Extraction of Arbors from Terrestrial Laser Scanning Data Based on Trunk Axis Fitting

Accurate arbor extraction is an important element of forest surveys. However, the presence of shrubs can interfere with the extraction of arbors. Addressing the issues of low accuracy and weak generalizability in existing Terrestrial Laser Scanning (TLS) arbor point clouds extraction methods, this s...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Forests Ročník 15; číslo 7; s. 1217
Hlavní autoři: Liu, Song, Deng, Yuncheng, Zhang, Jianpeng, Wang, Jinliang, Duan, Di
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.07.2024
Témata:
ISSN:1999-4907, 1999-4907
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Accurate arbor extraction is an important element of forest surveys. However, the presence of shrubs can interfere with the extraction of arbors. Addressing the issues of low accuracy and weak generalizability in existing Terrestrial Laser Scanning (TLS) arbor point clouds extraction methods, this study proposes a trunk axis fitting (TAF) method for arbor extraction. After separating the point cloud data by upper and lower, slicing, clustering, fitting circles, obtaining the main central axis, filtering by distance, etc. The canopy point clouds are merged with the extracted trunk point clouds to precisely separate arbors and shrubs. The advantage of the TAF method proposed in this study is that it is not affected by point cloud density or the degree of trunk curvature. This study focuses on a natural forest plot in Shangri-La City, Yunnan Province, and a plantation plot in Kunming City, using manually extracted data from a standardized dataset of samples to test the accuracy of the TAF method and validate the feasibility of the proposed method. The results showed that the TAF method proposed in this study has high extraction accuracy. It can effectively avoid the problem of trunk point cloud loss caused by tree growth curvature. The experimental accuracy for both plots reached over 99%. This study can provide certain technical support for arbor parameter extraction and scientific guidance for forest resource investigation and forest management decision-making.
AbstractList Accurate arbor extraction is an important element of forest surveys. However, the presence of shrubs can interfere with the extraction of arbors. Addressing the issues of low accuracy and weak generalizability in existing Terrestrial Laser Scanning (TLS) arbor point clouds extraction methods, this study proposes a trunk axis fitting (TAF) method for arbor extraction. After separating the point cloud data by upper and lower, slicing, clustering, fitting circles, obtaining the main central axis, filtering by distance, etc. The canopy point clouds are merged with the extracted trunk point clouds to precisely separate arbors and shrubs. The advantage of the TAF method proposed in this study is that it is not affected by point cloud density or the degree of trunk curvature. This study focuses on a natural forest plot in Shangri-La City, Yunnan Province, and a plantation plot in Kunming City, using manually extracted data from a standardized dataset of samples to test the accuracy of the TAF method and validate the feasibility of the proposed method. The results showed that the TAF method proposed in this study has high extraction accuracy. It can effectively avoid the problem of trunk point cloud loss caused by tree growth curvature. The experimental accuracy for both plots reached over 99%. This study can provide certain technical support for arbor parameter extraction and scientific guidance for forest resource investigation and forest management decision-making.
Audience Academic
Author Deng, Yuncheng
Liu, Song
Zhang, Jianpeng
Wang, Jinliang
Duan, Di
Author_xml – sequence: 1
  givenname: Song
  surname: Liu
  fullname: Liu, Song
– sequence: 2
  givenname: Yuncheng
  surname: Deng
  fullname: Deng, Yuncheng
– sequence: 3
  givenname: Jianpeng
  surname: Zhang
  fullname: Zhang, Jianpeng
– sequence: 4
  givenname: Jinliang
  orcidid: 0000-0001-7202-646X
  surname: Wang
  fullname: Wang, Jinliang
– sequence: 5
  givenname: Di
  orcidid: 0009-0005-9438-6761
  surname: Duan
  fullname: Duan, Di
BookMark eNptkUFLAzEQhYNUsNYe_AcBL3pYmzTZzeZYa6tCwYP1vMxmk5K6TWqyhfrvTamIFJNDwuN7M8ObS9Rz3mmErim5Z0ySkaE5EXRMxRnqUyllxiURvT__CzSMcU3SyUUpx7yP3mf7LoDqrHfYGzwJtQ8Rm-A3eKlD0LELFlq8gKgDflPgnHUr_Agd4IekNTj5lmHnPvBkbyOe265LwBU6N9BGPfx5B2g5ny2nz9ni9ellOllkihW8y4yBsdCqqIualoVguWxKqTinUBc5J00taNlQAF1T2mjNZc5MSYExqAGEYQN0eyy7Df5zl2atNjYq3bbgtN_FitGcFYKzokzozQm69rvg0nAVIyVPWYxZkaj7I7WCVlfWGX8IJ91Gb6xKYRub9ElJmBCUMJIMd0eDCj7GoE21DXYD4auipDrspPrdSWJHJ6yyHRyST01s-4_jG8bpjf0
CitedBy_id crossref_primary_10_3390_f15091627
Cites_doi 10.11834/jrs.20197383
10.3390/rs5020491
10.1080/01431160701736406
10.3390/s19010172
10.3390/drones7020065
10.3390/rs13020223
10.3390/agriculture13010130
10.4028/www.scientific.net/AMM.475-476.355
10.3390/f14081525
10.1007/s11676-020-01214-7
10.1007/s13595-011-0102-2
10.1029/2018EA000417
10.3390/rs15102644
10.3390/rs8060501
10.1016/j.isprsjprs.2016.01.006
10.1016/j.rse.2016.08.013
10.1016/j.isprsjprs.2021.01.026
10.1109/TGRS.2003.810682
10.3390/rs14225892
10.1016/j.geog.2021.10.002
10.3390/rs15010115
10.3390/rs15225317
ContentType Journal Article
Copyright COPYRIGHT 2024 MDPI AG
2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2024 MDPI AG
– notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SN
7SS
7X2
8FE
8FH
8FK
ABUWG
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
GNUQQ
HCIFZ
M0K
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
7S9
L.6
DOI 10.3390/f15071217
DatabaseName CrossRef
ProQuest Central (Corporate)
Ecology Abstracts
Entomology Abstracts (Full archive)
Agricultural Science Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest One Sustainability (subscription)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
Agriculture Science Database
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest SciTech Collection
Ecology Abstracts
Environmental Science Collection
Entomology Abstracts
ProQuest One Academic UKI Edition
Environmental Science Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList AGRICOLA
CrossRef
Agricultural Science Database

Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Forestry
EISSN 1999-4907
ExternalDocumentID A803771030
10_3390_f15071217
GeographicLocations China
Yunnan China
GeographicLocations_xml – name: China
– name: Yunnan China
GroupedDBID 2XV
5VS
7X2
7XC
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
AENEX
AEUYN
AFFHD
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ATCPS
BANNL
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
CITATION
ECGQY
EDH
HCIFZ
IAG
IAO
IEP
ITC
ITG
ITH
KQ8
LK5
M0K
M7R
MODMG
M~E
OK1
OZF
PATMY
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
PYCSY
TR2
3V.
7SN
7SS
8FK
ABUWG
AZQEC
C1K
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7S9
L.6
PUEGO
ID FETCH-LOGICAL-c364t-ffa27ec6b6b1867359d89c441ab6540db718d1aaeb11dee4953f81a33abaa7f3
IEDL.DBID BENPR
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001277363900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1999-4907
IngestDate Fri Sep 05 08:52:48 EDT 2025
Mon Jun 30 17:26:20 EDT 2025
Sat Nov 29 10:37:20 EST 2025
Sat Nov 29 07:10:17 EST 2025
Tue Nov 18 22:52:05 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-ffa27ec6b6b1867359d89c441ab6540db718d1aaeb11dee4953f81a33abaa7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0005-9438-6761
0000-0001-7202-646X
OpenAccessLink https://www.proquest.com/docview/3084924236?pq-origsite=%requestingapplication%
PQID 3084924236
PQPubID 2032398
ParticipantIDs proquest_miscellaneous_3153674368
proquest_journals_3084924236
gale_infotracacademiconefile_A803771030
crossref_primary_10_3390_f15071217
crossref_citationtrail_10_3390_f15071217
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Forests
PublicationYear 2024
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Ma (ref_14) 2019; 23
Liu (ref_13) 2016; 52
Liu (ref_8) 2014; 27
Liu (ref_21) 2021; 46
Deng (ref_37) 2022; 13
Maas (ref_11) 2008; 29
ref_35
Yan (ref_12) 2018; 31
ref_34
ref_10
Shao (ref_32) 2016; 6
ref_18
Donager (ref_3) 2018; 5
ref_39
ref_16
ref_38
ref_15
Safaie (ref_17) 2021; 174
He (ref_23) 2013; 475–476
Luo (ref_6) 2024; 56
Li (ref_1) 2021; 34
Bu (ref_4) 2016; 33
Ma (ref_42) 2021; 46
Fassnacht (ref_26) 2016; 186
Stal (ref_19) 2020; 32
ref_25
Deng (ref_36) 2022; 37
ref_24
ref_22
Zhang (ref_33) 2003; 41
Xia (ref_9) 2018; 33
ref_41
ref_40
ref_2
Liu (ref_31) 2023; S1
ref_28
Zi (ref_27) 2019; 48
Raumonen (ref_20) 2013; 5
Liang (ref_29) 2016; 115
ref_7
Zhang (ref_5) 2023; 38
Dassot (ref_30) 2011; 68
References_xml – ident: ref_7
– ident: ref_28
– volume: 23
  start-page: 743
  year: 2019
  ident: ref_14
  article-title: Fine classification of near-ground point cloud based on terrestrial laser scanning and detection of forest fallen wood
  publication-title: Natl. Remote Sens. Bull.
  doi: 10.11834/jrs.20197383
– volume: 34
  start-page: 72
  year: 2021
  ident: ref_1
  article-title: Forest Management Inventory in China: History, Current Status and Trend
  publication-title: World For. Res.
– volume: 5
  start-page: 491
  year: 2013
  ident: ref_20
  article-title: Fast Automatic Precision Tree Models from Terrestrial Laser Scanner Data
  publication-title: Remote Sens.
  doi: 10.3390/rs5020491
– volume: 29
  start-page: 1579
  year: 2008
  ident: ref_11
  article-title: Automatic Forest Inventory Parameter Determination from Terrestrial Laser Scanner Data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431160701736406
– volume: 37
  start-page: 77
  year: 2022
  ident: ref_36
  article-title: Tree DBH Extraction Based on F-LS Algorithm
  publication-title: Remote Sens. Inf.
– ident: ref_41
  doi: 10.3390/s19010172
– ident: ref_24
  doi: 10.3390/drones7020065
– volume: 52
  start-page: 26
  year: 2016
  ident: ref_13
  article-title: Individual Tree DBH and Height Estimation Using Terrestrial Laser Scanning(TLS) in a Subtropical Forest
  publication-title: Sci. Silvae Sin.
– ident: ref_2
  doi: 10.3390/rs13020223
– ident: ref_40
  doi: 10.3390/agriculture13010130
– ident: ref_18
– ident: ref_35
– volume: 31
  start-page: 42
  year: 2018
  ident: ref_12
  article-title: Research Progress in TLS Technology in Forest Investigation
  publication-title: World For. Res.
– volume: 475–476
  start-page: 355
  year: 2013
  ident: ref_23
  article-title: The Trees Skeleton Extraction Based on Point Cloud Contraction
  publication-title: AMM
  doi: 10.4028/www.scientific.net/AMM.475-476.355
– volume: 48
  start-page: 55
  year: 2019
  ident: ref_27
  article-title: Hyperspectral characteristics analysis and discriminant of 4 typical coniferous trees species in Shangri-La
  publication-title: J. Fujian Agric. For. Univ. (Nat. Sci. Ed.)
– volume: S1
  start-page: 32
  year: 2023
  ident: ref_31
  article-title: DEM construction of airborne LiDAR data in complex mountainous areas at different densities
  publication-title: Bull. Surv. Mapp.
– ident: ref_22
  doi: 10.3390/f14081525
– volume: 32
  start-page: 1503
  year: 2020
  ident: ref_19
  article-title: Assessment of Handheld Mobile Terrestrial Laser Scanning for Estimating Tree Parameters
  publication-title: J. For. Res.
  doi: 10.1007/s11676-020-01214-7
– volume: 46
  start-page: 105
  year: 2021
  ident: ref_21
  article-title: A fine extraction method of forest point cloud in complex background
  publication-title: Sci. Surv. Mapp.
– volume: 68
  start-page: 959
  year: 2011
  ident: ref_30
  article-title: The Use of Terrestrial LiDAR Technology in Forest Science: Application Fields, Benefits and Challenges
  publication-title: Ann. For. Sci.
  doi: 10.1007/s13595-011-0102-2
– volume: 5
  start-page: 753
  year: 2018
  ident: ref_3
  article-title: Examining Forest Structure with Terrestrial Lidar: Suggestions and Novel Techniques Based on Comparisons Between Scanners and Forest Treatments
  publication-title: Earth Space Sci.
  doi: 10.1029/2018EA000417
– ident: ref_10
  doi: 10.3390/rs15102644
– volume: 33
  start-page: 238
  year: 2018
  ident: ref_9
  article-title: Application Status and Prospect of TLS in Forest Resources Inventory
  publication-title: J. Northwest For. Univ.
– ident: ref_34
  doi: 10.3390/rs8060501
– ident: ref_25
– volume: 115
  start-page: 63
  year: 2016
  ident: ref_29
  article-title: Terrestrial Laser Scanning in Forest Inventories
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.01.006
– volume: 33
  start-page: 68
  year: 2016
  ident: ref_4
  article-title: Designing 3D Trees Point Cloud Data Processing Software System
  publication-title: Comput. Appl. Softw.
– volume: 56
  start-page: 44
  year: 2024
  ident: ref_6
  article-title: Airborne LiDAR in Forest Resources Investigation and Monitoring
  publication-title: For. Sci. Technol. Inf.
– volume: 38
  start-page: 405
  year: 2023
  ident: ref_5
  article-title: Automatic Filtering of Understory Vegetation based on Point Cloud Main Direction of Terrestrial Laser Scanning
  publication-title: Remote Sens. Technol. Appl.
– volume: 186
  start-page: 64
  year: 2016
  ident: ref_26
  article-title: Review of Studies on Tree Species Classification from Remotely Sensed Data
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2016.08.013
– volume: 174
  start-page: 19
  year: 2021
  ident: ref_17
  article-title: Automated Street Tree Inventory Using Mobile LiDAR Point Clouds Based on Hough Transform and Active Contours
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2021.01.026
– ident: ref_15
– volume: 41
  start-page: 872
  year: 2003
  ident: ref_33
  article-title: A Progressive Morphological Filter for Removing Nonground Measurements from Airborne LIDAR Data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2003.810682
– ident: ref_38
  doi: 10.3390/rs14225892
– volume: 6
  start-page: 17
  year: 2016
  ident: ref_32
  article-title: The Research of Improved Progressive Triangulated Irregular Network Densification Filtering Algorithm
  publication-title: Beijing Surv. Mapp.
– volume: 13
  start-page: 38
  year: 2022
  ident: ref_37
  article-title: A Novel Fast Classification Filtering Algorithm for LiDAR Point Clouds Based on Small Grid Density Clustering
  publication-title: Geod. Geodyn.
  doi: 10.1016/j.geog.2021.10.002
– volume: 46
  start-page: 122
  year: 2021
  ident: ref_42
  article-title: An improved K-means clustering method for DBH extraction from point cloud
  publication-title: Sci. Surv. Mapp.
– volume: 27
  start-page: 49
  year: 2014
  ident: ref_8
  article-title: Applications of Airborne Laser Scanning and Terrestrial Laser Scanning to Forestry
  publication-title: World For. Res.
– ident: ref_16
  doi: 10.3390/rs15010115
– ident: ref_39
  doi: 10.3390/rs15225317
SSID ssj0000578924
Score 2.3177364
Snippet Accurate arbor extraction is an important element of forest surveys. However, the presence of shrubs can interfere with the extraction of arbors. Addressing...
SourceID proquest
gale
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1217
SubjectTerms Algorithms
canopy
China
Cloud point curves
Clustering
Curvature
data collection
Decision making
Environmental protection
Feasibility studies
Forest management
Forest resources
Forests
Grasses
Laser applications
Lasers
meta-analysis
Methods
Morphology
Remote sensing
Shrubs
Software
Surveys
Sustainable forestry
tree growth
Title Extraction of Arbors from Terrestrial Laser Scanning Data Based on Trunk Axis Fitting
URI https://www.proquest.com/docview/3084924236
https://www.proquest.com/docview/3153674368
Volume 15
WOSCitedRecordID wos001277363900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1999-4907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000578924
  issn: 1999-4907
  databaseCode: M~E
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Agriculture Science Database
  customDbUrl:
  eissn: 1999-4907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000578924
  issn: 1999-4907
  databaseCode: M0K
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/agriculturejournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1999-4907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000578924
  issn: 1999-4907
  databaseCode: PCBAR
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 1999-4907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000578924
  issn: 1999-4907
  databaseCode: PATMY
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1999-4907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000578924
  issn: 1999-4907
  databaseCode: BENPR
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1999-4907
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000578924
  issn: 1999-4907
  databaseCode: PIMPY
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_WZIy-7Ls0axu0MdheTJ3IkeWnkXYJG0tC2Dxon8xZliG0OJ3tjP75vbOV5KXsZU_G9skWutPdSbq7H8BHpXIbpMp6GCjjBZEKvCjQkZdaX8pIqmyETaLwLFws9NVVtHQbbpULq9zqxEZRZ2vDe-Tn0tdBxMZffbn74zFqFJ-uOgiNA-hypbKgA92LyWL5c7fLQt6IplZtSSH6uX-eNx7QsAEo2xuix9VxY2OmL_63dy_hufMuxbgVh1fwxBav4RnDbzKm2xv4PbmvyzaVQaxzoiMJqASnmIjYNjAdLI9iRqatFL9Mi2ckvmKN4oKeZYLaxeWmuBHj-1UlpqsmavotxNNJfPnNc8AKnpEqqL08x2FojUpVyvXs5CjKdGTIMcJUkQeXpWSwsgEi6fFBZi2HoOZ6gFJiihjm8gg6xbqwxyDyUTg0Gn0uKk_tMy1xNNCW3EpfEbOxB5-3g5wYV3ScsS9uE1p8MD-SHT968GFHetdW2niM6BNzKuHZx-OFLomAesN1rJKx9mUYMnRaD063nErctKySPZt68H73miYUn5JgYdcboiEbwJkZSr_79ydO4HBIHk4bu3sKnbrc2DN4av7Wq6rsO0nsw8Hc_0F3y3E8v-br9_ny-gFlwuuC
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQIuvBELBQwCwSVqNs46zgGhhXbVVberlQhSOVkTx5FWoGxJslB-FP-RmTy2l4pbD1wT2_Lj88zYnpkP4LVSuQtT5TwMlfXCWIVeHOrYS50vZSxVNsYmUHgeLRb69DRe7sCfPhaG3Sp7mdgI6mxt-Y58X_o6jFn5qw9nPzxmjeLX1Z5Co4XFsfv9i45s1fvZAa3vmyCYHiafjryOVcCzUoW1l-cYRM6qVKWczE2O40zHlqwCTBWZL1lK0jobIZIQG2XOsf9lrkcoJaaIUS6p2WuwGxLW9QB2l7OT5dftpQ4ZP5o62WYworH6-3ljcAUNH9qF3rtc-jcqbXrnP5uMu3C7s53FpAX7PdhxxX24weSizFj3AL4cntdlG6gh1jmVI3xXggNoROIaEhLebWJOirsUn23L1iQOsEbxkb5lguol5ab4Jibnq0pMV41P-ENIrmJMj2BQrAv3GEQ-jgKr0eeU-VQ_0xLHI-3IaPYVQRmH8K5fU2O7lOrM7PHd0NGKl99sl38Ir7ZFz9o8IpcVesvAMCxbeL6wC5Gg3nCWLjPRvowiJoYbwl4PDNMJncpcoGIIL7e_SVzwGxAWbr2hMqThOO5E6Sf_buIF3DxKTuZmPlscP4VbAdlyrZfyHgzqcuOewXX7s15V5fNuEwgwV4y0v5MbRaM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB7RUCEu9IkIpa1BrdrLKpv1xus9VFUgREVEUdSmEjfL67WlCLSB3Q2lP63_rjP7CBfUG4ded23Lj88zY3tmPoAPQjgbJsJ6OhTGC2MRenEoYy-xPucxF-lAV4HCk2g6lRcX8WwD_rSxMORW2crESlCnS0N35D3uyzAm5S96rnGLmI3GX69vPGKQopfWlk6jhsi5_f0Lj2_Fl7MRrvXHIBifzk--eQ3DgGe4CEvPOR1E1ohEJJTYjQ_iVMYGLQSdCDRl0gQld9rXGgVaP7WWfDGd7GvOdaJ15Dg2-wQ2saYfdGBzdnI8_L6-4EFDSGKH62xGOG6_5yrjK6i40e514MOaoFJv42f_8cQ8h53GpmbDehO8gA2bvYQtIh0lJrtX8PP0rszrAA62dFgOcV8wCqxhc1uRk9AuZBNU6Dn7YWoWJzbSpWbH-C1lWG-er7JLNrxbFGy8qHzFX8P8Mca0C51smdk9YG4QBUZqn1LpY_1Ucj3oS4vGtC8Q4roLn9v1VaZJtU6MH1cKj1wEBbWGQheO1kWv6_wiDxX6RCBRJHNovnQTOoG9oexdaih9HkVEGNeFgxYkqhFGhbpHSBcO179RjNDbkM7scoVlUPNRPIqQ-_9u4j1sIbzU5Gx6_ga2AzTxauflA-iU-cq-hafmtlwU-btmPzBQjwy0v48VThM
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extraction+of+Arbors+from+Terrestrial+Laser+Scanning+Data+Based+on+Trunk+Axis+Fitting&rft.jtitle=Forests&rft.au=Liu%2C+Song&rft.au=Deng%2C+Yuncheng&rft.au=Zhang%2C+Jianpeng&rft.au=Wang%2C+Jinliang&rft.date=2024-07-01&rft.pub=MDPI+AG&rft.eissn=1999-4907&rft.volume=15&rft.issue=7&rft.spage=1217&rft_id=info:doi/10.3390%2Ff15071217&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4907&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4907&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4907&client=summon