Intelligent Collision Avoidance Method for Ships Based on COLRGEs and Improved Velocity Obstacle Algorithm

Collision prevention is critical for navigational safety at sea, which has developed rapidly in the past decade and attracted a lot of attention. In this article, an improved velocity obstacle (IVO) algorithm for intelligent collision avoidance of ocean-going ships is proposed in various operating c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied sciences Ročník 12; číslo 18; s. 8926
Hlavní autoři: Zhao, Xingya, He, Yixiong, Huang, Liwen, Mou, Junmin, Zhang, Ke, Liu, Xiao
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.09.2022
Témata:
ISSN:2076-3417, 2076-3417
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Collision prevention is critical for navigational safety at sea, which has developed rapidly in the past decade and attracted a lot of attention. In this article, an improved velocity obstacle (IVO) algorithm for intelligent collision avoidance of ocean-going ships is proposed in various operating conditions, taking into count both a ship’s manoeuvrability and Convention on the International Regulations for Preventing Collisions at Sea (COLREGs). An integrated model combines a three-degree-of-freedom manoeuvring model with ship propeller characteristics to provide a precise prediction of ships in various manoeuvring circumstances. In the given case, what is different to present studies, this improved algorithm allows for decision-making in two ways: altering course and changing speed. The proposed technique is demonstrated in a variety of scenarios through simulation. The findings reveal that collision-avoidance decision-making can intelligently avoid collisions with the target ships (TSs) in multi-ship situations.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2076-3417
2076-3417
DOI:10.3390/app12188926