Empirical analysis of the relationship between CC and SLOC in a large corpus of Java methods and C functions

Measuring the internal quality of source code is one of the traditional goals of making software development into an engineering discipline. Cyclomatic complexity (CC) is an often used source code quality metric, next to source lines of code (SLOC). However, the use of the CC metric is challenged by...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of software : evolution and process Ročník 28; číslo 7; s. 589 - 618
Hlavní autoři: Landman, Davy, Serebrenik, Alexander, Bouwers, Eric, Vinju, Jurgen J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Chichester Blackwell Publishing Ltd 01.07.2016
Wiley Subscription Services, Inc
Témata:
ISSN:2047-7473, 2047-7481
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Measuring the internal quality of source code is one of the traditional goals of making software development into an engineering discipline. Cyclomatic complexity (CC) is an often used source code quality metric, next to source lines of code (SLOC). However, the use of the CC metric is challenged by the repeated claim that CC is redundant with respect to SLOC because of strong linear correlation. We conducted an extensive literature study of the CC/SLOC correlation results. Next, we tested correlation on large Java (17.6 M methods) and C (6.3 M functions) corpora. Our results show that linear correlation between SLOC and CC is only moderate as a result of increasingly high variance. We further observe that aggregating CC and SLOC as well as performing a power transform improves the correlation. Our conclusion is that the observed linear correlation between CC and SLOC of Java methods or C functions is not strong enough to conclude that CC is redundant with SLOC. This conclusion contradicts earlier claims from literature but concurs with the widely accepted practice of measuring of CC next to SLOC. Copyright © 2015 John Wiley & Sons, Ltd. We analyzed the relationship between cyclomatic complexity (CC) and lines of code (SLOC) for two large corpora of Java and C software. Contradicting earlier claims from literature, we observed that the linear correlation between CC and SLOC is not strong enough to conclude that CC is redundant to SLOC. This is caused by increasingly high variance and concurs with the widely accepted practice of measuring of CC next to SLOC.
AbstractList Measuring the internal quality of source code is one of the traditional goals of making software development into an engineering discipline. Cyclomatic complexity (CC) is an often used source code quality metric, next to source lines of code (SLOC). However, the use of the CC metric is challenged by the repeated claim that CC is redundant with respect to SLOC because of strong linear correlation. We conducted an extensive literature study of the CC/SLOC correlation results. Next, we tested correlation on large Java (17.6 M methods) and C (6.3 M functions) corpora. Our results show that linear correlation between SLOC and CC is only moderate as a result of increasingly high variance. We further observe that aggregating CC and SLOC as well as performing a power transform improves the correlation. Our conclusion is that the observed linear correlation between CC and SLOC of Java methods or C functions is not strong enough to conclude that CC is redundant with SLOC. This conclusion contradicts earlier claims from literature but concurs with the widely accepted practice of measuring of CC next to SLOC. Copyright © 2015 John Wiley & Sons, Ltd. We analyzed the relationship between cyclomatic complexity (CC) and lines of code (SLOC) for two large corpora of Java and C software. Contradicting earlier claims from literature, we observed that the linear correlation between CC and SLOC is not strong enough to conclude that CC is redundant to SLOC. This is caused by increasingly high variance and concurs with the widely accepted practice of measuring of CC next to SLOC.
Measuring the internal quality of source code is one of the traditional goals of making software development into an engineering discipline. Cyclomatic complexity (CC) is an often used source code quality metric, next to source lines of code (SLOC). However, the use of the CC metric is challenged by the repeated claim that CC is redundant with respect to SLOC because of strong linear correlation. We conducted an extensive literature study of the CC/SLOC correlation results. Next, we tested correlation on large Java (17.6M methods) and C (6.3M functions) corpora. Our results show that linear correlation between SLOC and CC is only moderate as a result of increasingly high variance. We further observe that aggregating CC and SLOC as well as performing a power transform improves the correlation. Our conclusion is that the observed linear correlation between CC and SLOC of Java methods or C functions is not strong enough to conclude that CC is redundant with SLOC. This conclusion contradicts earlier claims from literature but concurs with the widely accepted practice of measuring of CC next to SLOC. Copyright © 2015 John Wiley & Sons, Ltd.
Measuring the internal quality of source code is one of the traditional goals of making software development into an engineering discipline. Cyclomatic complexity (CC) is an often used source code quality metric, next to source lines of code (SLOC). However, the use of the CC metric is challenged by the repeated claim that CC is redundant with respect to SLOC because of strong linear correlation. We conducted an extensive literature study of the CC/SLOC correlation results. Next, we tested correlation on large Java (17.6 M methods) and C (6.3 M functions) corpora. Our results show that linear correlation between SLOC and CC is only moderate as a result of increasingly high variance. We further observe that aggregating CC and SLOC as well as performing a power transform improves the correlation. Our conclusion is that the observed linear correlation between CC and SLOC of Java methods or C functions is not strong enough to conclude that CC is redundant with SLOC. This conclusion contradicts earlier claims from literature but concurs with the widely accepted practice of measuring of CC next to SLOC. Copyright © 2015 John Wiley & Sons, Ltd.
Author Bouwers, Eric
Serebrenik, Alexander
Landman, Davy
Vinju, Jurgen J.
Author_xml – sequence: 1
  givenname: Davy
  surname: Landman
  fullname: Landman, Davy
  email: Correspondence to: Davy Landman, Centrum Wiskunde & Informatica, Amsterdam, The Netherlands., davy.landman@cwi.nl
  organization: Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
– sequence: 2
  givenname: Alexander
  surname: Serebrenik
  fullname: Serebrenik, Alexander
  organization: Eindhoven University of Technology, Eindhoven, The Netherlands
– sequence: 3
  givenname: Eric
  surname: Bouwers
  fullname: Bouwers, Eric
  organization: Software Improvement Group, Amsterdam, The Netherlands
– sequence: 4
  givenname: Jurgen J.
  surname: Vinju
  fullname: Vinju, Jurgen J.
  organization: Centrum Wiskunde & Informatica, Amsterdam, The Netherlands
BookMark eNp10EFLwzAUB_AgE5xz4EcIePHSmTRtUo9StqlMB24ieAlZ-uIyu7YmnXPf3m4TQdFcXg6__4P3P0atoiwAoVNKepSQ8MIvXY8KTg5QOySRCESU0Nb3X7Aj1PV-QZrHQxJHcRvl_WVlndUqx6pQ-cZbj0uD6zlgB7mqbVn4ua3wDOo1QIHTtHEZnozGKbYFVjhX7gWwLl212iVv1bvCS6jnZeZ3NMVmVejdohN0aFTuofs1O-hx0J-m18FoPLxJr0aBZjwmATUz1ZwDCRCeZSFPZgnhNBQQGqbiSwFEa9CcgVIJNxDNSCiMyHTGssgwnrEOOtvvrVz5tgJfy0W5cs15XtKkwZQxETWqt1fald47MFLbendx7ZTNJSVyW6psSpXbUpvA-a9A5exSuc1fNNjTtc1h86-Tk7uHn976Gj6-vXKvkgsmYvl0P5Rpkk4piZ7lgH0CkkeWsQ
CitedBy_id crossref_primary_10_1002_smr_1914
crossref_primary_10_1049_sfw2_12135
crossref_primary_10_1145_3494521
crossref_primary_10_1109_ACCESS_2023_3314572
crossref_primary_10_1007_s10664_019_09714_9
crossref_primary_10_1145_3487569
crossref_primary_10_1145_3408896
crossref_primary_10_1002_spe_2665
crossref_primary_10_1049_iet_sen_2018_5193
Cites_doi 10.1002/9780470606834.ch6
10.1109/SCAM.2009.28
10.1098/rspl.1895.0041
10.1016/0164-1212(93)90065-6
10.1109/TSE.1979.226497
10.1214/ss/1009213004
10.1002/(SICI)1096-908X(199707/08)9:4<235::AID-SMR153>3.0.CO;2-3
10.1109/32.879815
10.1016/j.jss.2013.04.076
10.1111/1467-9884.00122
10.1016/S0164-1212(98)10042-0
10.1145/954627.954633
10.1145/162754.162867
10.2307/2289444
10.1109/32.295895
10.1109/ISSRE.2007.12
10.1145/1390630.1390648
10.1109/SCAM.2012.17
10.4236/jsea.2009.23020
10.1007/s10618-008-0118-x
10.1002/sim.5486
10.2307/1412159
10.1109/ICSM.1989.65191
10.1145/2491411.2491418
10.1109/32.922717
10.1109/2.402076
10.1109/METRIC.1994.344224
10.1049/sej.1987.0015
10.1109/ICSM.2011.6080798
10.1049/sej.1988.0003
10.1109/ICSM.2007.4362632
10.1145/69605.2085
10.1007/s10664-008-9060-1
10.1007/s11390-010-9398-x
10.1016/S0167-6296(98)00025-3
10.1109/32.24715
10.1007/s11334-006-0007-7
10.1007/s10664-014-9308-x
10.1109/MARK.1979.8817108
10.1007/BF02249047
10.1109/MSR.2007.31
10.1109/32.859533
10.1145/1985374.1985381
10.1007/s10664-013-9275-7
10.1109/ASE.2011.6100074
10.2307/1911963
10.1109/ICPC.2008.13
10.1109/TSE.1987.233475
10.2307/3565750
10.1109/QUATIC.2007.8
10.1037/0033-2909.95.3.576
10.1109/TSE.1976.233837
10.1109/52.50772
10.1145/2601248.2601268
10.1002/smr.1558
10.1109/SWAN.2015.7070485
10.1109/ENC.2005.47
10.1109/ICSME.2014.44
10.14569/IJACSA.2014.050721
10.1145/336512.336586
10.1109/32.935855
10.1145/1852786.1852801
10.1145/2635868.2635922
10.1007/s11219-011-9144-9
10.1109/32.44385
10.1109/ICSE.2015.24
10.1109/32.106988
ContentType Journal Article
Copyright Copyright © 2015 John Wiley & Sons, Ltd.
Copyright © 2016 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2015 John Wiley & Sons, Ltd.
– notice: Copyright © 2016 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/smr.1760
DatabaseName Istex
CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2047-7481
EndPage 618
ExternalDocumentID 4112984631
10_1002_smr_1760
SMR1760
ark_67375_WNG_C8CT104Z_F
Genre article
GroupedDBID .3N
.4S
.GA
.Y3
05W
0R~
10A
1OC
31~
33P
3SF
50Z
52O
52U
8-0
8-1
8-3
8-4
8-5
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABPVW
ACAHQ
ACBWZ
ACCZN
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZFZN
BAFTC
BDRZF
BHBCM
BMNLL
BMXJE
BRXPI
BSCLL
BY8
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EDO
EJD
F00
F01
F04
G-S
G.N
GODZA
HGLYW
HZ~
I-F
LATKE
LEEKS
LH4
LITHE
LOXES
LUTES
LW6
LYRES
MEWTI
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
O66
O9-
P2W
P2X
PQQKQ
Q.N
Q11
QB0
R.K
ROL
SUPJJ
TUS
W8V
W99
WBKPD
WIH
WIK
WOHZO
WXSBR
WYISQ
WZISG
~WT
AAYXX
CITATION
O8X
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3650-1fba100e8e06dd268b806127e2f3a597e0ccec63eaa86fe4b027f7dcd3d4f36d3
IEDL.DBID DRFUL
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000379945700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2047-7473
IngestDate Sun Nov 30 04:28:39 EST 2025
Sat Nov 29 07:49:16 EST 2025
Tue Nov 18 21:55:22 EST 2025
Tue Nov 11 03:11:51 EST 2025
Tue Nov 11 03:33:32 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3650-1fba100e8e06dd268b806127e2f3a597e0ccec63eaa86fe4b027f7dcd3d4f36d3
Notes istex:5C8C7EE2F78962737EFD0EEAABEE9FF5B8C56DAC
ark:/67375/WNG-C8CT104Z-F
ArticleID:SMR1760
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/smr.1760
PQID 1802713374
PQPubID 2034650
PageCount 30
ParticipantIDs proquest_journals_1802713374
crossref_citationtrail_10_1002_smr_1760
crossref_primary_10_1002_smr_1760
wiley_primary_10_1002_smr_1760_SMR1760
istex_primary_ark_67375_WNG_C8CT104Z_F
PublicationCentury 2000
PublicationDate 2016-07
July 2016
2016-07-00
20160701
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07
PublicationDecade 2010
PublicationPlace Chichester
PublicationPlace_xml – name: Chichester
PublicationTitle Journal of software : evolution and process
PublicationTitleAlternate J. Softw. Evol. and Proc
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Wiley Subscription Services, Inc
Publisher_xml – name: Blackwell Publishing Ltd
– name: Wiley Subscription Services, Inc
References Pearson K. Note on regression and inheritance in the case of two parents. Proceedings of the Royal Society of London 1895; 58:240-242.
Shull FJ, Carver JC, Vegas S, Juristo N. The role of replications in empirical software engineering. Empirical Software Engineering 2008; 13(2):211-218. DOI:10.1007/s10664-008-9060-1.
Sheskin DJ. Handbook of Parametric and Nonparametric Statistical Procedures, 4 edn. Chapman & Hall/CRC, 2007.
da Mota Silveira Neto PA, Engström E, de Carmo Machado I, de Almeida ES. On the reliability of mapping studies in software engineering. Journal of Systems and Software 2013; 86(10):2594-2610. DOI:10.1016/j.jss.2013.04.076.
Kemerer CF, Slaughter SA. Determinants of software maintenance profiles: an empirical investigation. Journal of Software Maintenance Jul 1997; 9(4):235-251.
Yu L, Mishra A. An empirical study of Lehman's law on software quality evolution. International Journal of Software & Informatics 2013; 7(3):469-481.
Henry S, Selig C. Predicting source-code complexity at the design stage. Software, IEEE March 1990; 7(2):36-44. DOI:10.1109/52.50772.
Myers GJ. An extension to the cyclomatic measure of program complexity. SIGPLAN Notices October 1977; 12(10):61-64. DOI:10.1145/954627.954633.
Joanes DN, Gill CA. Comparing measures of sample skewness and kurtosis. Journal of the Royal Statistical Society: Series D (The Statistician) 1998; 47(1):183-189. DOI:10.1111/1467-9884.00122.
El Emam K, Benlarbi S, Goel N, Rai SN. The confounding effect of class size on the validity of object-oriented metrics. IEEE Transactions on Software Engineering 2001; 27(7):630-650.
Mordal K, Anquetil N, Laval J, Serebrenik A, Vasilescu B, Ducasse S. Software quality metrics aggregation in industry. Journal of Software: Evolution and Process 2013; 25(10):1117-1135. DOI:10.1002/smr.1558.
Tashtoush Y, Al-Maolegi M, Arkok B. The correlation among software complexity metrics with case study. International Journal of Advanced Computer Research 2014; 4(2):414-419.
Moores TT. Applying complexity measures to rule-based prolog programs. Journal of Systems and Software 1998; 44(1):45-52. DOI:10.1016/S0164-1212(98)10042-0.
von Mayrhauser A, Vans AM. Program comprehension during software maintenance and evolution. IEEE Computer 1995; 28(8):44-55.
McCabe TJ. A complexity measure. IEEE Transactions Software Engineering 1976; 2(4):308-320.
Woodward MR, Hennell MA, Hedley D. A measure of control flow complexity in program text. IEEE Transactions on Software Engineering Jan 1979; 5(1):45-50. DOI:10.1109/TSE.1979.226497.
Ma YT, He KQ, Li B, Liu J, Zhou XY. A hybrid set of complexity metrics for large-scale object-oriented software systems. Journal of Computer Science and Technology 2010; 25(6):1184-1201. DOI:10.1007/s11390-010-9398-x.
Conte SD, Dunsmore HE, Shen VY. Software Engineering Metrics and Models. Benjamin-Cummings Publishing Co., Inc.: Redwood City, CA, USA, 1986.
Schneidewind N. Software reliability engineering process. Innovations in Systems and Software Engineering 2006; 2(3-4):179-190. DOI:10.1007/s11334-006-0007-7.
Chidamber SR, Kemerer CF. A metrics suite for object oriented design. IEEE Transactions on Software Engineering Jun 1994; 20(6):476-493. DOI:10.1109/32.295895.
Kitchenham B, Pickard L. Towards a constructive quality model. part 2: Statistical techniques for modelling software quality in the esprit request project. Software Engineering Journal July 1987; 2(4):114-126. DOI:10.1049/sej.1987.0015.
Linstead E, Bajracharya SK, Ngo TC, Rigor P, Lopes CV, Baldi P. Sourcerer: mining and searching internet-scale software repositories. Data Mining and Knowledge Discovery 2009; 18(2):300-336. DOI:10.1007/s10618-008-0118-x.
Basili VR, Perricone BT. Software errors and complexity: an empirical investigation. Communications of the ACM 1984; 27(1):42-52.
Troster J, Tian J. Measurement and defect modeling for a legacy software system. Annals of Software Engineering 1995; 1:95-118. DOI:10.1007/BF02249047.
Spearman C. The proof and measurement of association between two things. The American Journal of Psychology 1904; 15(1):72-101.
Malhotra R, Singh Y. On the applicability of machine learning techniques for object oriented software fault prediction. Software Engineering: An International Journal 2011; 1:24-37.
Carr DB, Littlefield RJ, Nicholson WL, Littlefield JS. Scatterplot matrix techniques for large N. Journal of the American Statistical Association 1987; 82(398):424-436.
Coleman R, Johnson MA. A study of Scala repositories on GitHub. International Journal of Advanced Computer Science and Applications 2014; 5(7):141-148.
Khomh F, Adams B, Dhaliwal T, Zou Y. Understanding the impact of rapid releases on software quality. Empirical Software Engineering 2014; 20(2):336-373. DOI:10.1007/s10664-014-9308-x.
Breusch T, Pagan A. A simple test for heteroscedasticity and random coefficient variation. Econometrica Sep 1979; 47(5):1287-1294.
Lind RK, Vairavan K. An experimental investigation of software metrics and their relationship to software development effort. IEEE Transactions on Software Engineering May 1989; 15(5):649-653. DOI:10.1109/32.24715.
Baggen R, Correia JP, Schill K, Visser J. Standardized code quality benchmarking for improving software maintainability. Software Quality Journal 2012; 20(2):287-307. DOI:10.1007/s11219-011-9144-9.
Manning WG. The logged dependent variable, heteroscedasticity, and the retransformation problem. Journal of Health Economics 1998; 17(3):283-295. DOI:10.1016/S0167-6296(98)00025-3.
Gill GK, Kemerer CF. Cyclomatic complexity density and software maintenance productivity. IEEE Transactions on Software Engineering Dec 1991; 17(12):1284-1288. DOI:10.1109/32.106988.
Jay G, Hale JE, Smith RK, Hale DP, Kraft NA, Ward C. Cyclomatic complexity and lines of code: empirical evidence of a stable linear relationship. Journal of Software Engineering and Applications 2009; 2(3):137-143.
Paige M. A metric for software test planning. Conference Proceedings of COMPSAC 1980; 80:499-504.
Shepperd M. A critique of cyclomatic complexity as a software metric. Software Engineering Journal Mar 1988; 3(2):30-36. DOI:10.1049/sej.1988.0003.
Kvålseth TO. Cautionary note about R2. The American Statistician 1985; 39(4):279-285.
Gorla N, Benander A, Benander BA. Debugging effort estimation using software metrics. IEEE Transactions on Software Engineering 1990; 16(2):223-231.
Li H, Cheung W. An empirical study of software metrics. IEEE Transactions on Software Engineering June 1987; SE-13(6):697-708. DOI:10.1109/TSE.1987.233475.
Saltelli A, Tarantola S, Campolongo F. Sensitivity analysis as an ingredient of modeling. Statistical Science 2000; 15(4):377-395.
Fenton N, Ohlsson N. Quantitative analysis of faults and failures in a complex software system. Software Engineering, IEEE Transactions on Aug 2000; 26(8):797-814. DOI:10.1109/32.879815.
Succi G, Benedicenti L, Vernazza T. Analysis of the effects of software reuse on customer satisfaction in an RPG environment. IEEE Transactions on Software Engineering May 2001; 27(5):473-479. DOI:10.1109/32.922717.
Feng C, Wang H, Lu N, Tu XM. Log transformation: application and interpretation in biomedical research. Statistics in Medicine 2013; 32(2):230-239. DOI:10.1002/sim.5486.
Edgell SE, Noon SM. Effect of violation of normality on the t test of the correlation coefficient. Psychological Bulletin 1984; 95(3):576-583.
Loehle C. Proper statistical treatment of species-area data. Oikos 1990; 57(1):143-145.
Jbara A, Matan A, Feitelson DG. High-MCC functions in the Linux kernel. Empirical Software Engineering 2014; 19(5):1261-1298. DOI:10.1007/s10664-013-9275-7.
Munson JC, Kohshgoftaar TM. Measurement of data structure complexity. Journal of Systems and Software 1993; 20(3):217-225. DOI:10.1016/0164-1212(93)90065-6.
Graves T, Karr A, Marron J, Siy H. Predicting fault incidence using software change history. Software Engineering, IEEE Transactions on Jul 2000; 26(7):653-661. DOI:10.1109/32.859533.
1987; 2
2013; 25
1991; 17
1990; 57
1990; 16
1984; 27
1993; 20
2013; 7
1997; 9
1979
1998; 44
1998; 47
1994; 20
2014; 20
1984; 95
1998; 17
2014; 5
2014; 4
2010; 25
1995; 28
1987; 82
2000
2000; 15
1986
1979; 5
1983
2014; 19
1980; 80
1981
1987; SE‐13
2012; 20
2009; 18
1989
2011; 1
2012
2000; 26
2011
2010
2013; 86
1976; 2
2009
2008
2007
1995
2008; 13
1994
2005
1993
2001; 27
2006; 2
1995; 1
1985; 39
1988; 3
1979; 47
1904; 15
2013; 32
1895; 58
2015
2014
1977; 12
2013
1989; 15
2009; 2
1990; 7
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_60_1
e_1_2_7_83_1
e_1_2_7_17_1
Malhotra R (e_1_2_7_25_1) 2011; 1
e_1_2_7_81_1
e_1_2_7_41_1
e_1_2_7_64_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_66_1
e_1_2_7_85_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_68_1
e_1_2_7_47_1
e_1_2_7_49_1
e_1_2_7_28_1
Tashtoush Y (e_1_2_7_74_1) 2014; 4
Herraiz I (e_1_2_7_34_1) 2010
e_1_2_7_73_1
e_1_2_7_50_1
e_1_2_7_71_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_77_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_75_1
e_1_2_7_21_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_79_1
e_1_2_7_39_1
Paige M (e_1_2_7_62_1) 1980; 80
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_80_1
e_1_2_7_8_1
Chambers JM (e_1_2_7_53_1) 1983
e_1_2_7_18_1
e_1_2_7_84_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_61_1
e_1_2_7_82_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_63_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_65_1
e_1_2_7_86_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_67_1
e_1_2_7_48_1
e_1_2_7_69_1
e_1_2_7_27_1
e_1_2_7_29_1
Sheskin DJ (e_1_2_7_35_1) 2007
Yu L (e_1_2_7_26_1) 2013; 7
Kvålseth TO (e_1_2_7_36_1) 1985; 39
e_1_2_7_72_1
e_1_2_7_51_1
e_1_2_7_70_1
e_1_2_7_30_1
e_1_2_7_76_1
Conte SD (e_1_2_7_15_1) 1986
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_59_1
e_1_2_7_78_1
e_1_2_7_38_1
References_xml – reference: Lind RK, Vairavan K. An experimental investigation of software metrics and their relationship to software development effort. IEEE Transactions on Software Engineering May 1989; 15(5):649-653. DOI:10.1109/32.24715.
– reference: Fenton N, Ohlsson N. Quantitative analysis of faults and failures in a complex software system. Software Engineering, IEEE Transactions on Aug 2000; 26(8):797-814. DOI:10.1109/32.879815.
– reference: Kitchenham B, Pickard L. Towards a constructive quality model. part 2: Statistical techniques for modelling software quality in the esprit request project. Software Engineering Journal July 1987; 2(4):114-126. DOI:10.1049/sej.1987.0015.
– reference: Coleman R, Johnson MA. A study of Scala repositories on GitHub. International Journal of Advanced Computer Science and Applications 2014; 5(7):141-148.
– reference: Pearson K. Note on regression and inheritance in the case of two parents. Proceedings of the Royal Society of London 1895; 58:240-242.
– reference: Paige M. A metric for software test planning. Conference Proceedings of COMPSAC 1980; 80:499-504.
– reference: Joanes DN, Gill CA. Comparing measures of sample skewness and kurtosis. Journal of the Royal Statistical Society: Series D (The Statistician) 1998; 47(1):183-189. DOI:10.1111/1467-9884.00122.
– reference: Gill GK, Kemerer CF. Cyclomatic complexity density and software maintenance productivity. IEEE Transactions on Software Engineering Dec 1991; 17(12):1284-1288. DOI:10.1109/32.106988.
– reference: Linstead E, Bajracharya SK, Ngo TC, Rigor P, Lopes CV, Baldi P. Sourcerer: mining and searching internet-scale software repositories. Data Mining and Knowledge Discovery 2009; 18(2):300-336. DOI:10.1007/s10618-008-0118-x.
– reference: Mordal K, Anquetil N, Laval J, Serebrenik A, Vasilescu B, Ducasse S. Software quality metrics aggregation in industry. Journal of Software: Evolution and Process 2013; 25(10):1117-1135. DOI:10.1002/smr.1558.
– reference: Graves T, Karr A, Marron J, Siy H. Predicting fault incidence using software change history. Software Engineering, IEEE Transactions on Jul 2000; 26(7):653-661. DOI:10.1109/32.859533.
– reference: Carr DB, Littlefield RJ, Nicholson WL, Littlefield JS. Scatterplot matrix techniques for large N. Journal of the American Statistical Association 1987; 82(398):424-436.
– reference: Jbara A, Matan A, Feitelson DG. High-MCC functions in the Linux kernel. Empirical Software Engineering 2014; 19(5):1261-1298. DOI:10.1007/s10664-013-9275-7.
– reference: El Emam K, Benlarbi S, Goel N, Rai SN. The confounding effect of class size on the validity of object-oriented metrics. IEEE Transactions on Software Engineering 2001; 27(7):630-650.
– reference: Khomh F, Adams B, Dhaliwal T, Zou Y. Understanding the impact of rapid releases on software quality. Empirical Software Engineering 2014; 20(2):336-373. DOI:10.1007/s10664-014-9308-x.
– reference: Myers GJ. An extension to the cyclomatic measure of program complexity. SIGPLAN Notices October 1977; 12(10):61-64. DOI:10.1145/954627.954633.
– reference: von Mayrhauser A, Vans AM. Program comprehension during software maintenance and evolution. IEEE Computer 1995; 28(8):44-55.
– reference: Chidamber SR, Kemerer CF. A metrics suite for object oriented design. IEEE Transactions on Software Engineering Jun 1994; 20(6):476-493. DOI:10.1109/32.295895.
– reference: Tashtoush Y, Al-Maolegi M, Arkok B. The correlation among software complexity metrics with case study. International Journal of Advanced Computer Research 2014; 4(2):414-419.
– reference: Spearman C. The proof and measurement of association between two things. The American Journal of Psychology 1904; 15(1):72-101.
– reference: Saltelli A, Tarantola S, Campolongo F. Sensitivity analysis as an ingredient of modeling. Statistical Science 2000; 15(4):377-395.
– reference: Yu L, Mishra A. An empirical study of Lehman's law on software quality evolution. International Journal of Software & Informatics 2013; 7(3):469-481.
– reference: Munson JC, Kohshgoftaar TM. Measurement of data structure complexity. Journal of Systems and Software 1993; 20(3):217-225. DOI:10.1016/0164-1212(93)90065-6.
– reference: Shull FJ, Carver JC, Vegas S, Juristo N. The role of replications in empirical software engineering. Empirical Software Engineering 2008; 13(2):211-218. DOI:10.1007/s10664-008-9060-1.
– reference: Loehle C. Proper statistical treatment of species-area data. Oikos 1990; 57(1):143-145.
– reference: Shepperd M. A critique of cyclomatic complexity as a software metric. Software Engineering Journal Mar 1988; 3(2):30-36. DOI:10.1049/sej.1988.0003.
– reference: Baggen R, Correia JP, Schill K, Visser J. Standardized code quality benchmarking for improving software maintainability. Software Quality Journal 2012; 20(2):287-307. DOI:10.1007/s11219-011-9144-9.
– reference: Woodward MR, Hennell MA, Hedley D. A measure of control flow complexity in program text. IEEE Transactions on Software Engineering Jan 1979; 5(1):45-50. DOI:10.1109/TSE.1979.226497.
– reference: McCabe TJ. A complexity measure. IEEE Transactions Software Engineering 1976; 2(4):308-320.
– reference: Kemerer CF, Slaughter SA. Determinants of software maintenance profiles: an empirical investigation. Journal of Software Maintenance Jul 1997; 9(4):235-251.
– reference: Conte SD, Dunsmore HE, Shen VY. Software Engineering Metrics and Models. Benjamin-Cummings Publishing Co., Inc.: Redwood City, CA, USA, 1986.
– reference: Jay G, Hale JE, Smith RK, Hale DP, Kraft NA, Ward C. Cyclomatic complexity and lines of code: empirical evidence of a stable linear relationship. Journal of Software Engineering and Applications 2009; 2(3):137-143.
– reference: Li H, Cheung W. An empirical study of software metrics. IEEE Transactions on Software Engineering June 1987; SE-13(6):697-708. DOI:10.1109/TSE.1987.233475.
– reference: Sheskin DJ. Handbook of Parametric and Nonparametric Statistical Procedures, 4 edn. Chapman & Hall/CRC, 2007.
– reference: da Mota Silveira Neto PA, Engström E, de Carmo Machado I, de Almeida ES. On the reliability of mapping studies in software engineering. Journal of Systems and Software 2013; 86(10):2594-2610. DOI:10.1016/j.jss.2013.04.076.
– reference: Henry S, Selig C. Predicting source-code complexity at the design stage. Software, IEEE March 1990; 7(2):36-44. DOI:10.1109/52.50772.
– reference: Schneidewind N. Software reliability engineering process. Innovations in Systems and Software Engineering 2006; 2(3-4):179-190. DOI:10.1007/s11334-006-0007-7.
– reference: Feng C, Wang H, Lu N, Tu XM. Log transformation: application and interpretation in biomedical research. Statistics in Medicine 2013; 32(2):230-239. DOI:10.1002/sim.5486.
– reference: Troster J, Tian J. Measurement and defect modeling for a legacy software system. Annals of Software Engineering 1995; 1:95-118. DOI:10.1007/BF02249047.
– reference: Basili VR, Perricone BT. Software errors and complexity: an empirical investigation. Communications of the ACM 1984; 27(1):42-52.
– reference: Kvålseth TO. Cautionary note about R2. The American Statistician 1985; 39(4):279-285.
– reference: Succi G, Benedicenti L, Vernazza T. Analysis of the effects of software reuse on customer satisfaction in an RPG environment. IEEE Transactions on Software Engineering May 2001; 27(5):473-479. DOI:10.1109/32.922717.
– reference: Breusch T, Pagan A. A simple test for heteroscedasticity and random coefficient variation. Econometrica Sep 1979; 47(5):1287-1294.
– reference: Gorla N, Benander A, Benander BA. Debugging effort estimation using software metrics. IEEE Transactions on Software Engineering 1990; 16(2):223-231.
– reference: Moores TT. Applying complexity measures to rule-based prolog programs. Journal of Systems and Software 1998; 44(1):45-52. DOI:10.1016/S0164-1212(98)10042-0.
– reference: Manning WG. The logged dependent variable, heteroscedasticity, and the retransformation problem. Journal of Health Economics 1998; 17(3):283-295. DOI:10.1016/S0167-6296(98)00025-3.
– reference: Edgell SE, Noon SM. Effect of violation of normality on the t test of the correlation coefficient. Psychological Bulletin 1984; 95(3):576-583.
– reference: Ma YT, He KQ, Li B, Liu J, Zhou XY. A hybrid set of complexity metrics for large-scale object-oriented software systems. Journal of Computer Science and Technology 2010; 25(6):1184-1201. DOI:10.1007/s11390-010-9398-x.
– reference: Malhotra R, Singh Y. On the applicability of machine learning techniques for object oriented software fault prediction. Software Engineering: An International Journal 2011; 1:24-37.
– year: 2011
– year: 2009
– year: 1981
– volume: 20
  start-page: 336
  issue: 2
  year: 2014
  end-page: 373
  article-title: Understanding the impact of rapid releases on software quality
  publication-title: Empirical Software Engineering
– volume: 1
  start-page: 24
  year: 2011
  end-page: 37
  article-title: On the applicability of machine learning techniques for object oriented software fault prediction
  publication-title: Software Engineering: An International Journal
– volume: 4
  start-page: 414
  issue: 2
  year: 2014
  end-page: 419
  article-title: The correlation among software complexity metrics with case study
  publication-title: International Journal of Advanced Computer Research
– year: 2005
– year: 1989
– volume: 16
  start-page: 223
  issue: 2
  year: 1990
  end-page: 231
  article-title: Debugging effort estimation using software metrics
  publication-title: IEEE Transactions on Software Engineering
– volume: 17
  start-page: 283
  issue: 3
  year: 1998
  end-page: 295
  article-title: The logged dependent variable, heteroscedasticity, and the retransformation problem
  publication-title: Journal of Health Economics
– volume: 1
  start-page: 95
  year: 1995
  end-page: 118
  article-title: Measurement and defect modeling for a legacy software system
  publication-title: Annals of Software Engineering
– year: 1979
– year: 2014
– year: 1994
– volume: 25
  start-page: 1184
  issue: 6
  year: 2010
  end-page: 1201
  article-title: A hybrid set of complexity metrics for large‐scale object‐oriented software systems
  publication-title: Journal of Computer Science and Technology
– volume: 18
  start-page: 300
  issue: 2
  year: 2009
  end-page: 336
  article-title: Sourcerer: mining and searching internet‐scale software repositories
  publication-title: Data Mining and Knowledge Discovery
– year: 1986
– volume: 5
  start-page: 45
  issue: 1
  year: 1979
  end-page: 50
  article-title: A measure of control flow complexity in program text
  publication-title: IEEE Transactions on Software Engineering Jan
– volume: 2
  start-page: 114
  issue: 4
  year: 1987
  end-page: 126
  article-title: Towards a constructive quality model. part 2: Statistical techniques for modelling software quality in the esprit request project
  publication-title: Software Engineering Journal July
– volume: 26
  start-page: 653
  issue: 7
  year: 2000
  end-page: 661
  article-title: Predicting fault incidence using software change history
  publication-title: Software Engineering, IEEE Transactions on Jul
– volume: 32
  start-page: 230
  issue: 2
  year: 2013
  end-page: 239
  article-title: Log transformation: application and interpretation in biomedical research
  publication-title: Statistics in Medicine
– year: 2008
– volume: 20
  start-page: 476
  issue: 6
  year: 1994
  end-page: 493
  article-title: A metrics suite for object oriented design
  publication-title: IEEE Transactions on Software Engineering Jun
– volume: 95
  start-page: 576
  issue: 3
  year: 1984
  end-page: 583
  article-title: Effect of violation of normality on the test of the correlation coefficient
  publication-title: Psychological Bulletin
– volume: 9
  start-page: 235
  issue: 4
  year: 1997
  end-page: 251
  article-title: Determinants of software maintenance profiles: an empirical investigation
  publication-title: Journal of Software Maintenance
– volume: 13
  start-page: 211
  issue: 2
  year: 2008
  end-page: 218
  article-title: The role of replications in empirical software engineering
  publication-title: Empirical Software Engineering
– volume: 7
  start-page: 469
  issue: 3
  year: 2013
  end-page: 481
  article-title: An empirical study of Lehman's law on software quality evolution
  publication-title: International Journal of Software & Informatics
– volume: 27
  start-page: 630
  issue: 7
  year: 2001
  end-page: 650
  article-title: The confounding effect of class size on the validity of object‐oriented metrics
  publication-title: IEEE Transactions on Software Engineering
– volume: 2
  start-page: 308
  issue: 4
  year: 1976
  end-page: 320
  article-title: A complexity measure
  publication-title: IEEE Transactions Software Engineering
– year: 1993
– volume: 44
  start-page: 45
  issue: 1
  year: 1998
  end-page: 52
  article-title: Applying complexity measures to rule‐based prolog programs
  publication-title: Journal of Systems and Software
– volume: 17
  start-page: 1284
  issue: 12
  year: 1991
  end-page: 1288
  article-title: Cyclomatic complexity density and software maintenance productivity
  publication-title: IEEE Transactions on Software Engineering Dec
– year: 2015
– volume: 12
  start-page: 61
  issue: 10
  year: 1977
  end-page: 64
  article-title: An extension to the cyclomatic measure of program complexity
  publication-title: SIGPLAN Notices October
– start-page: 126
  year: 2010
  end-page: 141
– volume: 15
  start-page: 72
  issue: 1
  year: 1904
  end-page: 101
  article-title: The proof and measurement of association between two things
  publication-title: The American Journal of Psychology
– volume: 20
  start-page: 217
  issue: 3
  year: 1993
  end-page: 225
  article-title: Measurement of data structure complexity
  publication-title: Journal of Systems and Software
– year: 1983
– volume: 82
  start-page: 424
  issue: 398
  year: 1987
  end-page: 436
  article-title: Scatterplot matrix techniques for large N
  publication-title: Journal of the American Statistical Association
– volume: 39
  start-page: 279
  issue: 4
  year: 1985
  end-page: 285
  article-title: Cautionary note about
  publication-title: The American Statistician
– year: 2007
– volume: 27
  start-page: 473
  issue: 5
  year: 2001
  end-page: 479
  article-title: Analysis of the effects of software reuse on customer satisfaction in an RPG environment
  publication-title: IEEE Transactions on Software Engineering May
– volume: 80
  start-page: 499
  year: 1980
  end-page: 504
  article-title: A metric for software test planning
  publication-title: Conference Proceedings of COMPSAC
– year: 2000
– volume: 15
  start-page: 377
  issue: 4
  year: 2000
  end-page: 395
  article-title: Sensitivity analysis as an ingredient of modeling
  publication-title: Statistical Science
– volume: 19
  start-page: 1261
  issue: 5
  year: 2014
  end-page: 1298
  article-title: High‐MCC functions in the Linux kernel
  publication-title: Empirical Software Engineering
– year: 2010
– year: 2012
– volume: 86
  start-page: 2594
  issue: 10
  year: 2013
  end-page: 2610
  article-title: On the reliability of mapping studies in software engineering
  publication-title: Journal of Systems and Software
– volume: 25
  start-page: 1117
  issue: 10
  year: 2013
  end-page: 1135
  article-title: Software quality metrics aggregation in industry
  publication-title: Journal of Software: Evolution and Process
– volume: 15
  start-page: 649
  issue: 5
  year: 1989
  end-page: 653
  article-title: An experimental investigation of software metrics and their relationship to software development effort
  publication-title: IEEE Transactions on Software Engineering May
– volume: 47
  start-page: 1287
  issue: 5
  year: 1979
  end-page: 1294
  article-title: A simple test for heteroscedasticity and random coefficient variation
  publication-title: Econometrica
– volume: 7
  start-page: 36
  issue: 2
  year: 1990
  end-page: 44
  article-title: Predicting source‐code complexity at the design stage
  publication-title: Software, IEEE March
– volume: 26
  start-page: 797
  issue: 8
  year: 2000
  end-page: 814
  article-title: Quantitative analysis of faults and failures in a complex software system
  publication-title: Software Engineering, IEEE Transactions on Aug
– year: 1995
– volume: 2
  start-page: 137
  issue: 3
  year: 2009
  end-page: 143
  article-title: Cyclomatic complexity and lines of code: empirical evidence of a stable linear relationship
  publication-title: Journal of Software Engineering and Applications
– volume: SE‐13
  start-page: 697
  issue: 6
  year: 1987
  end-page: 708
  article-title: An empirical study of software metrics
  publication-title: IEEE Transactions on Software Engineering June
– volume: 20
  start-page: 287
  issue: 2
  year: 2012
  end-page: 307
  article-title: Standardized code quality benchmarking for improving software maintainability
  publication-title: Software Quality Journal
– volume: 3
  start-page: 30
  issue: 2
  year: 1988
  end-page: 36
  article-title: A critique of cyclomatic complexity as a software metric
  publication-title: Software Engineering Journal Mar
– start-page: 131
  year: 2010
  end-page: 143
– volume: 58
  start-page: 240
  year: 1895
  end-page: 242
  article-title: Note on regression and inheritance in the case of two parents
  publication-title: Proceedings of the Royal Society of London
– volume: 47
  start-page: 183
  issue: 1
  year: 1998
  end-page: 189
  article-title: Comparing measures of sample skewness and kurtosis
  publication-title: Journal of the Royal Statistical Society: Series D (The Statistician)
– volume: 57
  start-page: 143
  issue: 1
  year: 1990
  end-page: 145
  article-title: Proper statistical treatment of species‐area data
  publication-title: Oikos
– volume: 2
  start-page: 179
  issue: 3‐4
  year: 2006
  end-page: 190
  article-title: Software reliability engineering process
  publication-title: Innovations in Systems and Software Engineering
– volume: 28
  start-page: 44
  issue: 8
  year: 1995
  end-page: 55
  article-title: Program comprehension during software maintenance and evolution
  publication-title: IEEE Computer
– volume: 5
  start-page: 141
  issue: 7
  year: 2014
  end-page: 148
  article-title: A study of Scala repositories on GitHub
  publication-title: International Journal of Advanced Computer Science and Applications
– volume: 27
  start-page: 42
  issue: 1
  year: 1984
  end-page: 52
  article-title: Software errors and complexity: an empirical investigation
  publication-title: Communications of the ACM
– year: 2013
– ident: e_1_2_7_31_1
  doi: 10.1002/9780470606834.ch6
– ident: e_1_2_7_45_1
  doi: 10.1109/SCAM.2009.28
– ident: e_1_2_7_79_1
– ident: e_1_2_7_47_1
  doi: 10.1098/rspl.1895.0041
– ident: e_1_2_7_52_1
  doi: 10.1016/0164-1212(93)90065-6
– ident: e_1_2_7_56_1
  doi: 10.1109/TSE.1979.226497
– ident: e_1_2_7_82_1
  doi: 10.1214/ss/1009213004
– ident: e_1_2_7_61_1
  doi: 10.1002/(SICI)1096-908X(199707/08)9:4<235::AID-SMR153>3.0.CO;2-3
– ident: e_1_2_7_10_1
  doi: 10.1109/32.879815
– ident: e_1_2_7_20_1
  doi: 10.1016/j.jss.2013.04.076
– ident: e_1_2_7_50_1
  doi: 10.1111/1467-9884.00122
– ident: e_1_2_7_80_1
  doi: 10.1016/S0164-1212(98)10042-0
– ident: e_1_2_7_18_1
  doi: 10.1145/954627.954633
– ident: e_1_2_7_60_1
  doi: 10.1145/162754.162867
– ident: e_1_2_7_46_1
  doi: 10.2307/2289444
– ident: e_1_2_7_22_1
  doi: 10.1109/32.295895
– ident: e_1_2_7_40_1
  doi: 10.1109/ISSRE.2007.12
– ident: e_1_2_7_17_1
  doi: 10.1145/1390630.1390648
– ident: e_1_2_7_2_1
  doi: 10.1109/SCAM.2012.17
– ident: e_1_2_7_32_1
  doi: 10.4236/jsea.2009.23020
– ident: e_1_2_7_12_1
  doi: 10.1007/s10618-008-0118-x
– ident: e_1_2_7_76_1
  doi: 10.1002/sim.5486
– ident: e_1_2_7_49_1
  doi: 10.2307/1412159
– ident: e_1_2_7_41_1
– ident: e_1_2_7_21_1
– ident: e_1_2_7_58_1
  doi: 10.1109/ICSM.1989.65191
– ident: e_1_2_7_81_1
  doi: 10.1145/2491411.2491418
– volume-title: Graphical Methods for Data Analysis
  year: 1983
  ident: e_1_2_7_53_1
– ident: e_1_2_7_68_1
  doi: 10.1109/32.922717
– ident: e_1_2_7_3_1
  doi: 10.1109/2.402076
– ident: e_1_2_7_14_1
  doi: 10.1109/METRIC.1994.344224
– ident: e_1_2_7_43_1
– ident: e_1_2_7_65_1
  doi: 10.1049/sej.1987.0015
– volume: 39
  start-page: 279
  issue: 4
  year: 1985
  ident: e_1_2_7_36_1
  article-title: Cautionary note about R2
  publication-title: The American Statistician
– ident: e_1_2_7_29_1
  doi: 10.1109/ICSM.2011.6080798
– ident: e_1_2_7_13_1
  doi: 10.1049/sej.1988.0003
– ident: e_1_2_7_24_1
  doi: 10.1109/ICSM.2007.4362632
– ident: e_1_2_7_8_1
  doi: 10.1145/69605.2085
– ident: e_1_2_7_83_1
  doi: 10.1007/s10664-008-9060-1
– ident: e_1_2_7_73_1
  doi: 10.1007/s11390-010-9398-x
– ident: e_1_2_7_75_1
  doi: 10.1016/S0167-6296(98)00025-3
– ident: e_1_2_7_57_1
  doi: 10.1109/32.24715
– volume: 4
  start-page: 414
  issue: 2
  year: 2014
  ident: e_1_2_7_74_1
  article-title: The correlation among software complexity metrics with case study
  publication-title: International Journal of Advanced Computer Research
– volume-title: Handbook of Parametric and Nonparametric Statistical Procedures
  year: 2007
  ident: e_1_2_7_35_1
– ident: e_1_2_7_71_1
  doi: 10.1007/s11334-006-0007-7
– ident: e_1_2_7_84_1
  doi: 10.1007/s10664-014-9308-x
– ident: e_1_2_7_6_1
  doi: 10.1109/MARK.1979.8817108
– ident: e_1_2_7_38_1
  doi: 10.1007/BF02249047
– ident: e_1_2_7_33_1
  doi: 10.1109/MSR.2007.31
– ident: e_1_2_7_67_1
  doi: 10.1109/32.859533
– start-page: 126
  volume-title: Making Software What Really Works, and Why We Believe It
  year: 2010
  ident: e_1_2_7_34_1
– ident: e_1_2_7_28_1
  doi: 10.1145/1985374.1985381
– ident: e_1_2_7_9_1
  doi: 10.1007/s10664-013-9275-7
– ident: e_1_2_7_27_1
  doi: 10.1109/ASE.2011.6100074
– ident: e_1_2_7_54_1
  doi: 10.2307/1911963
– ident: e_1_2_7_23_1
  doi: 10.1109/ICPC.2008.13
– ident: e_1_2_7_64_1
  doi: 10.1109/TSE.1987.233475
– volume: 1
  start-page: 24
  year: 2011
  ident: e_1_2_7_25_1
  article-title: On the applicability of machine learning techniques for object oriented software fault prediction
  publication-title: Software Engineering: An International Journal
– ident: e_1_2_7_7_1
– volume: 80
  start-page: 499
  year: 1980
  ident: e_1_2_7_62_1
  article-title: A metric for software test planning
  publication-title: Conference Proceedings of COMPSAC
– ident: e_1_2_7_63_1
– ident: e_1_2_7_37_1
  doi: 10.2307/3565750
– ident: e_1_2_7_5_1
  doi: 10.1109/QUATIC.2007.8
– ident: e_1_2_7_55_1
– volume: 7
  start-page: 469
  issue: 3
  year: 2013
  ident: e_1_2_7_26_1
  article-title: An empirical study of Lehman's law on software quality evolution
  publication-title: International Journal of Software & Informatics
– ident: e_1_2_7_48_1
  doi: 10.1037/0033-2909.95.3.576
– ident: e_1_2_7_16_1
  doi: 10.1109/TSE.1976.233837
– ident: e_1_2_7_39_1
  doi: 10.1109/52.50772
– ident: e_1_2_7_19_1
  doi: 10.1145/2601248.2601268
– ident: e_1_2_7_30_1
  doi: 10.1002/smr.1558
– ident: e_1_2_7_44_1
  doi: 10.1109/SWAN.2015.7070485
– ident: e_1_2_7_70_1
  doi: 10.1109/ENC.2005.47
– ident: e_1_2_7_11_1
  doi: 10.1109/ICSME.2014.44
– volume-title: Software Engineering Metrics and Models
  year: 1986
  ident: e_1_2_7_15_1
– ident: e_1_2_7_72_1
– ident: e_1_2_7_78_1
  doi: 10.14569/IJACSA.2014.050721
– ident: e_1_2_7_77_1
  doi: 10.1145/336512.336586
– ident: e_1_2_7_69_1
  doi: 10.1109/32.935855
– ident: e_1_2_7_51_1
  doi: 10.1145/1852786.1852801
– ident: e_1_2_7_85_1
  doi: 10.1145/2635868.2635922
– ident: e_1_2_7_4_1
  doi: 10.1007/s11219-011-9144-9
– ident: e_1_2_7_42_1
– ident: e_1_2_7_59_1
  doi: 10.1109/32.44385
– ident: e_1_2_7_86_1
  doi: 10.1109/ICSE.2015.24
– ident: e_1_2_7_66_1
  doi: 10.1109/32.106988
SSID ssj0000620545
Score 2.1713643
Snippet Measuring the internal quality of source code is one of the traditional goals of making software development into an engineering discipline. Cyclomatic...
SourceID proquest
crossref
wiley
istex
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 589
SubjectTerms empirical validation
McCabe cyclomatic complexity
metrics
software maintenance
Title Empirical analysis of the relationship between CC and SLOC in a large corpus of Java methods and C functions
URI https://api.istex.fr/ark:/67375/WNG-C8CT104Z-F/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmr.1760
https://www.proquest.com/docview/1802713374
Volume 28
WOSCitedRecordID wos000379945700005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 2047-7481
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000620545
  issn: 2047-7473
  databaseCode: DRFUL
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELbQLodeeLZieclIFZxSEjsk4YgCC0KwRTxU1Ivlp7rqsqwSQPx8ZhxnAamVkMgll7HjeGYy31iTbwj57pRiGGmilCUuQgawCKIgjwqWWONi6WyifbOJfDAobm_3L0JVJf4L0_BDTA_c0DP89xodXKp695U0tL6rfiR5Bul6l4HZph3SPbzs35xNT1jijAEewRpGhnQEgJt5yz4bs912-Lt41MWtfX4HNt9CVh9z-vOfWe0CmQtIkx40prFIZux4icy3XRxocOplMjq6mww9UQiVgaGE3jsKwJBWbaXcn-GEhoouWpYgZ-jV2c-SDsdU0hEWk1PIYiePfuSpfJK06Uxde9GSYvT0E30lN_2j6_IkCj0YIs0BvEWJUxJewRY2zoxhWaEKBEW5ZY5LSEZsrLXVGbdSFpmzqYI01-VGG25SxzPDv5HO-H5sVwgsMzWARoxUKk3VniksXtoBgOJm3_Ae2Wk1IXQgKMc-GSPRUCszAZsocBN7ZGsqOWlIOf4hs-2VORWQ1V8sYsv3xK_BsSiL8hoy0d-i3yPrrbZF8N9aIC8epu95CvN4vf73QeLq_BLvqx8VXCNfAHVlTc3vOuk8VI92g8zqp4dhXW0GK34Btpr2bA
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED6hdhK8jG2AKGObJ03jKZDYaRK0pymjg60UBEUgXizHP7SKUqoU0P783TlJNyQmIZGXvJwdx-fLfXe6fAfwyRUFJ08TxDxyATGABegFRZDxyBoXKmcj7ZtNpINBdnGxe7wAX5p_YSp-iHnCjSzDf6_JwCkhvfOXNXR2XW5HaYLxejvGU9RtQfvbSe-sP0-xhAlHQEJFjJz4CBA4i4Z-NuQ7zfAHDqlNe_v7Adr8F7N6p9NbftZyX8HLGmuyr9XheA0LdvIGlps-Dqw26xUY711PR54qhKmao4TdOIbQkJVNrdyv0ZTVNV0sz1HOsNP-Uc5GE6bYmMrJGcax0zs_8oe6V6zqTT3zojkj_-knWoWz3t4w3w_qLgyBFgjfgsgVCl_BZjZMjOFJVmQEi1LLnVAYjthQa6sTYZXKEmfjAgNdlxpthImdSIxYg9bkZmLXAZcZG8QjRhVFHBddk1m6tEMIJcyuER3YalQhdU1RTp0yxrIiV-YSN1HSJnbg41xyWtFyPCLz2WtzLqDKKypjS7vyfPBd5lk-xFj0UvY6sNmoW9YWPJPEjEcBfBrjPF6x_32QPD08ofvGUwU_wOL-8LAv-weDn29hCTFYUlUAb0Lrtryz7-CFvr8dzcr39ZH-A3Ek-lw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5VXYS40PISC6UYCcEpNLGzTlacUNrwWpaqD1FxsRw_xIrtNsq2FT-fGSfZthJISOSSy9hxZjyZb6zJNwAvfVVxijRRyhMfEQNYhFFQRDlPnPWx9i4xodlENp3mJyfj_TV42_8L0_JDrA7cyDPC95oc3NXW71yxhi5PmzdJJjFfH6SjsUSvHOwelMeT1RFLLDkCEipi5MRHgMBZ9PSzMd_ph98ISAPS7a8baPM6Zg1Bp9z4r-Vuwt0Oa7J37ea4B2tucR82-j4OrHPrBzDfO61ngSqE6Y6jhJ15htCQNX2t3I9ZzbqaLlYUKGfZ4eRrwWYLptmcyskZ5rH1RRj5SV9q1vamXgbRglH8DBM9hONy76j4EHVdGCIjEL5Fia80voLLXSyt5TKvcoJFmeNeaExHXGyMM1I4rXPpXVphousza6ywqRfSikewvjhbuMeAy0wt4hGrqypNq5HNHV3GI4QSdmzFEF73plCmoyinThlz1ZIrc4VKVKTEIbxYSdYtLccfZF4Fa64EdPOTytiykfo2fa-KvDjCXPS7Koew1ZtbdR68VMSMRwl8luI8wbB_fZA6_HJA9yf_Kvgcbu_vlmrycfr5KdxBCCbbAuAtWD9vLtwzuGUuz2fLZrvb0b8BBaf51w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Empirical+analysis+of+the+relationship+between+CC+and+SLOC+in+a+large+corpus+of+Java+methods+and+C+functions&rft.jtitle=Journal+of+software+%3A+evolution+and+process&rft.au=Landman%2C+Davy&rft.au=Serebrenik%2C+Alexander&rft.au=Bouwers%2C+Eric&rft.au=Vinju%2C+Jurgen+J.&rft.date=2016-07-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=2047-7473&rft.eissn=2047-7481&rft.volume=28&rft.issue=7&rft.spage=589&rft.epage=618&rft_id=info:doi/10.1002%2Fsmr.1760&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_C8CT104Z_F
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2047-7473&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2047-7473&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2047-7473&client=summon