Discrete-time minimal control synthesis adaptive algorithm

This article proposes a discrete-time Minimal Control Synthesis (MCS) algorithm for a class of single-input single-output discrete-time systems written in controllable canonical form. As it happens with the continuous-time MCS strategy, the algorithm arises from the family of hyperstability-based di...

Full description

Saved in:
Bibliographic Details
Published in:International journal of control Vol. 83; no. 12; pp. 2641 - 2657
Main Authors: di Bernardo†, M., di Gennaro, F., Olm, J.M., Santini, S.
Format: Journal Article
Language:English
Published: Abingdon Taylor & Francis Group 01.12.2010
Taylor & Francis
Taylor & Francis Ltd
Subjects:
ISSN:0020-7179, 1366-5820
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This article proposes a discrete-time Minimal Control Synthesis (MCS) algorithm for a class of single-input single-output discrete-time systems written in controllable canonical form. As it happens with the continuous-time MCS strategy, the algorithm arises from the family of hyperstability-based discrete-time model reference adaptive controllers introduced in (Landau, Y. (1979), Adaptive Control: The Model Reference Approach, New York: Marcel Dekker, Inc.) and is able to ensure tracking of the states of a given reference model with minimal knowledge about the plant. The control design shows robustness to parameter uncertainties, slow parameter variation and matched disturbances. Furthermore, it is proved that the proposed discrete-time MCS algorithm can be used to control discretised continuous-time plants with the same performance features. Contrary to previous discrete-time implementations of the continuous-time MCS algorithm, here a formal proof of asymptotic stability is given for generic n-dimensional plants in controllable canonical form. The theoretical approach is validated by means of simulation results.
Bibliography:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0020-7179
1366-5820
DOI:10.1080/00207179.2010.536916