Branched Continued Fraction Expansions of Horn’s Hypergeometric Function H3 Ratios
The paper deals with the problem of construction and investigation of branched continued fraction expansions of special functions of several variables. We give some recurrence relations of Horn hypergeometric functions H3. By these relations the branched continued fraction expansions of Horn’s hyper...
Uložené v:
| Vydané v: | Mathematics (Basel) Ročník 9; číslo 2; s. 148 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.01.2021
|
| Predmet: | |
| ISSN: | 2227-7390, 2227-7390 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | The paper deals with the problem of construction and investigation of branched continued fraction expansions of special functions of several variables. We give some recurrence relations of Horn hypergeometric functions H3. By these relations the branched continued fraction expansions of Horn’s hypergeometric function H3 ratios have been constructed. We have established some convergence criteria for the above-mentioned branched continued fractions with elements in R2 and C2. In addition, it is proved that the branched continued fraction expansions converges to the functions which are an analytic continuation of the above-mentioned ratios in some domain (here domain is an open connected set). Application for some system of partial differential equations is considered. |
|---|---|
| Bibliografia: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 2227-7390 2227-7390 |
| DOI: | 10.3390/math9020148 |