Optimal Machine Learning Based Privacy Preserving Blockchain Assisted Internet of Things with Smart Cities Environment
Currently, the amount of Internet of Things (IoT) applications is enhanced for processing, analyzing, and managing the created big data from the smart city. Certain other applications of smart cities were location-based services, transportation management, and urban design, amongst others. There are...
Gespeichert in:
| Veröffentlicht in: | Applied sciences Jg. 12; H. 12; S. 5893 |
|---|---|
| Hauptverfasser: | , , , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.06.2022
|
| Schlagworte: | |
| ISSN: | 2076-3417, 2076-3417 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Currently, the amount of Internet of Things (IoT) applications is enhanced for processing, analyzing, and managing the created big data from the smart city. Certain other applications of smart cities were location-based services, transportation management, and urban design, amongst others. There are several challenges under these applications containing privacy, data security, mining, and visualization. The blockchain-assisted IoT application (BIoT) is offering new urban computing to secure smart cities. The blockchain is a secure and transparent data-sharing decentralized platform, so BIoT is suggested as the optimum solution to the aforementioned challenges. In this view, this study develops an Optimal Machine Learning-based Intrusion Detection System for Privacy Preserving BIoT with Smart Cities Environment, called OMLIDS-PBIoT technique. The presented OMLIDS-PBIoT technique exploits BC and ML techniques to accomplish security in the smart city environment. For attaining this, the presented OMLIDS-PBIoT technique employs data pre-processing in the initial stage to transform the data into a compatible format. Moreover, a golden eagle optimization (GEO)-based feature selection (FS) model is designed to derive useful feature subsets. In addition, a heap-based optimizer (HBO) with random vector functional link network (RVFL) model was utilized for intrusion classification. Additionally, blockchain technology is exploited for secure data transmission in the IoT-enabled smart city environment. The performance validation of the OMLIDS-PBIoT technique is carried out using benchmark datasets, and the outcomes are inspected under numerous factors. The experimental results demonstrate the superiority of the OMLIDS-PBIoT technique over recent approaches. |
|---|---|
| AbstractList | Currently, the amount of Internet of Things (IoT) applications is enhanced for processing, analyzing, and managing the created big data from the smart city. Certain other applications of smart cities were location-based services, transportation management, and urban design, amongst others. There are several challenges under these applications containing privacy, data security, mining, and visualization. The blockchain-assisted IoT application (BIoT) is offering new urban computing to secure smart cities. The blockchain is a secure and transparent data-sharing decentralized platform, so BIoT is suggested as the optimum solution to the aforementioned challenges. In this view, this study develops an Optimal Machine Learning-based Intrusion Detection System for Privacy Preserving BIoT with Smart Cities Environment, called OMLIDS-PBIoT technique. The presented OMLIDS-PBIoT technique exploits BC and ML techniques to accomplish security in the smart city environment. For attaining this, the presented OMLIDS-PBIoT technique employs data pre-processing in the initial stage to transform the data into a compatible format. Moreover, a golden eagle optimization (GEO)-based feature selection (FS) model is designed to derive useful feature subsets. In addition, a heap-based optimizer (HBO) with random vector functional link network (RVFL) model was utilized for intrusion classification. Additionally, blockchain technology is exploited for secure data transmission in the IoT-enabled smart city environment. The performance validation of the OMLIDS-PBIoT technique is carried out using benchmark datasets, and the outcomes are inspected under numerous factors. The experimental results demonstrate the superiority of the OMLIDS-PBIoT technique over recent approaches. |
| Author | Nemri, Nadhem Al-Qarafi, A. Alrowais, Fadwa Al Duhayyim, Mesfer Al-Wesabi, Fahd N. Al-Shabi, M. Marzouk, Radwa S. Alotaibi, Saud Othman, Mahmoud |
| Author_xml | – sequence: 1 givenname: A. surname: Al-Qarafi fullname: Al-Qarafi, A. – sequence: 2 givenname: Fadwa surname: Alrowais fullname: Alrowais, Fadwa – sequence: 3 givenname: Saud surname: S. Alotaibi fullname: S. Alotaibi, Saud – sequence: 4 givenname: Nadhem orcidid: 0000-0003-1428-0309 surname: Nemri fullname: Nemri, Nadhem – sequence: 5 givenname: Fahd N. orcidid: 0000-0002-4389-4927 surname: Al-Wesabi fullname: Al-Wesabi, Fahd N. – sequence: 6 givenname: Mesfer surname: Al Duhayyim fullname: Al Duhayyim, Mesfer – sequence: 7 givenname: Radwa surname: Marzouk fullname: Marzouk, Radwa – sequence: 8 givenname: Mahmoud surname: Othman fullname: Othman, Mahmoud – sequence: 9 givenname: M. surname: Al-Shabi fullname: Al-Shabi, M. |
| BookMark | eNptUU1rGzEQFSWFJmlO_QOCHoNbfe1q95iafBhcEkhyFrPaWVvuWtpIikP-fZW4hRAylzfMvHm8xxyRAx88EvKNsx9StuwnTBMXXFRNKz-RQ8F0PZOK64M3_RdyktKGlWq5bDg7JLvrKbstjPQ32LXzSJcI0Tu_or8gYU9votuBfS6ICePudTEG-8euwXl6lpJLudAWPmP0mGkY6F3RWSX65PKa3m4hZjp32WGi537nYvBb9Pkr-TzAmPDkHx6T-4vzu_nVbHl9uZifLWdW1irPsGeqq4ZWVpYrbCxret2DUMLyTlnZNV2J1nJe2x5r4FaLQVSSYad70XS8lsdksdftA2zMFEvU-GwCOPM6CHFlikFnRzS8AYZW6cECV5XVHVNKDrIS0A1Ssapofd9rTTE8PGLKZhMeoy_2jah1W2stGlVYfM-yMaQUcTDWZcgu-BzBjYYz8_It8-Zb5eb03c1_px-x_wKThpgy |
| CitedBy_id | crossref_primary_10_1002_dac_5955 crossref_primary_10_1109_ACCESS_2024_3352502 crossref_primary_10_32604_cmc_2023_032588 crossref_primary_10_1016_j_cose_2024_103985 crossref_primary_10_3390_app122413020 crossref_primary_10_1007_s42979_023_01731_2 crossref_primary_10_3390_electronics12041027 crossref_primary_10_3390_app12146875 crossref_primary_10_1007_s11276_024_03857_4 crossref_primary_10_3390_app122010605 crossref_primary_10_32604_cmc_2023_032969 crossref_primary_10_1007_s11042_023_17394_3 crossref_primary_10_1007_s13042_025_02721_x crossref_primary_10_7717_peerj_cs_1778 crossref_primary_10_3390_app12157457 crossref_primary_10_1007_s00521_025_11110_y crossref_primary_10_32604_cmc_2023_032591 crossref_primary_10_1007_s43926_025_00155_z crossref_primary_10_4018_JGIM_323656 crossref_primary_10_1007_s10586_024_04424_4 crossref_primary_10_1109_ACCESS_2024_3409413 crossref_primary_10_3390_drones6090222 crossref_primary_10_1007_s11227_024_06392_3 crossref_primary_10_1007_s11277_024_11050_1 crossref_primary_10_1109_ACCESS_2023_3303087 crossref_primary_10_3390_info14050295 crossref_primary_10_32604_cmc_2022_032353 crossref_primary_10_3390_fi16120452 crossref_primary_10_1007_s00500_023_08396_2 crossref_primary_10_1109_ACCESS_2024_3409273 crossref_primary_10_3390_app12178676 crossref_primary_10_1080_1206212X_2025_2498687 crossref_primary_10_3390_info15010065 crossref_primary_10_1177_14727978241300787 crossref_primary_10_3390_app12157441 crossref_primary_10_1109_ACCESS_2024_3501357 crossref_primary_10_1007_s11227_025_06980_x crossref_primary_10_1007_s12083_024_01776_x crossref_primary_10_32604_csse_2023_036735 |
| Cites_doi | 10.1016/j.dcan.2017.10.006 10.1109/ACCESS.2021.3061411 10.1016/j.patcog.2021.107978 10.1109/INTELCIS.2017.8260031 10.3390/electronics9071120 10.1007/s11571-022-09780-8 10.1109/TNSE.2021.3089435 10.4018/JITR.2021070102 10.1016/j.scs.2020.102364 10.1016/j.jpdc.2020.05.013 10.1038/s41598-022-10406-6 10.1109/MNET.001.1900151 10.23919/MIPRO.2018.8400278 10.1007/s11277-021-08339-w 10.1109/MNET.011.2000514 10.1016/j.sysarc.2020.101954 10.1007/978-3-030-53149-2_4 10.1007/s10586-018-2516-1 10.1109/JIOT.2019.2901840 10.1016/j.jnca.2019.06.019 10.3390/s20164636 10.1016/j.eswa.2020.113702 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/app12125893 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials - QC ProQuest Central Database Suite (ProQuest) ProQuest One ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_18a0ec47fca145c7b0443f352abf3405 10_3390_app12125893 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
| ID | FETCH-LOGICAL-c364t-ed04b5f935c14e8c08d7da242c1b4c3b8b2079116cde6a1c72f2530eb7d28b163 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 40 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000819058200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Tue Oct 14 19:05:43 EDT 2025 Thu Sep 11 07:10:51 EDT 2025 Tue Nov 18 22:25:31 EST 2025 Sat Nov 29 07:13:47 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c364t-ed04b5f935c14e8c08d7da242c1b4c3b8b2079116cde6a1c72f2530eb7d28b163 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4389-4927 0000-0003-1428-0309 |
| OpenAccessLink | https://doaj.org/article/18a0ec47fca145c7b0443f352abf3405 |
| PQID | 2679677284 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_18a0ec47fca145c7b0443f352abf3405 proquest_journals_2679677284 crossref_citationtrail_10_3390_app12125893 crossref_primary_10_3390_app12125893 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-01 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Askari (ref_24) 2020; 161 Singh (ref_5) 2021; 11 Li (ref_1) 2019; 22 Singh (ref_9) 2020; 63 Banerjee (ref_4) 2018; 4 Khan (ref_7) 2020; 35 Peneti (ref_17) 2021; 119 ref_22 ref_20 Aujla (ref_16) 2020; 34 Rathee (ref_2) 2021; 9 Kumar (ref_10) 2021; 115 ref_3 Meng (ref_12) 2020; 144 Bediya (ref_13) 2021; 14 Shi (ref_23) 2021; 117 Obayya (ref_19) 2022; 35 ref_18 Rathore (ref_14) 2019; 143 Amor (ref_21) 2022; 12 ref_15 Shen (ref_8) 2019; 6 Kumar (ref_11) 2021; 8 ref_6 |
| References_xml | – volume: 4 start-page: 149 year: 2018 ident: ref_4 article-title: A blockchain future for internet of things security: A position paper publication-title: Digit. Commun. Netw. doi: 10.1016/j.dcan.2017.10.006 – volume: 9 start-page: 34165 year: 2021 ident: ref_2 article-title: On the design and implementation of a blockchain enabled e-voting application within iot-oriented smart cities publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3061411 – volume: 117 start-page: 107978 year: 2021 ident: ref_23 article-title: Random vector functional link neural network based ensemble deep learning publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.107978 – ident: ref_22 doi: 10.1109/INTELCIS.2017.8260031 – ident: ref_6 doi: 10.3390/electronics9071120 – ident: ref_18 doi: 10.1007/s11571-022-09780-8 – volume: 35 start-page: 100686 year: 2022 ident: ref_19 article-title: Energy Aware Resource Optimization using Unified Metaheuristic Optimization Algorithm Allocation for Cloud Computing Environment publication-title: Sustain. Comput. Inform. Syst. – volume: 8 start-page: 2326 year: 2021 ident: ref_11 article-title: PPSF: A privacy-preserving and secure framework using blockchain-based machine-learning for IoT-driven smart cities publication-title: IEEE Trans. Netw. Sci. Eng. doi: 10.1109/TNSE.2021.3089435 – volume: 14 start-page: 20 year: 2021 ident: ref_13 article-title: A novel intrusion detection system for internet of things network security publication-title: J. Inf. Technol. Res. doi: 10.4018/JITR.2021070102 – volume: 63 start-page: 102364 year: 2020 ident: ref_9 article-title: Convergence of blockchain and artificial intelligence in IoT network for the sustainable smart city publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2020.102364 – volume: 144 start-page: 268 year: 2020 ident: ref_12 article-title: Towards blockchain-enabled single character frequency-based exclusive signature matching in IoT-assisted smart cities publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2020.05.013 – volume: 12 start-page: 6350 year: 2022 ident: ref_21 article-title: Comfort evaluation of ZnO coated fabrics by artificial neural network assisted with golden eagle optimizer model publication-title: Sci. Rep. doi: 10.1038/s41598-022-10406-6 – volume: 34 start-page: 83 year: 2020 ident: ref_16 article-title: Blocksdn: Blockchain-as-a-service for software defined networking in smart city applications publication-title: IEEE Netw. doi: 10.1109/MNET.001.1900151 – ident: ref_20 doi: 10.23919/MIPRO.2018.8400278 – volume: 119 start-page: 2469 year: 2021 ident: ref_17 article-title: BDN-GWMNN: Internet of things (IoT) enabled secure smart city applications publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-021-08339-w – volume: 11 start-page: 12 year: 2021 ident: ref_5 article-title: DeepBlockScheme: A deep learning-based blockchain driven scheme for secure smart city publication-title: Hum.-Cent. Comput. Inf. Sci – volume: 35 start-page: 223 year: 2020 ident: ref_7 article-title: A machine learning approach for blockchain-based smart home networks security publication-title: IEEE Netw. doi: 10.1109/MNET.011.2000514 – volume: 115 start-page: 101954 year: 2021 ident: ref_10 article-title: TP2SF: A Trustworthy Privacy-Preserving Secured Framework for sustainable smart cities by leveraging blockchain and machine learning publication-title: J. Syst. Archit. doi: 10.1016/j.sysarc.2020.101954 – ident: ref_3 doi: 10.1007/978-3-030-53149-2_4 – volume: 22 start-page: 451 year: 2019 ident: ref_1 article-title: Information security model of block chain based on intrusion sensing in the IoT environment publication-title: Clust. Comput. doi: 10.1007/s10586-018-2516-1 – volume: 6 start-page: 7702 year: 2019 ident: ref_8 article-title: Privacy-preserving support vector machine training over blockchain-based encrypted IoT data in smart cities publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2019.2901840 – volume: 143 start-page: 167 year: 2019 ident: ref_14 article-title: BlockSecIoTNet: Blockchain-based decentralized security architecture for IoT network publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2019.06.019 – ident: ref_15 doi: 10.3390/s20164636 – volume: 161 start-page: 113702 year: 2020 ident: ref_24 article-title: Heap-based optimizer inspired by corporate rank hierarchy for global optimization publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113702 |
| SSID | ssj0000913810 |
| Score | 2.4623263 |
| Snippet | Currently, the amount of Internet of Things (IoT) applications is enhanced for processing, analyzing, and managing the created big data from the smart city.... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 5893 |
| SubjectTerms | Algorithms Assaults Blockchain blockchain assisted IoT Data transmission Design Feature selection Internet of Things intrusion detection Machine learning Optimization Principal components analysis Privacy privacy preserving security Smart cities smart city Technology |
| SummonAdditionalLinks | – databaseName: ProQuest Central Database Suite (ProQuest) dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NTxsxELUo9FAOLdBWpKXIBw5tpVW9XnvXOVUNCuIAadQPidvKHts0AhKapJH498zsOoGqqBeua6-00jy_Gb-13zB2oL2qvDMhC1a6TEUbMxOiz4KxmP0ASusaE9eTajAwZ2fdYRLcZulY5ZITG6L2EyCN_JMkwQNLQaM-X__OqGsU_V1NLTSesA1yKkOcb_T6g-G3lcpCrpcmF-3FvAL39_RfOEe61qZb_JWKGsf-fwi5yTJHLx77fVvseaov-ZcWENtsLYx32OY918Edtp3W84y_T6bTH16yxVfkjit887Q5XRl4Ml495z3Mc54Pp6OFhRtORzaIXmgA8-AF_LKjMccgE1w8bwXGMOeTyNuWoJyUXv79CiHKDxv7Vt6_u1z3iv086v84PM5ST4YMilLNs-CFcjp2Cw25CgaE8ZW3mOchdwoKZ5wUFRJoCT6UNodKRqkLEVzlpXFY_L1m6-PJOOwyLkFG540GryWCxLuohTWlMKGrwCvZYR-X4akhGZZT34zLGjcuFMv6Xiw77GA1-br16Xh4Wo_ivJpC5trNg8n0vE5rtc6NFQFUFcHmSkPlhFJFxErVulhggdthe0sI1GnFz-q7-L_5__Bb9kzSFYpGydlj6_Ppn_COPYXFfDSb7icA3wJLa_4W priority: 102 providerName: ProQuest |
| Title | Optimal Machine Learning Based Privacy Preserving Blockchain Assisted Internet of Things with Smart Cities Environment |
| URI | https://www.proquest.com/docview/2679677284 https://doaj.org/article/18a0ec47fca145c7b0443f352abf3405 |
| Volume | 12 |
| WOSCitedRecordID | wos000819058200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB2hlgMcUD9ALC2VDz0UpIjYsRPnyFZbFandRhSkcorssQ2rtttqd1mJf8_YScsiKnHpMclEieaNZzxj-w3AvnKyclb7zBthMxlMyLQPLvPaUPRDLI1NJK4n1XisLy7qZqXVV9wT1tEDd4r7wLXJPcoqoOFSYWVzKYtA0wZjQyE79tK8qleSqeSDax6pq7oDeQXl9XE9mJObVrou_gpBian_H0ecosvRBrzop4XsY_c7m_DET7fg-QpZ4BZs9sNwzg56ruh327A8oyF_TW-epk2RnvV8qd_ZkMKTY81ssjT4i8WdFtErxAcUvi7xh5lMGWETUXasqwv6BbsJrOvkyWKBlp1fk4LYYWJdZaM_Z-Jewtej0ZfD46xvpZBhUcpF5l0urQp1oZBLrzHXrnKGwjNyK7Gw2kYlcl6i86XhWIkgVJF7WzmhLc3ZXsHa9GbqXwMTKIJ1WqFTgrB1Nqjc6DLXvpbopBjA-zvtttjzjMd2F1ct5RsRinYFigHs3wvfdvQaD4sNI0z3IpETO90gS2l7S2n_ZykD2L0Due0H6rwVsY5GGYaWbx7jGzvwTMTzEalMswtri9lP_xae4nIxmc_2YH04Gjef95Kt0lXz6bT59htlUvHB |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NbxMxEB2VFAk4AC2gBgr4UCRAWuH1erPeA0K0tGrUJESiSOW02GO7jaBJSUJQ_xS_kfF-pEUgbj1wXXv34H0zbzz2vAHYSq3MrFEuclqYSHrtI-W8jZzSxH6IHW1KEddeNhioo6N8uAI_m1qYcK2y8Ymlo7YTDDnyVyIkPCgUVPLN2bcodI0Kp6tNC40KFgfu_Adt2Wavu-_o_z4TYm_3cGc_qrsKRJh05DxylkuT-jxJMZZOIVc2s5qYCmMjMTHKCJ6RC-igdR0dYya8SBPuTGaFMhS-0HevwaoMYG_B6rDbH35aZnWCyqaKeVUImCQ5D-fQMdFDqvLkN-orOwT8QQAlq-3d-d_W4y7cruNn9rYC_BqsuPE63LqkqrgOa7W_mrHntaj2i3uweE--8ZTe7Je3Rx2rhWWP2TbxuGXD6Wih8ZyFKynBfYYB4vkveKJHY0YgDuZgWZVAdXM28axqecpCJpt9OCUTZDulPC3bvSgevA8fr2Q1HkBrPBm7DWAChTdWpWhTQUZgjU-5Vh2uXC7RStGGlw0cCqwF2UNfkK8FbcwCdopL2GnD1nLyWaVD8vdp2wFXyylBPLx8MJkeF7UvKmKluUOZedSxTDEzXMrEUySujU8ogG_DZgO5ovZos-ICbw__PfwUbuwf9ntFrzs4eAQ3RSgXKbNWm9CaT7-7x3AdF_PRbPqkNh4Gn68an78AOVJbQg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLUJwAFpALBTwoUiAFDVxnMQ5IEQ_VqzaLpEAqZyCPbbLCrpbdpdF_Wv8OsaJd1sE4tYD19jJwXnzZjz2vAHYzIwojJY2sorrSDjlImmdiaxU5P0Qc6UbEdeDYjCQR0dltQI_F7Uw_lrlghMbojZj9DnyLe4THhQKSrHlwrWIarf36vRb5DtI-ZPWRTuNFiL79uwHbd-mL_u79K-fct7be7_zJgodBiJMczGLrImFzlyZZpgIKzGWpjCKvBYmWmCqpeZxQXSQo7G5SrDgjmdpbHVhuNQUytB3r8AqheSCd2C16h9WH5cZHq-4KZO4LQpM0zL2Z9IJuYpMlulvbrDpFvCHM2g8XO_W_7w2t-FmiKvZ69YQ1mDFjtbhxgW1xXVYCzw2Zc-C2PbzOzB_S5x5Qm8eNrdKLQuCs8dsm_y7YdVkOFd4xvxVFU-rfoD8_xf8rIYjRuD2ZmJYm1i1MzZ2rG2FynyGm707IdNkO41sLds7Lyq8Cx8uZTXuQWc0Htn7wDhyp43M0GScjMNol8VK5rG0pUAjeBdeLKBRYxBq9_1Cvta0YfM4qi_gqAuby8mnrT7J36dte4wtp3hR8ebBeHJcB46qE6lii6JwqBKRYaFjIVJHEbrSLqXAvgsbC_jVgemm9Tn2Hvx7-AlcI1DWB_3B_kO4zn0VSZPM2oDObPLdPoKrOJ8Np5PHwY4YfLpseP4C6SFkAg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+Machine+Learning+Based+Privacy+Preserving+Blockchain+Assisted+Internet+of+Things+with+Smart+Cities+Environment&rft.jtitle=Applied+sciences&rft.au=Al-Qarafi%2C+A.&rft.au=Alrowais%2C+Fadwa&rft.au=S.+Alotaibi%2C+Saud&rft.au=Nemri%2C+Nadhem&rft.date=2022-06-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=12&rft.issue=12&rft.spage=5893&rft_id=info:doi/10.3390%2Fapp12125893&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app12125893 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |