023_101129 crossref_primary_10_3390_app14167171 crossref_primary_10_1016_j_cma_2022_115610 crossref_primary_10_1080_15397734_2025_2524767 crossref_primary_10_1016_j_compstruc_2024_107469 crossref_primary_10_1007_s11081_023_09828_6 crossref_primary_10_1080_15376494_2024_2350680 crossref_primary_10_1016_j_cma_2025_117975 crossref_primary_10_1016_j_matdes_2022_110537 crossref_primary_10_1016_j_cma_2025_117731 crossref_primary_10_32604_cmes_2023_029876 crossref_primary_10_1016_j_cma_2024_117594 crossref_primary_10_1007_s00158_024_03930_8 crossref_primary_10_3390_ma17235970 crossref_primary_10_1016_j_engstruct_2024_118807 crossref_primary_10_1080_10255842_2023_2203293 crossref_primary_10_1007_s00158_022_03179_z crossref_primary_10_1080_0305215X_2022_2129628 crossref_primary_10_1007_s00158_022_03403_w crossref_primary_10_1016_j_cma_2022_115525 crossref_primary_10_1016_j_cma_2024_116817 crossref_primary_10_1007_s11831_023_10044_9 crossref_primary_10_1016_j_advengsoft_2022_103237 crossref_primary_10_1007_s00158_023_03658_x crossref_primary_10_1007_s00158_024_03821_y |
| Cites_doi | 10.1007/s00158‐012‐0759‐7 10.1016/j.cma.2019.112777 10.1007/s00158‐019‐02313‐8 10.1002/nme.6548 10.1007/s00158‐010‐0602‐y 10.1007/s00158‐013‐0978‐6 10.1002/nme.4676 10.1016/j.cma.2020.112972 10.1007/s00158‐020‐02760‐8 10.1016/j.cma.2017.06.025 10.1016/j.cma.2016.02.024 10.1007/BF01197454 10.1007/s00158‐009‐0440‐y 10.1007/s00158‐010‐0594‐7 10.1007/s00158‐012‐0869‐2 10.1007/s00158‐006‐0087‐x 10.1007/s00158‐018‐1915‐5 10.1007/s00158‐016‐1524‐0 10.1002/nme.5828 10.1016/j.compstruct.2016.05.058 10.1002/(SICI)1097‐0207(19981230)43:8<1453::AID‐NME480>3.0.CO;2‐2 10.1016/j.cma.2012.10.019 10.1007/s00158‐012‐0780‐x 10.1007/s00158‐014‐1171‐2 10.1016/j.cma.2018.10.004 10.1007/s00158‐012‐0880‐7 10.1016/j.cma.2016.09.049 10.1007/s00158‐008‐0336‐2 10.1007/s00158‐013‐1015‐5 10.1007/s00158‐006‐0019‐9 10.1007/s00158‐014‐1157‐0 10.1016/j.cma.2017.09.001 10.1002/nme.1620240207 10.1016/j.cma.2018.10.020 10.1137/1.9781611973365 10.1016/j.compstruc.2018.01.008 10.1016/j.cma.2013.07.001 10.1016/j.advengsoft.2009.03.006 10.1007/978-3-662-05086-6 10.1098/rspa.2019.0861 10.1007/s00158‐020‐02573‐9 10.1002/nme.3072 10.2514/1.J057777 10.1007/s00158‐017‐1833‐y 10.1137/141000671 10.1007/s00158‐003‐0301‐z 10.1016/j.probengmech.2020.103039 10.1007/s00158‐015‐1279‐z 10.1002/nme.5607 10.1016/j.cma.2019.05.046 10.2514/6.1998-4906 10.1016/j.compstruc.2011.10.008 |
| ContentType | Journal Article |
| Copyright | 2021 John Wiley & Sons Ltd. 2021 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: 2021 John Wiley & Sons Ltd. – notice: 2021 John Wiley & Sons, Ltd. |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D ADTPV AOWAS D91 |
| DOI | 10.1002/nme.6781 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional SwePub SwePub Articles SWEPUB Örebro universitet |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Mathematics |
| EISSN | 1097-0207 |
| EndPage | 6036 |
| ExternalDocumentID | oai_DiVA_org_oru_115893 10_1002_nme_6781 NME6781 |
| Genre | article |
| GrantInformation_xml | – fundername: Villum Fonden funderid: Villum Investigator Project InnoTop – fundername: Coordenação de Aperfeiçoamento de Pessoal de Nível Superior funderid: Finance Code 001 – fundername: Conselho Nacional de Desenvolvimento Científico e Tecnológico funderid: 309107/2020‐2 – fundername: Fundação de Amparo à Pesquisa do Estado de São Paulo funderid: 2018/16701‐1 |
| GroupedDBID | -~X .3N .4S .DC .GA 05W 0R~ 10A 1L6 1OB 1OC 1ZS 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCQN ABCUV ABIJN ABJNI ACAHQ ACCFJ ACCZN ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ATUGU AUFTA AZBYB AZVAB BAFTC BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBS F00 F01 F04 F5P G-S G.N GNP GODZA H.T H.X HBH HGLYW HHY HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D Q.N Q11 QB0 QRW R.K ROL RWI RWS RX1 RYL SUPJJ TN5 TUS UB1 V2E W8V W99 WBKPD WIB WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 XPP XV2 ZZTAW ~02 ~IA ~WT AAMMB AAYXX AEFGJ AEYWJ AGHNM AGXDD AGYGG AIDQK AIDYY CITATION O8X 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D .Y3 31~ 6TJ AANHP AASGY ABDPE ABEML ACBWZ ACKIV ACRPL ACSCC ACYXJ ADNMO ADTPV AGQPQ AI. AIQQE AOWAS ASPBG AVWKF AZFZN BDRZF D91 EJD FEDTE GBZZK HF~ HVGLF M6O PALCI RIWAO RNS SAMSI VH1 VOH ZY4 ~A~ |
| ID | FETCH-LOGICAL-c3651-fbd471439e8b72d686dea34ea63d5d5783244caa34ecf8643a5fab29493a9a6c3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 75 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000675265600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0029-5981 1097-0207 |
| IngestDate | Tue Nov 04 16:24:55 EST 2025 Fri Jul 25 12:05:10 EDT 2025 Tue Nov 18 21:52:32 EST 2025 Sat Nov 29 06:44:00 EST 2025 Wed Jan 22 16:27:45 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 21 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3651-fbd471439e8b72d686dea34ea63d5d5783244caa34ecf8643a5fab29493a9a6c3 |
| Notes | Funding information Conselho Nacional de Desenvolvimento Científico e Tecnológico, 309107/2020‐2; Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, Finance Code 001; Fundação de Amparo à Pesquisa do Estado de São Paulo, 2018/16701‐1; Villum Fonden, Villum Investigator Project InnoTop ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0684-9262 0000-0003-0344-7249 0000-0003-4127-5337 0000-0002-3042-0036 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/nme.6781 |
| PQID | 2581661404 |
| PQPubID | 996376 |
| PageCount | 34 |
| ParticipantIDs | swepub_primary_oai_DiVA_org_oru_115893 proquest_journals_2581661404 crossref_citationtrail_10_1002_nme_6781 crossref_primary_10_1002_nme_6781 wiley_primary_10_1002_nme_6781_NME6781 |
| PublicationCentury | 2000 |
| PublicationDate | 15 November 2021 |
| PublicationDateYYYYMMDD | 2021-11-15 |
| PublicationDate_xml | – month: 11 year: 2021 text: 15 November 2021 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: Bognor Regis |
| PublicationTitle | International journal for numerical methods in engineering |
| PublicationYear | 2021 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2006; 32 2020; 62 2016; 305 2020; 362 2019; 57 2004; 26 2020; 59 2020; 365 2018; 329 2021; 122 1998; 43 2007; 33 2017; 313 2019; 60 2012; 90‐91 1997; 13 2016; 156 2003; 1 2019; 354 2014; 99 2017; 325 2013; 48 2013; 47 2012 2015; 51 2015; 52 1998 2014; 49 2013; 265 2019; 344 1996 2004 2010; 41 1987; 24 2018; 198 2017; 59 2021 2017; 55 2018; 113 2018; 115 2011; 86 2013; 254 2011; 43 2014 2020; 476 2012; 46 2018; 58 2009; 39 2018; 57 e_1_2_10_23_1 e_1_2_10_46_1 e_1_2_10_21_1 e_1_2_10_44_1 e_1_2_10_42_1 e_1_2_10_40_1 Arora JS (e_1_2_10_54_1) 2012 e_1_2_10_2_1 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_53_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_39_1 e_1_2_10_55_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_37_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_32_1 e_1_2_10_30_1 e_1_2_10_51_1 Bathe KJ (e_1_2_10_33_1) 1996 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_25_1 e_1_2_10_48_1 e_1_2_10_24_1 e_1_2_10_45_1 e_1_2_10_22_1 e_1_2_10_43_1 e_1_2_10_20_1 e_1_2_10_41_1 Fancello EA (e_1_2_10_11_1) 2003; 1 e_1_2_10_52_1 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_56_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_36_1 e_1_2_10_12_1 e_1_2_10_35_1 e_1_2_10_9_1 e_1_2_10_10_1 e_1_2_10_31_1 e_1_2_10_50_1 e_1_2_10_28_1 e_1_2_10_49_1 e_1_2_10_26_1 e_1_2_10_47_1 |
| References_xml | – volume: 41 start-page: 433 issue: 3 year: 2010 end-page: 441 article-title: Block aggregation of stress constraints in topology optimization of structures publication-title: Adv Eng Softw – volume: 99 start-page: 129 issue: 2 year: 2014 end-page: 156 article-title: A level set approach for topology optimization with local stress constraints publication-title: Int J Numer Methods Eng – volume: 58 start-page: 641 issue: 2 year: 2018 end-page: 655 article-title: On the influence of local and global stress constraint and filtering radius on the design of hinge‐free compliant mechanisms publication-title: Struct Multidiscip Optim – volume: 43 start-page: 767 issue: 6 year: 2011 end-page: 784 article-title: On projection methods, convergence and robust formulations in topology optimization publication-title: Struct Multidiscip Optim – volume: 354 start-page: 397 year: 2019 end-page: 421 article-title: Topology optimization of compliant mechanisms with stress constraints and manufacturing error robustness publication-title: Comput Methods Appl Mech Eng – volume: 48 start-page: 1031 issue: 6 year: 2013 end-page: 1055 article-title: Topology optimization approaches publication-title: Struct Multidiscip Optim – volume: 46 start-page: 369 issue: 3 year: 2012 end-page: 384 article-title: Topology optimization for minimum weight with compliance and stress constraints publication-title: Struct Multidiscip Optim – volume: 113 start-page: 153 issue: 1 year: 2018 end-page: 178 article-title: Topology optimization of continuum structures with stress constraints and uncertainties in loading publication-title: Int J Numer Methods Eng – year: 2014 – year: 1998 – volume: 476 year: 2020 article-title: A unified approach for topology optimization with local stress constraints considering various failure criteria: von Mises, Drucker‐Prager, Tresca, Mohr‐Coulomb Bresler‐Pister and Willam‐Warnke publication-title: Proc R Soc A – volume: 254 start-page: 31 year: 2013 end-page: 41 article-title: An enhanced aggregation method for topology optimization with local stress constraints publication-title: Comput Methods Appl Mech Eng – volume: 24 start-page: 359 issue: 2 year: 1987 end-page: 373 article-title: The method of moving asymptotes ‐ a new method for structural optimization publication-title: Int J Numer Methods Eng – volume: 39 start-page: 419 issue: 4 year: 2009 end-page: 437 article-title: Topology optimization of continuum structures with local and global stress constraints publication-title: Struct Multidiscip Optim – volume: 329 start-page: 1 year: 2018 end-page: 23 article-title: Stress‐based shape and topology optimization with the level set method publication-title: Comput Methods Appl Mech Eng – volume: 344 start-page: 569 year: 2019 end-page: 601 article-title: Stress‐constrained level set topology optimization for design‐dependent pressure load problems publication-title: Comput Methods Appl Mech Eng – volume: 1 start-page: 3 issue: 1 year: 2003 end-page: 24 article-title: Structural topology optimization considering material failure constraints and multiple load conditions publication-title: Latin Am J Solids Struct – volume: 33 start-page: 401 issue: 4‐5 year: 2007 end-page: 424 article-title: Morphology‐based black and white filters for topology optimization publication-title: Struct Multidiscip Optim – volume: 13 start-page: 258 issue: 4 year: 1997 end-page: 266 article-title: ϵ relaxed approach in structural topology optimization publication-title: Struct Optim – volume: 43 start-page: 1 year: 2011 end-page: 16 article-title: Efficient topology optimization in MATLAB using 88 lines of code publication-title: Struct Multidiscip Optim – year: 2004 – volume: 51 start-page: 613 issue: 3 year: 2015 end-page: 629 article-title: Interior value extrapolation: a new method for stress evaluation during topology optimization publication-title: Struct Multidiscip Optim – volume: 47 start-page: 493 year: 2013 end-page: 505 article-title: Parallel framework for topology optimization using the method of moving asymptotes publication-title: Struct Multidiscip Optim – volume: 60 start-page: 2113 year: 2019 end-page: 2130 article-title: An aggregation strategy of maximum size constraints in density‐based topology optimization publication-title: Struct Multidiscip Optim – volume: 32 start-page: 229 issue: 3 year: 2006 end-page: 240 article-title: Topology optimization for minimum mass design considering local failure constraints and contact boundary conditions publication-title: Struct Multidiscip Optim – volume: 90‐91 start-page: 65 year: 2012 end-page: 75 article-title: Topology optimization of continuum structures with Drucker‐Prager yield stress constraints publication-title: Comput Struct – volume: 362 start-page: 112777 year: 2020 article-title: Stress‐constrained level set topology optimization for compliant mechanisms publication-title: Comput Methods Appl Mech Eng – volume: 313 start-page: 647 year: 2017 end-page: 672 article-title: Stress‐based topology optimization of continuum structures under uncertainties publication-title: Comput Methods Appl Mech Eng – volume: 55 start-page: 663 year: 2017 end-page: 679 article-title: A unified aggregation and relaxation approach for stress‐constrained topology optimization publication-title: Struct Multidiscip Optim – volume: 46 start-page: 647 year: 2012 end-page: 661 article-title: Stress‐constrained topology optimization with design‐dependent loading publication-title: Struct Multidiscip Optim – year: 1996 – volume: 52 start-page: 929 issue: 5 year: 2015 end-page: 943 article-title: Stress‐constrained topology optimization for compliant mechanism design publication-title: Struct Multidiscip Optim – volume: 365 start-page: 112972 year: 2020 article-title: Topology optimization of compliant mechanisms considering stress constraints, manufacturing uncertainty and geometric nonlinearity publication-title: Comput Methods Appl Mech Eng – volume: 41 start-page: 605 issue: 4 year: 2010 end-page: 620 article-title: Stress‐based topology optimization for continua publication-title: Struct Multidiscip Optim – volume: 59 start-page: 65 issue: 1 year: 2017 end-page: 98 article-title: Julia: a fresh approach to numerical computing publication-title: SIAM Rev – volume: 115 start-page: 849 issue: 7 year: 2018 end-page: 871 article-title: Heaviside projection‐based aggregation in stress‐constrained topology optimization publication-title: Int J Numer Methods Eng – volume: 26 start-page: 50 issue: 1‐2 year: 2004 end-page: 66 article-title: Topology optimization of continuum structures with material failure constraints publication-title: Struct Multidiscip Optim – volume: 325 start-page: 1 year: 2017 end-page: 21 article-title: Stress‐based topology optimization with discrete geometric components publication-title: Comput Methods Appl Mech Eng – year: 2012 – volume: 198 start-page: 23 year: 2018 end-page: 39 article-title: Stress‐constrained topology optimization based on maximum stress measures publication-title: Comput Struct – volume: 48 start-page: 33 issue: 1 year: 2013 end-page: 47 article-title: Stress constrained topology optimization publication-title: Struct Multidiscip Optim – volume: 59 start-page: 103039 year: 2020 article-title: Comparison of robust, reliability‐based and non‐probabilistic topology optimization under uncertain loads and stress constraints publication-title: Probab Eng Mech – volume: 62 start-page: 1639 year: 2020 end-page: 1668 article-title: Topology optimization with local stress constraints: a stress aggregation‐free approach publication-title: Struct Multidiscip Optim – volume: 51 start-page: 565 year: 2015 end-page: 572 article-title: Topology optimization using PETSc: an easy‐to‐use, fully parallel, open source topology optimization framework publication-title: Struct Multidiscip Optim – volume: 265 start-page: 226 year: 2013 end-page: 241 article-title: A newly developed qp‐relaxation method for element connectivity parameterization to achieve stress‐based topology optimization for geometrically nonlinear structures publication-title: Comput Methods Appl Mech Eng – volume: 156 start-page: 10 year: 2016 end-page: 19 article-title: A new multi‐p‐norm formulation approach for stress‐based topology optimization design publication-title: Compos Struct – volume: 344 start-page: 512 year: 2019 end-page: 537 article-title: Stress‐constrained topology optimization considering uniform manufacturing uncertainties publication-title: Comput Methods Appl Mech Eng – volume: 86 start-page: 765 year: 2011 end-page: 781 article-title: Filters in topology optimization based on Helmholtz‐type differential equations publication-title: Int J Numer Methods Eng – volume: 43 start-page: 1453 issue: 8 year: 1998 end-page: 1478 article-title: Topology optimization of continuum structures with local stress constraints publication-title: Int J Numer Methods Eng – volume: 305 start-page: 62 year: 2016 end-page: 88 article-title: Topology optimization with local stress constraint based on level set evolution via reaction‐diffusion publication-title: Comput Methods Appl Mech Eng – volume: 57 start-page: 17 year: 2018 end-page: 38 article-title: Stress‐based topology optimization using spatial gradient stabilized XFEM publication-title: Struct Multidiscip Optim – volume: 122 start-page: 548 year: 2021 end-page: 578 article-title: Three‐dimensional manufacturing tolerant topology optimization with hundreds of millions of local stress constraints publication-title: Int J Numer Methods Eng – volume: 49 start-page: 815 year: 2014 end-page: 829 article-title: On multigrid‐CG for efficient topology optimization publication-title: Struct Multidiscip Optim – volume: 57 start-page: 3562 issue: 8 year: 2019 end-page: 3578 article-title: High‐resolution topology optimization with stress and natural frequency constraints publication-title: AIAA J – year: 2021 article-title: PolyStress: a Matlab implementation for local stress‐constrained topology optimization using the augmented Lagrangian method publication-title: Struct Multidiscip Optim – ident: e_1_2_10_31_1 doi: 10.1007/s00158‐012‐0759‐7 – ident: e_1_2_10_24_1 doi: 10.1016/j.cma.2019.112777 – ident: e_1_2_10_26_1 doi: 10.1007/s00158‐019‐02313‐8 – ident: e_1_2_10_25_1 doi: 10.1002/nme.6548 – ident: e_1_2_10_36_1 doi: 10.1007/s00158‐010‐0602‐y – ident: e_1_2_10_32_1 doi: 10.1007/s00158‐013‐0978‐6 – ident: e_1_2_10_21_1 doi: 10.1002/nme.4676 – ident: e_1_2_10_17_1 doi: 10.1016/j.cma.2020.112972 – ident: e_1_2_10_20_1 doi: 10.1007/s00158‐020‐02760‐8 – ident: e_1_2_10_43_1 doi: 10.1016/j.cma.2017.06.025 – ident: e_1_2_10_22_1 doi: 10.1016/j.cma.2016.02.024 – ident: e_1_2_10_35_1 doi: 10.1007/BF01197454 – ident: e_1_2_10_4_1 doi: 10.1007/s00158‐009‐0440‐y – ident: e_1_2_10_56_1 doi: 10.1007/s00158‐010‐0594‐7 – ident: e_1_2_10_49_1 doi: 10.1007/s00158‐012‐0869‐2 – ident: e_1_2_10_52_1 doi: 10.1007/s00158‐006‐0087‐x – ident: e_1_2_10_28_1 doi: 10.1007/s00158‐018‐1915‐5 – ident: e_1_2_10_8_1 doi: 10.1007/s00158‐016‐1524‐0 – ident: e_1_2_10_46_1 doi: 10.1002/nme.5828 – ident: e_1_2_10_42_1 doi: 10.1016/j.compstruct.2016.05.058 – ident: e_1_2_10_3_1 doi: 10.1002/(SICI)1097‐0207(19981230)43:8<1453::AID‐NME480>3.0.CO;2‐2 – ident: e_1_2_10_39_1 doi: 10.1016/j.cma.2012.10.019 – volume-title: Finite Element Procedures year: 1996 ident: e_1_2_10_33_1 – ident: e_1_2_10_51_1 doi: 10.1007/s00158‐012‐0780‐x – ident: e_1_2_10_5_1 doi: 10.1007/s00158‐014‐1171‐2 – ident: e_1_2_10_23_1 doi: 10.1016/j.cma.2018.10.004 – ident: e_1_2_10_10_1 doi: 10.1007/s00158‐012‐0880‐7 – ident: e_1_2_10_14_1 doi: 10.1016/j.cma.2016.09.049 – volume: 1 start-page: 3 issue: 1 year: 2003 ident: e_1_2_10_11_1 article-title: Structural topology optimization considering material failure constraints and multiple load conditions publication-title: Latin Am J Solids Struct – ident: e_1_2_10_27_1 doi: 10.1007/s00158‐008‐0336‐2 – ident: e_1_2_10_34_1 doi: 10.1007/s00158‐013‐1015‐5 – ident: e_1_2_10_13_1 doi: 10.1007/s00158‐006‐0019‐9 – ident: e_1_2_10_55_1 doi: 10.1007/s00158‐014‐1157‐0 – ident: e_1_2_10_44_1 doi: 10.1016/j.cma.2017.09.001 – ident: e_1_2_10_2_1 doi: 10.1002/nme.1620240207 – ident: e_1_2_10_6_1 doi: 10.1016/j.cma.2018.10.020 – ident: e_1_2_10_48_1 doi: 10.1137/1.9781611973365 – ident: e_1_2_10_50_1 doi: 10.1016/j.compstruc.2018.01.008 – ident: e_1_2_10_40_1 doi: 10.1016/j.cma.2013.07.001 – ident: e_1_2_10_9_1 doi: 10.1016/j.advengsoft.2009.03.006 – ident: e_1_2_10_29_1 doi: 10.1007/978-3-662-05086-6 – ident: e_1_2_10_18_1 doi: 10.1098/rspa.2019.0861 – ident: e_1_2_10_19_1 doi: 10.1007/s00158‐020‐02573‐9 – ident: e_1_2_10_37_1 doi: 10.1002/nme.3072 – ident: e_1_2_10_47_1 doi: 10.2514/1.J057777 – ident: e_1_2_10_45_1 doi: 10.1007/s00158‐017‐1833‐y – ident: e_1_2_10_53_1 doi: 10.1137/141000671 – ident: e_1_2_10_12_1 doi: 10.1007/s00158‐003‐0301‐z – ident: e_1_2_10_16_1 doi: 10.1016/j.probengmech.2020.103039 – ident: e_1_2_10_41_1 doi: 10.1007/s00158‐015‐1279‐z – volume-title: Introduction to Optimum Design year: 2012 ident: e_1_2_10_54_1 – ident: e_1_2_10_30_1 doi: 10.1002/nme.5607 – ident: e_1_2_10_15_1 doi: 10.1016/j.cma.2019.05.046 – ident: e_1_2_10_7_1 doi: 10.2514/6.1998-4906 – ident: e_1_2_10_38_1 doi: 10.1016/j.compstruc.2011.10.008 |
| SSID | ssj0011503 |
| Score | 2.6078131 |
| Snippet | Stress‐constrained topology optimization requires techniques for handling thousands to millions of stress constraints. This work presents a comprehensive... Stress-constrained topology optimization requires techniques for handling thousands to millions of stress constraints. This work presents a comprehensive... |
| SourceID | swepub proquest crossref wiley |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 6003 |
| SubjectTerms | augmented Lagrangian Business competition Comparative studies Constraints global stress constraint local stress constraints Optimization Parameter identification Strategy stress aggregation function Topology optimization |
| Title | Local versus global stress constraint strategies in topology optimization: A comparative study |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fnme.6781 https://www.proquest.com/docview/2581661404 https://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-115893 |
| Volume | 122 |
| WOSCitedRecordID | wos000675265600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library - Journals customDbUrl: eissn: 1097-0207 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011503 issn: 1097-0207 databaseCode: DRFUL dateStart: 19960101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3PT9swFMefUOEAhwFlaGUMGQmxU0aa2K69W7VS7QAVQnTiROTYLqo02qlJkfbfzy92QiuBhLRDFCVyftl-9tfx8-cBnImYm26sRMQsjyNKlY6kMF30ItRSaDdikXkVbKI3Gon7e3kTvCpxLYznQzQ_3NAyqvYaDVzlxcUKNPTJfnMtrRv5bCau2rIWbA5uh-OrZg7BSZ20dvBgUnRr9GycXNTXrndGKwrTU0PXBWvV4wx3_-dd9-BD0Jmk7yvGPmzYWRt2g-YkwaKLNuysAAnd0XVDcS0O4OEKOzqCjhvLgnh0CPGLS4hGXYnhJUpSlDVugkxnpPRRF_6SuWuMnsIqz--kT_QLZ5xUUNuPMB5e3v34GYV4DJFOOetGk9xQDJcurch7ieGCG6tSahVPDTPO9J04o1rhKT0RTuooNlF5IqlMlVRcp4fQms1n9hMQkcZW5ZQZanrU6ERx0ZOTXKucp8oa3YGvdcFkOsDK8aN-Zx6znGQuSzPM0g6cNin_eEDHK2mO67LNgokWWcJwyhTpQh049-Xd3ACZ24Ppr342Xzy6benGScwJO5ewKuU3H5SNri9xf_TehJ9hO0EnGfQrZMfQKhdL-wW29HM5LRYnoUb_A1bi_KY |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Ra9swED5CM9j6sK7dytKlmwaje_Lq2JIirU-hbehoEkZJR58mZEkZgTYpsTPYv5_Ost0UNhjswRibs2Xr7qRP0uk7gA8i5rYXaxExx-OIUm0iKWwPowiNFMaPWGRWJpvoTybi5kZ-bcFJvRcm8EM0E27oGWV7jQ6OE9LHG6yhd-6Tb2r90KdNvRV5826fXQ2vR80igsc6aR3hwaTo1dyzcXJcP_u4N9qAmIE29DFiLbuc4c5_fewLeF4hTTIIprELLbfYg50KdZLKp_M92N6gJPRX44bHNX8J30fY1REM3VjnJJCHkLC9hBhElphgoiB5URNOkPmCFCHvwi-y9M3RXbXP8zMZEPPANE5KWttXcD08n55eRFVGhsiknPWiWWYpJkyXTmT9xHLBrdMpdZqnllnv_B6eUaPxlpkJD3Y0m-kskVSmWmpu0n3YWiwX7jUQkcZOZ5RZavvUmkRz0ZezzOiMp9pZ04GPtWaUqejK8aduVSBaTpSvUoVV2oH3jeR9oOj4g0y3Vq6qnDRXCcNFU-QX6sBRUHjzAmTdPpt_G6jl6oc_1n6kxDy084Klmv9akJqMz_F88K-C7-DpxXQ8UqMvk8s38CzBkBmMMmRd2CpWa3cIT8zPYp6v3lbm_RtokgCl |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpZ3fa9swEMePko6xPrRbt7J07abB2J68OrakSO1TWBpaloYy1tKnClmSR6BNSuwU-t9PZ9luChsM9mCMjfxL0klfWafPAXwSMbe9WIuIOR5HlGoTSWF76EVopDB-xCKzKthEfzIRV1fyfA2OmrUwgQ_R_nBDy6jaazRwd2fzgxVq6K376ptaP_RZpxhDpgPrwx-ji3E7ieC1Ttp4eDApeg17Nk4Ommuf9kYrEjNgQ58q1qrLGW3918u-hM1aaZJBqBqvYM3NtmGrVp2ktuliGzZWkIT-6KzluBav4XqMXR1B141lQQI8hITlJcSgssQAEyUpygY4QaYzUoa4Cw9k7puj23qd5yEZEPNIGicV1vYNXIyOf347ieqIDJFJOetFeWYpBkyXTmT9xHLBrdMpdZqnlllv_F6eUaPxlMmFFzua5TpLJJWplpqbdAc6s_nMvQUi0tjpjDJLbZ9ak2gu-jLPjM54qp01XfjSlIwyNa4cP-pGBdByonyWKszSLnxsU94FRMcf0uw1hatqIy1UwnDSFPlCXfgcCry9AVK3h9PLgZovfvlt6UdKzEs7n7Aq5r8-SE3OjnG_-68JP8Dz8-FIjU8n39_BiwQ9ZtDJkO1Bp1ws3T48M_fltFi8r2v3b_S0ACA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Local+versus+global+stress+constraint+strategies+in+topology+optimization%3A+A+comparative+study&rft.jtitle=International+journal+for+numerical+methods+in+engineering&rft.au=da+Silva%2C+Gustavo+Assis&rft.au=Aage%2C+Niels&rft.au=Beck%2C+Andr%C3%A9+Te%C3%B3filo&rft.au=Sigmund%2C+Ole&rft.date=2021-11-15&rft.issn=0029-5981&rft.eissn=1097-0207&rft.volume=122&rft.issue=21&rft.spage=6003&rft.epage=6036&rft_id=info:doi/10.1002%2Fnme.6781&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_nme_6781 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5981&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5981&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5981&client=summon |