Parameterized algorithms for the Happy Set problem

In this paper we study the parameterized complexity for the Maximum Happy Set problem (MaxHS): For an undirected graph G=(V,E) and a subset S⊆V of vertices, a vertex v is happy if v and all its neighbors are in S; otherwise unhappy. Given an undirected graph G=(V,E) and an integer k, the goal of Max...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Discrete Applied Mathematics Ročník 304; s. 32 - 44
Hlavní autoři: Asahiro, Yuichi, Eto, Hiroshi, Hanaka, Tesshu, Lin, Guohui, Miyano, Eiji, Terabaru, Ippei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 15.12.2021
Elsevier BV
Témata:
ISSN:0166-218X, 1872-6771
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper we study the parameterized complexity for the Maximum Happy Set problem (MaxHS): For an undirected graph G=(V,E) and a subset S⊆V of vertices, a vertex v is happy if v and all its neighbors are in S; otherwise unhappy. Given an undirected graph G=(V,E) and an integer k, the goal of MaxHS is to find a subset S⊆V of k vertices such that the number of happy vertices is maximized. In this paper we first show that MaxHS is W[1]-hard with respect to k even if the input graph is a split graph. Then, we prove the fixed-parameter tractability of MaxHS when parameterized by tree-width, by clique-width plus k, by neighborhood diversity, or by cluster deletion number.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0166-218X
1872-6771
DOI:10.1016/j.dam.2021.07.005