Extraction of Arbors from Terrestrial Laser Scanning Data Based on Trunk Axis Fitting
Accurate arbor extraction is an important element of forest surveys. However, the presence of shrubs can interfere with the extraction of arbors. Addressing the issues of low accuracy and weak generalizability in existing Terrestrial Laser Scanning (TLS) arbor point clouds extraction methods, this s...
Uloženo v:
| Vydáno v: | Forests Ročník 15; číslo 7; s. 1217 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.07.2024
|
| Témata: | |
| ISSN: | 1999-4907, 1999-4907 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Accurate arbor extraction is an important element of forest surveys. However, the presence of shrubs can interfere with the extraction of arbors. Addressing the issues of low accuracy and weak generalizability in existing Terrestrial Laser Scanning (TLS) arbor point clouds extraction methods, this study proposes a trunk axis fitting (TAF) method for arbor extraction. After separating the point cloud data by upper and lower, slicing, clustering, fitting circles, obtaining the main central axis, filtering by distance, etc. The canopy point clouds are merged with the extracted trunk point clouds to precisely separate arbors and shrubs. The advantage of the TAF method proposed in this study is that it is not affected by point cloud density or the degree of trunk curvature. This study focuses on a natural forest plot in Shangri-La City, Yunnan Province, and a plantation plot in Kunming City, using manually extracted data from a standardized dataset of samples to test the accuracy of the TAF method and validate the feasibility of the proposed method. The results showed that the TAF method proposed in this study has high extraction accuracy. It can effectively avoid the problem of trunk point cloud loss caused by tree growth curvature. The experimental accuracy for both plots reached over 99%. This study can provide certain technical support for arbor parameter extraction and scientific guidance for forest resource investigation and forest management decision-making. |
|---|---|
| AbstractList | Accurate arbor extraction is an important element of forest surveys. However, the presence of shrubs can interfere with the extraction of arbors. Addressing the issues of low accuracy and weak generalizability in existing Terrestrial Laser Scanning (TLS) arbor point clouds extraction methods, this study proposes a trunk axis fitting (TAF) method for arbor extraction. After separating the point cloud data by upper and lower, slicing, clustering, fitting circles, obtaining the main central axis, filtering by distance, etc. The canopy point clouds are merged with the extracted trunk point clouds to precisely separate arbors and shrubs. The advantage of the TAF method proposed in this study is that it is not affected by point cloud density or the degree of trunk curvature. This study focuses on a natural forest plot in Shangri-La City, Yunnan Province, and a plantation plot in Kunming City, using manually extracted data from a standardized dataset of samples to test the accuracy of the TAF method and validate the feasibility of the proposed method. The results showed that the TAF method proposed in this study has high extraction accuracy. It can effectively avoid the problem of trunk point cloud loss caused by tree growth curvature. The experimental accuracy for both plots reached over 99%. This study can provide certain technical support for arbor parameter extraction and scientific guidance for forest resource investigation and forest management decision-making. |
| Audience | Academic |
| Author | Deng, Yuncheng Liu, Song Zhang, Jianpeng Wang, Jinliang Duan, Di |
| Author_xml | – sequence: 1 givenname: Song surname: Liu fullname: Liu, Song – sequence: 2 givenname: Yuncheng surname: Deng fullname: Deng, Yuncheng – sequence: 3 givenname: Jianpeng surname: Zhang fullname: Zhang, Jianpeng – sequence: 4 givenname: Jinliang orcidid: 0000-0001-7202-646X surname: Wang fullname: Wang, Jinliang – sequence: 5 givenname: Di orcidid: 0009-0005-9438-6761 surname: Duan fullname: Duan, Di |
| BookMark | eNptkUFLAzEQhYNUsNYe_AcBL3pYmzTZzeZYa6tCwYP1vMxmk5K6TWqyhfrvTamIFJNDwuN7M8ObS9Rz3mmErim5Z0ySkaE5EXRMxRnqUyllxiURvT__CzSMcU3SyUUpx7yP3mf7LoDqrHfYGzwJtQ8Rm-A3eKlD0LELFlq8gKgDflPgnHUr_Agd4IekNTj5lmHnPvBkbyOe265LwBU6N9BGPfx5B2g5ny2nz9ni9ellOllkihW8y4yBsdCqqIualoVguWxKqTinUBc5J00taNlQAF1T2mjNZc5MSYExqAGEYQN0eyy7Df5zl2atNjYq3bbgtN_FitGcFYKzokzozQm69rvg0nAVIyVPWYxZkaj7I7WCVlfWGX8IJ91Gb6xKYRub9ElJmBCUMJIMd0eDCj7GoE21DXYD4auipDrspPrdSWJHJ6yyHRyST01s-4_jG8bpjf0 |
| CitedBy_id | crossref_primary_10_3390_f15091627 |
| Cites_doi | 10.11834/jrs.20197383 10.3390/rs5020491 10.1080/01431160701736406 10.3390/s19010172 10.3390/drones7020065 10.3390/rs13020223 10.3390/agriculture13010130 10.4028/www.scientific.net/AMM.475-476.355 10.3390/f14081525 10.1007/s11676-020-01214-7 10.1007/s13595-011-0102-2 10.1029/2018EA000417 10.3390/rs15102644 10.3390/rs8060501 10.1016/j.isprsjprs.2016.01.006 10.1016/j.rse.2016.08.013 10.1016/j.isprsjprs.2021.01.026 10.1109/TGRS.2003.810682 10.3390/rs14225892 10.1016/j.geog.2021.10.002 10.3390/rs15010115 10.3390/rs15225317 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2024 MDPI AG 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2024 MDPI AG – notice: 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SN 7SS 7X2 8FE 8FH 8FK ABUWG AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO GNUQQ HCIFZ M0K PATMY PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS PYCSY 7S9 L.6 |
| DOI | 10.3390/f15071217 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Ecology Abstracts Entomology Abstracts (Full archive) Agricultural Science Collection ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest One Sustainability (subscription) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection Agriculture Science Database Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest SciTech Collection Ecology Abstracts Environmental Science Collection Entomology Abstracts ProQuest One Academic UKI Edition Environmental Science Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA CrossRef Agricultural Science Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Forestry |
| EISSN | 1999-4907 |
| ExternalDocumentID | A803771030 10_3390_f15071217 |
| GeographicLocations | China Yunnan China |
| GeographicLocations_xml | – name: China – name: Yunnan China |
| GroupedDBID | 2XV 5VS 7X2 7XC 8FE 8FH AADQD AAFWJ AAHBH AAYXX ADBBV AENEX AEUYN AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ATCPS BANNL BCNDV BENPR BHPHI BKSAR CCPQU CITATION ECGQY EDH HCIFZ IAG IAO IEP ITC ITG ITH KQ8 LK5 M0K M7R MODMG M~E OK1 OZF PATMY PCBAR PHGZM PHGZT PIMPY PROAC PYCSY TR2 3V. 7SN 7SS 8FK ABUWG AZQEC C1K DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS 7S9 L.6 PUEGO |
| ID | FETCH-LOGICAL-c364t-ffa27ec6b6b1867359d89c441ab6540db718d1aaeb11dee4953f81a33abaa7f3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001277363900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1999-4907 |
| IngestDate | Fri Sep 05 08:52:48 EDT 2025 Mon Jun 30 17:26:20 EDT 2025 Sat Nov 29 10:37:20 EST 2025 Sat Nov 29 07:10:17 EST 2025 Tue Nov 18 22:52:05 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c364t-ffa27ec6b6b1867359d89c441ab6540db718d1aaeb11dee4953f81a33abaa7f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0009-0005-9438-6761 0000-0001-7202-646X |
| OpenAccessLink | https://www.proquest.com/docview/3084924236?pq-origsite=%requestingapplication% |
| PQID | 3084924236 |
| PQPubID | 2032398 |
| ParticipantIDs | proquest_miscellaneous_3153674368 proquest_journals_3084924236 gale_infotracacademiconefile_A803771030 crossref_primary_10_3390_f15071217 crossref_citationtrail_10_3390_f15071217 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-07-01 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Forests |
| PublicationYear | 2024 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Ma (ref_14) 2019; 23 Liu (ref_13) 2016; 52 Liu (ref_8) 2014; 27 Liu (ref_21) 2021; 46 Deng (ref_37) 2022; 13 Maas (ref_11) 2008; 29 ref_35 Yan (ref_12) 2018; 31 ref_34 ref_10 Shao (ref_32) 2016; 6 ref_18 Donager (ref_3) 2018; 5 ref_39 ref_16 ref_38 ref_15 Safaie (ref_17) 2021; 174 He (ref_23) 2013; 475–476 Luo (ref_6) 2024; 56 Li (ref_1) 2021; 34 Bu (ref_4) 2016; 33 Ma (ref_42) 2021; 46 Fassnacht (ref_26) 2016; 186 Stal (ref_19) 2020; 32 ref_25 Deng (ref_36) 2022; 37 ref_24 ref_22 Zhang (ref_33) 2003; 41 Xia (ref_9) 2018; 33 ref_41 ref_40 ref_2 Liu (ref_31) 2023; S1 ref_28 Zi (ref_27) 2019; 48 Raumonen (ref_20) 2013; 5 Liang (ref_29) 2016; 115 ref_7 Zhang (ref_5) 2023; 38 Dassot (ref_30) 2011; 68 |
| References_xml | – ident: ref_7 – ident: ref_28 – volume: 23 start-page: 743 year: 2019 ident: ref_14 article-title: Fine classification of near-ground point cloud based on terrestrial laser scanning and detection of forest fallen wood publication-title: Natl. Remote Sens. Bull. doi: 10.11834/jrs.20197383 – volume: 34 start-page: 72 year: 2021 ident: ref_1 article-title: Forest Management Inventory in China: History, Current Status and Trend publication-title: World For. Res. – volume: 5 start-page: 491 year: 2013 ident: ref_20 article-title: Fast Automatic Precision Tree Models from Terrestrial Laser Scanner Data publication-title: Remote Sens. doi: 10.3390/rs5020491 – volume: 29 start-page: 1579 year: 2008 ident: ref_11 article-title: Automatic Forest Inventory Parameter Determination from Terrestrial Laser Scanner Data publication-title: Int. J. Remote Sens. doi: 10.1080/01431160701736406 – volume: 37 start-page: 77 year: 2022 ident: ref_36 article-title: Tree DBH Extraction Based on F-LS Algorithm publication-title: Remote Sens. Inf. – ident: ref_41 doi: 10.3390/s19010172 – ident: ref_24 doi: 10.3390/drones7020065 – volume: 52 start-page: 26 year: 2016 ident: ref_13 article-title: Individual Tree DBH and Height Estimation Using Terrestrial Laser Scanning(TLS) in a Subtropical Forest publication-title: Sci. Silvae Sin. – ident: ref_2 doi: 10.3390/rs13020223 – ident: ref_40 doi: 10.3390/agriculture13010130 – ident: ref_18 – ident: ref_35 – volume: 31 start-page: 42 year: 2018 ident: ref_12 article-title: Research Progress in TLS Technology in Forest Investigation publication-title: World For. Res. – volume: 475–476 start-page: 355 year: 2013 ident: ref_23 article-title: The Trees Skeleton Extraction Based on Point Cloud Contraction publication-title: AMM doi: 10.4028/www.scientific.net/AMM.475-476.355 – volume: 48 start-page: 55 year: 2019 ident: ref_27 article-title: Hyperspectral characteristics analysis and discriminant of 4 typical coniferous trees species in Shangri-La publication-title: J. Fujian Agric. For. Univ. (Nat. Sci. Ed.) – volume: S1 start-page: 32 year: 2023 ident: ref_31 article-title: DEM construction of airborne LiDAR data in complex mountainous areas at different densities publication-title: Bull. Surv. Mapp. – ident: ref_22 doi: 10.3390/f14081525 – volume: 32 start-page: 1503 year: 2020 ident: ref_19 article-title: Assessment of Handheld Mobile Terrestrial Laser Scanning for Estimating Tree Parameters publication-title: J. For. Res. doi: 10.1007/s11676-020-01214-7 – volume: 46 start-page: 105 year: 2021 ident: ref_21 article-title: A fine extraction method of forest point cloud in complex background publication-title: Sci. Surv. Mapp. – volume: 68 start-page: 959 year: 2011 ident: ref_30 article-title: The Use of Terrestrial LiDAR Technology in Forest Science: Application Fields, Benefits and Challenges publication-title: Ann. For. Sci. doi: 10.1007/s13595-011-0102-2 – volume: 5 start-page: 753 year: 2018 ident: ref_3 article-title: Examining Forest Structure with Terrestrial Lidar: Suggestions and Novel Techniques Based on Comparisons Between Scanners and Forest Treatments publication-title: Earth Space Sci. doi: 10.1029/2018EA000417 – ident: ref_10 doi: 10.3390/rs15102644 – volume: 33 start-page: 238 year: 2018 ident: ref_9 article-title: Application Status and Prospect of TLS in Forest Resources Inventory publication-title: J. Northwest For. Univ. – ident: ref_34 doi: 10.3390/rs8060501 – ident: ref_25 – volume: 115 start-page: 63 year: 2016 ident: ref_29 article-title: Terrestrial Laser Scanning in Forest Inventories publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2016.01.006 – volume: 33 start-page: 68 year: 2016 ident: ref_4 article-title: Designing 3D Trees Point Cloud Data Processing Software System publication-title: Comput. Appl. Softw. – volume: 56 start-page: 44 year: 2024 ident: ref_6 article-title: Airborne LiDAR in Forest Resources Investigation and Monitoring publication-title: For. Sci. Technol. Inf. – volume: 38 start-page: 405 year: 2023 ident: ref_5 article-title: Automatic Filtering of Understory Vegetation based on Point Cloud Main Direction of Terrestrial Laser Scanning publication-title: Remote Sens. Technol. Appl. – volume: 186 start-page: 64 year: 2016 ident: ref_26 article-title: Review of Studies on Tree Species Classification from Remotely Sensed Data publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2016.08.013 – volume: 174 start-page: 19 year: 2021 ident: ref_17 article-title: Automated Street Tree Inventory Using Mobile LiDAR Point Clouds Based on Hough Transform and Active Contours publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2021.01.026 – ident: ref_15 – volume: 41 start-page: 872 year: 2003 ident: ref_33 article-title: A Progressive Morphological Filter for Removing Nonground Measurements from Airborne LIDAR Data publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2003.810682 – ident: ref_38 doi: 10.3390/rs14225892 – volume: 6 start-page: 17 year: 2016 ident: ref_32 article-title: The Research of Improved Progressive Triangulated Irregular Network Densification Filtering Algorithm publication-title: Beijing Surv. Mapp. – volume: 13 start-page: 38 year: 2022 ident: ref_37 article-title: A Novel Fast Classification Filtering Algorithm for LiDAR Point Clouds Based on Small Grid Density Clustering publication-title: Geod. Geodyn. doi: 10.1016/j.geog.2021.10.002 – volume: 46 start-page: 122 year: 2021 ident: ref_42 article-title: An improved K-means clustering method for DBH extraction from point cloud publication-title: Sci. Surv. Mapp. – volume: 27 start-page: 49 year: 2014 ident: ref_8 article-title: Applications of Airborne Laser Scanning and Terrestrial Laser Scanning to Forestry publication-title: World For. Res. – ident: ref_16 doi: 10.3390/rs15010115 – ident: ref_39 doi: 10.3390/rs15225317 |
| SSID | ssj0000578924 |
| Score | 2.3177364 |
| Snippet | Accurate arbor extraction is an important element of forest surveys. However, the presence of shrubs can interfere with the extraction of arbors. Addressing... |
| SourceID | proquest gale crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 1217 |
| SubjectTerms | Algorithms canopy China Cloud point curves Clustering Curvature data collection Decision making Environmental protection Feasibility studies Forest management Forest resources Forests Grasses Laser applications Lasers meta-analysis Methods Morphology Remote sensing Shrubs Software Surveys Sustainable forestry tree growth |
| Title | Extraction of Arbors from Terrestrial Laser Scanning Data Based on Trunk Axis Fitting |
| URI | https://www.proquest.com/docview/3084924236 https://www.proquest.com/docview/3153674368 |
| Volume | 15 |
| WOSCitedRecordID | wos001277363900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1999-4907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000578924 issn: 1999-4907 databaseCode: M~E dateStart: 20100101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Agriculture Science Database customDbUrl: eissn: 1999-4907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000578924 issn: 1999-4907 databaseCode: M0K dateStart: 20100301 isFulltext: true titleUrlDefault: https://search.proquest.com/agriculturejournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1999-4907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000578924 issn: 1999-4907 databaseCode: PCBAR dateStart: 20100301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 1999-4907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000578924 issn: 1999-4907 databaseCode: PATMY dateStart: 20100301 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1999-4907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000578924 issn: 1999-4907 databaseCode: BENPR dateStart: 20100301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1999-4907 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000578924 issn: 1999-4907 databaseCode: PIMPY dateStart: 20100301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_WZIy-7Ls0axu0MdheTJ3IkeWnkXYJG0tC2Dxon8xZliG0OJ3tjP75vbOV5KXsZU_G9skWutPdSbq7H8BHpXIbpMp6GCjjBZEKvCjQkZdaX8pIqmyETaLwLFws9NVVtHQbbpULq9zqxEZRZ2vDe-Tn0tdBxMZffbn74zFqFJ-uOgiNA-hypbKgA92LyWL5c7fLQt6IplZtSSH6uX-eNx7QsAEo2xuix9VxY2OmL_63dy_hufMuxbgVh1fwxBav4RnDbzKm2xv4PbmvyzaVQaxzoiMJqASnmIjYNjAdLI9iRqatFL9Mi2ckvmKN4oKeZYLaxeWmuBHj-1UlpqsmavotxNNJfPnNc8AKnpEqqL08x2FojUpVyvXs5CjKdGTIMcJUkQeXpWSwsgEi6fFBZi2HoOZ6gFJiihjm8gg6xbqwxyDyUTg0Gn0uKk_tMy1xNNCW3EpfEbOxB5-3g5wYV3ScsS9uE1p8MD-SHT968GFHetdW2niM6BNzKuHZx-OFLomAesN1rJKx9mUYMnRaD063nErctKySPZt68H73miYUn5JgYdcboiEbwJkZSr_79ydO4HBIHk4bu3sKnbrc2DN4av7Wq6rsO0nsw8Hc_0F3y3E8v-br9_ny-gFlwuuC |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLQIuvBELBQwCwSVqNs46zgGhhXbVVberlQhSOVkTx5FWoGxJslB-FP-RmTy2l4pbD1wT2_Lj88zYnpkP4LVSuQtT5TwMlfXCWIVeHOrYS50vZSxVNsYmUHgeLRb69DRe7sCfPhaG3Sp7mdgI6mxt-Y58X_o6jFn5qw9nPzxmjeLX1Z5Co4XFsfv9i45s1fvZAa3vmyCYHiafjryOVcCzUoW1l-cYRM6qVKWczE2O40zHlqwCTBWZL1lK0jobIZIQG2XOsf9lrkcoJaaIUS6p2WuwGxLW9QB2l7OT5dftpQ4ZP5o62WYworH6-3ljcAUNH9qF3rtc-jcqbXrnP5uMu3C7s53FpAX7PdhxxX24weSizFj3AL4cntdlG6gh1jmVI3xXggNoROIaEhLebWJOirsUn23L1iQOsEbxkb5lguol5ab4Jibnq0pMV41P-ENIrmJMj2BQrAv3GEQ-jgKr0eeU-VQ_0xLHI-3IaPYVQRmH8K5fU2O7lOrM7PHd0NGKl99sl38Ir7ZFz9o8IpcVesvAMCxbeL6wC5Gg3nCWLjPRvowiJoYbwl4PDNMJncpcoGIIL7e_SVzwGxAWbr2hMqThOO5E6Sf_buIF3DxKTuZmPlscP4VbAdlyrZfyHgzqcuOewXX7s15V5fNuEwgwV4y0v5MbRaM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxsxEB7RUCEu9IkIpa1BrdrLKpv1xus9VFUgREVEUdSmEjfL67WlCLSB3Q2lP63_rjP7CBfUG4ded23Lj88zY3tmPoAPQjgbJsJ6OhTGC2MRenEoYy-xPucxF-lAV4HCk2g6lRcX8WwD_rSxMORW2crESlCnS0N35D3uyzAm5S96rnGLmI3GX69vPGKQopfWlk6jhsi5_f0Lj2_Fl7MRrvXHIBifzk--eQ3DgGe4CEvPOR1E1ohEJJTYjQ_iVMYGLQSdCDRl0gQld9rXGgVaP7WWfDGd7GvOdaJ15Dg2-wQ2saYfdGBzdnI8_L6-4EFDSGKH62xGOG6_5yrjK6i40e514MOaoFJv42f_8cQ8h53GpmbDehO8gA2bvYQtIh0lJrtX8PP0rszrAA62dFgOcV8wCqxhc1uRk9AuZBNU6Dn7YWoWJzbSpWbH-C1lWG-er7JLNrxbFGy8qHzFX8P8Mca0C51smdk9YG4QBUZqn1LpY_1Ucj3oS4vGtC8Q4roLn9v1VaZJtU6MH1cKj1wEBbWGQheO1kWv6_wiDxX6RCBRJHNovnQTOoG9oexdaih9HkVEGNeFgxYkqhFGhbpHSBcO179RjNDbkM7scoVlUPNRPIqQ-_9u4j1sIbzU5Gx6_ga2AzTxauflA-iU-cq-hafmtlwU-btmPzBQjwy0v48VThM |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Extraction+of+Arbors+from+Terrestrial+Laser+Scanning+Data+Based+on+Trunk+Axis+Fitting&rft.jtitle=Forests&rft.au=Liu%2C+Song&rft.au=Deng%2C+Yuncheng&rft.au=Zhang%2C+Jianpeng&rft.au=Wang%2C+Jinliang&rft.date=2024-07-01&rft.pub=MDPI+AG&rft.eissn=1999-4907&rft.volume=15&rft.issue=7&rft.spage=1217&rft_id=info:doi/10.3390%2Ff15071217&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1999-4907&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1999-4907&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1999-4907&client=summon |