Parameterized algorithms for the Happy Set problem
In this paper we study the parameterized complexity for the Maximum Happy Set problem (MaxHS): For an undirected graph G=(V,E) and a subset S⊆V of vertices, a vertex v is happy if v and all its neighbors are in S; otherwise unhappy. Given an undirected graph G=(V,E) and an integer k, the goal of Max...
Saved in:
| Published in: | Discrete Applied Mathematics Vol. 304; pp. 32 - 44 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier B.V
15.12.2021
Elsevier BV |
| Subjects: | |
| ISSN: | 0166-218X, 1872-6771 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper we study the parameterized complexity for the Maximum Happy Set problem (MaxHS): For an undirected graph G=(V,E) and a subset S⊆V of vertices, a vertex v is happy if v and all its neighbors are in S; otherwise unhappy. Given an undirected graph G=(V,E) and an integer k, the goal of MaxHS is to find a subset S⊆V of k vertices such that the number of happy vertices is maximized. In this paper we first show that MaxHS is W[1]-hard with respect to k even if the input graph is a split graph. Then, we prove the fixed-parameter tractability of MaxHS when parameterized by tree-width, by clique-width plus k, by neighborhood diversity, or by cluster deletion number. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0166-218X 1872-6771 |
| DOI: | 10.1016/j.dam.2021.07.005 |