An SQP Algorithm for Structural Topology Optimization Based on Majorization–Minimization Method

When applying the sequential quadratic programming (SQP) algorithm to topology optimization, using the quasi-Newton methods or calculating the Hessian matrix directly will result in a considerable amount of calculation, making it computationally infeasible when the number of optimization variables i...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied sciences Ročník 12; číslo 13; s. 6304
Hlavní autori: Liao, Weilong, Zhang, Qiliang, Meng, Huanli
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.07.2022
Predmet:
ISSN:2076-3417, 2076-3417
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract When applying the sequential quadratic programming (SQP) algorithm to topology optimization, using the quasi-Newton methods or calculating the Hessian matrix directly will result in a considerable amount of calculation, making it computationally infeasible when the number of optimization variables is large. To solve the above problems, this paper creatively proposes a method for calculating the approximate Hessian matrix for structural topology optimization with minimum compliance problems. Then, the second-order Taylor expansion transforms the original problem into a series of separable and easy-to-solve convex quadratic programming (QP) subproblems. Finally, the quadratic programming optimality criteria (QPOC) method and the QP solver of MATLAB are used to solve the subproblems. Compared with other sequential quadratic programming methods, the advantage of the proposed method is that the Hessian matrix is diagonally positive definite and its calculation is simple. Numerical experiments on an MBB beam and cantilever beam verify the feasibility and efficiency of the proposed method.
AbstractList When applying the sequential quadratic programming (SQP) algorithm to topology optimization, using the quasi-Newton methods or calculating the Hessian matrix directly will result in a considerable amount of calculation, making it computationally infeasible when the number of optimization variables is large. To solve the above problems, this paper creatively proposes a method for calculating the approximate Hessian matrix for structural topology optimization with minimum compliance problems. Then, the second-order Taylor expansion transforms the original problem into a series of separable and easy-to-solve convex quadratic programming (QP) subproblems. Finally, the quadratic programming optimality criteria (QPOC) method and the QP solver of MATLAB are used to solve the subproblems. Compared with other sequential quadratic programming methods, the advantage of the proposed method is that the Hessian matrix is diagonally positive definite and its calculation is simple. Numerical experiments on an MBB beam and cantilever beam verify the feasibility and efficiency of the proposed method.
Author Zhang, Qiliang
Liao, Weilong
Meng, Huanli
Author_xml – sequence: 1
  givenname: Weilong
  orcidid: 0000-0003-2270-241X
  surname: Liao
  fullname: Liao, Weilong
– sequence: 2
  givenname: Qiliang
  orcidid: 0000-0003-0010-6879
  surname: Zhang
  fullname: Zhang, Qiliang
– sequence: 3
  givenname: Huanli
  surname: Meng
  fullname: Meng, Huanli
BookMark eNptkUtOwzAQhi1UJErpigtEYokKdhwn9bJUPCq1KqhlbTl-tK7SODjOoqy4AzfkJJgGQYWYzYx-ffPPaOYUdEpbKgDOEbzCmMJrXlUoRjjFMDkC3Rhm6QAnKOsc1CegX9cbGIIiPESwC_iojBZPj9GoWFln_HobaeuihXeN8I3jRbS0lS3sahfNK2-25pV7Y8vohtdKRqGY8U3oa9WPt_eZKX-hmfJrK8_AseZFrfrfuQee726X44fBdH4_GY-mA4HTxA-kImmitcgRTggmMiEZkVwhmsugY0pSTclQcUSw0ESoQKlY61hQKDTSHPfApPWVlm9Y5cyWux2z3LC9YN2KceeNKBRTGCEotcwl1ImIVY5iiFMFseY5pRQGr4vWq3L2pVG1ZxvbuDKsz-J0SGiGU0oDddlSwtm6dkr_TEWQfb2EHbwk0OgPLYzfH8o7bop_ez4B6HSSug
CitedBy_id crossref_primary_10_1016_j_compstruc_2025_107825
crossref_primary_10_1016_j_istruc_2023_04_120
crossref_primary_10_1016_j_engstruct_2025_120507
crossref_primary_10_1016_j_amc_2023_127903
crossref_primary_10_3934_math_2025648
Cites_doi 10.3390/app12094220
10.1007/s00170-005-0387-0
10.3390/app11156671
10.1016/0045-7825(88)90086-2
10.1007/s00158-010-0594-7
10.1016/j.engstruct.2013.08.012
10.1007/s10107-012-0514-2
10.1007/s11044-005-2530-y
10.1137/0802028
10.1198/0003130042836
10.1007/s00466-008-0312-0
10.1007/978-3-642-14922-1_69
10.1109/TSP.2016.2601299
10.1016/S0045-7825(02)00559-5
10.1002/nme.1620240207
10.1007/s00158-014-1084-0
10.1007/s00158-006-0087-x
10.1007/BF01742754
10.1016/j.autcon.2020.103084
10.1115/1.4027609
10.1214/08-STS264
10.1137/S1052623499362822
10.1007/s00158-015-1381-2
10.1007/s00158-011-0739-3
10.1007/BF01650949
10.1007/BF01279647
10.1137/S1052623402413227
10.1080/10556780512331318182
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app12136304
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_e3110dfdbd0f4c2eb12036e03fab9990
10_3390_app12136304
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c364t-de564ffcb134535d4575dae19bd64f3956f958ea153cf5ce345e2ff2c90cf1fa3
IEDL.DBID DOA
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000822169700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Tue Oct 14 19:04:46 EDT 2025
Mon Jun 30 11:08:12 EDT 2025
Tue Nov 18 21:34:48 EST 2025
Sat Nov 29 07:11:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-de564ffcb134535d4575dae19bd64f3956f958ea153cf5ce345e2ff2c90cf1fa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0010-6879
0000-0003-2270-241X
OpenAccessLink https://doaj.org/article/e3110dfdbd0f4c2eb12036e03fab9990
PQID 2685973699
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_e3110dfdbd0f4c2eb12036e03fab9990
proquest_journals_2685973699
crossref_primary_10_3390_app12136304
crossref_citationtrail_10_3390_app12136304
PublicationCentury 2000
PublicationDate 2022-07-01
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Svanberg (ref_13) 1987; 24
Rozvany (ref_20) 1992; 4
Wang (ref_6) 2003; 192
Ananiev (ref_9) 2005; 13
Gomes (ref_11) 2011; 30
Rong (ref_16) 2013; 56
Huang (ref_8) 2008; 43
ref_10
Etman (ref_15) 2012; 45
Andreassen (ref_24) 2011; 43
Haber (ref_25) 1996; 11
Hunter (ref_19) 2004; 58
Sigmund (ref_29) 2007; 33
Wu (ref_21) 2010; 25
Kikuchi (ref_4) 1988; 71
Lewis (ref_17) 2013; 141
ref_23
Zuo (ref_30) 2007; 32
Serafini (ref_28) 2005; 20
Vantyghem (ref_2) 2020; 112
ref_1
Mehrotra (ref_26) 1992; 2
ref_3
(ref_5) 1989; 1
Wright (ref_27) 2004; 14
Stolpe (ref_18) 2016; 53
Guo (ref_7) 2014; 81
Svanberg (ref_14) 2002; 12
Park (ref_12) 2014; 50
Sun (ref_22) 2017; 65
References_xml – ident: ref_3
  doi: 10.3390/app12094220
– volume: 32
  start-page: 787
  year: 2007
  ident: ref_30
  article-title: Study of key algorithms in topology optimization
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-005-0387-0
– ident: ref_1
  doi: 10.3390/app11156671
– volume: 71
  start-page: 197
  year: 1988
  ident: ref_4
  article-title: Generating optimal topologies in structural design using a homogenization method
  publication-title: Comput. Method. Appl. M.
  doi: 10.1016/0045-7825(88)90086-2
– volume: 43
  start-page: 1
  year: 2011
  ident: ref_24
  article-title: Efficient topology optimization in MATLAB using 88 lines of code
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-010-0594-7
– volume: 56
  start-page: 2098
  year: 2013
  ident: ref_16
  article-title: Topological optimization design of structures under random excitations using SQP method
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2013.08.012
– volume: 141
  start-page: 135
  year: 2013
  ident: ref_17
  article-title: Nonsmooth optimization via quasi-Newton methods
  publication-title: Math. Program.
  doi: 10.1007/s10107-012-0514-2
– volume: 13
  start-page: 25
  year: 2005
  ident: ref_9
  article-title: On Equivalence Between Optimality Criteria and Projected Gradient Methods with Application to Topology Optimization Problem
  publication-title: Multibody Syst. Dyn.
  doi: 10.1007/s11044-005-2530-y
– ident: ref_23
– volume: 2
  start-page: 575
  year: 1992
  ident: ref_26
  article-title: On the Implementation of a Primal-Dual Interior Point Method
  publication-title: SIAM J. Optim.
  doi: 10.1137/0802028
– volume: 58
  start-page: 30
  year: 2004
  ident: ref_19
  article-title: A Tutorial on MM Algorithms
  publication-title: Am. Stat.
  doi: 10.1198/0003130042836
– volume: 43
  start-page: 393
  year: 2008
  ident: ref_8
  article-title: Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-008-0312-0
– ident: ref_10
  doi: 10.1007/978-3-642-14922-1_69
– volume: 65
  start-page: 794
  year: 2017
  ident: ref_22
  article-title: Majorization-Minimization Algorithms in Signal Processing, Communications, and Machine Learning
  publication-title: IEEE T. Signal Proces.
  doi: 10.1109/TSP.2016.2601299
– volume: 192
  start-page: 227
  year: 2003
  ident: ref_6
  article-title: A level set method for structural topology optimization
  publication-title: Comput. Method. Appl. M.
  doi: 10.1016/S0045-7825(02)00559-5
– volume: 24
  start-page: 359
  year: 1987
  ident: ref_13
  article-title: The method of moving asymptotes-a new method for structural optimization
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.1620240207
– volume: 30
  start-page: 53
  year: 2011
  ident: ref_11
  article-title: An SLP algorithm and its application to topology optimization
  publication-title: Comput. Appl. Math.
– volume: 50
  start-page: 739
  year: 2014
  ident: ref_12
  article-title: A globally convergent sequential convex programming using an enhanced two-point diagonal quadratic approximation for structural optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-014-1084-0
– volume: 33
  start-page: 401
  year: 2007
  ident: ref_29
  article-title: Morphology-based black and white filters for topology optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-006-0087-x
– volume: 4
  start-page: 250
  year: 1992
  ident: ref_20
  article-title: Generalized shape optimization without homogenization
  publication-title: Struct. Optim.
  doi: 10.1007/BF01742754
– volume: 112
  start-page: 103084
  year: 2020
  ident: ref_2
  article-title: 3D printing of a post-tensioned concrete girder designed by topology optimization
  publication-title: Automat. Constr.
  doi: 10.1016/j.autcon.2020.103084
– volume: 81
  start-page: 081009
  year: 2014
  ident: ref_7
  article-title: Doing Topology Optimization Explicitly and Geometrically—A New Moving Morphable Components Based Framework
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4027609
– volume: 25
  start-page: 492
  year: 2010
  ident: ref_21
  article-title: The MM alternative to EM
  publication-title: Stat. Sci.
  doi: 10.1214/08-STS264
– volume: 12
  start-page: 555
  year: 2002
  ident: ref_14
  article-title: A Class of Globally Convergent Optimization Methods Based on Conservative Convex Separable Approximations
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623499362822
– volume: 53
  start-page: 1315
  year: 2016
  ident: ref_18
  article-title: An efficient second-order SQP method for structural topology optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-015-1381-2
– volume: 45
  start-page: 479
  year: 2012
  ident: ref_15
  article-title: First-order sequential convex programming using approximate diagonal QP subproblems
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-011-0739-3
– volume: 1
  start-page: 193
  year: 1989
  ident: ref_5
  article-title: Optimal shape design as a material distribution problem
  publication-title: Struct. Optim.
  doi: 10.1007/BF01650949
– volume: 11
  start-page: 1
  year: 1996
  ident: ref_25
  article-title: A new approach to variable-topology shape design using a constraint on perimeter
  publication-title: Struct. Optim.
  doi: 10.1007/BF01279647
– volume: 14
  start-page: 1074
  year: 2004
  ident: ref_27
  article-title: A feasible trust-region sequential quadratic programming algorithm
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623402413227
– volume: 20
  start-page: 353
  year: 2005
  ident: ref_28
  article-title: Gradient projection methods for quadratic programs and applications in training support vector machines
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556780512331318182
SSID ssj0000913810
Score 2.2695858
Snippet When applying the sequential quadratic programming (SQP) algorithm to topology optimization, using the quasi-Newton methods or calculating the Hessian matrix...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 6304
SubjectTerms Algorithms
Approximation
Compliance
Hessian matrix
Linear programming
majorization–minimization
Methods
Optimization
sequential quadratic programming
topology optimization
Variables
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1B4QAHdkTZ5EMPgBSRxM52Qi0CcWkpm8QtcryUopJCWyFx4x_4Q76EceK2SCAu3CJnYkUaz2KP5z2AWha6kdA-dzzPtOTIEE2KRZGDkSTCiB4pnfGCbCJqteL7-6RtD9yG9lrl2CcWjlr2hTkjP_bDGHNfGibJyfOLY1ijTHXVUmjMwpxBKsN1Ptc4a7WvJ6csBvUy9tyyMY_i_t7UhQ2KWUgtNds4FBWI_T8cchFlzpf_-38rsGTzS1IvF8QqzKh8DRa_oQ6uwaq15yE5sKDTh-vA6zm5uWqTeq-Ds44enghms-SmQJc1yBzktmRTeCOX6GSebPcmaWAQlAQfmvwRvytHP98_mt18KtQsWKo34O787Pb0wrH0C46gIRs5UgUh01pkHmUBDSTDzE5y5SWZxHGKGyudBLHi6DOFDoRCKeVr7YvEFdrTnG5CJe_nagtInCmJmYwKeCIZ44ILFsZZxHFe6XuaVeForIlUWGxyQ5HRS3GPYtSWflNbFWoT4ecSkuN3sYZR6UTE4GgXA_1BJ7VmmSqK6Y_UMpOuZsLHwGUKs8qlmmeYOrtV2B1rO7XGPUynqt7--_UOLPimW6K43bsLFdSZ2oN58TrqDgf7dq1-AVf99pc
  priority: 102
  providerName: ProQuest
Title An SQP Algorithm for Structural Topology Optimization Based on Majorization–Minimization Method
URI https://www.proquest.com/docview/2685973699
https://doaj.org/article/e3110dfdbd0f4c2eb12036e03fab9990
Volume 12
WOSCitedRecordID wos000822169700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8QwFH6IetCDuOK4kYMHFYptky45zoiihxnrBnoqaRYd0SqOCN78D_5Df4kvaUYHFLx4a8PrwsvLW0je9wFsVmmYSROLIIpsS45KcUmxLAswkmQY0TNtKuHIJrJeL7-85MUI1Zc9E9bAAzeK29UUA5QyqlKhYTJG12K3znRIjagwuXHVepjxkWLK-WAeWeiqpiGPYl1v94MtellKPSXbMAQ5pP4fjthFl4NZmPFpIWk3vzMHY7qeh-kRsMB5mPPLcEC2PFb09gKIdk3OTgrSvrt-wDL_5p5gEkrOHCisBdQg5w0Jwis5Rt9w75suSQdjlyJ40RW3-Fwz-vH23u3X30JdRy69CBcH--d7h4FnTQgkTdlzoHSSMmNkFVGW0EQxTMiU0BGvFI5TrIcMT3It0NVJk0iNUjo2JpY8lCYygi7BeP1Q62UgeaUVJiA6EVwxJqSQLM2rTOB7VRwZ1oKdoSJL6SHFLbPFXYmlhdV6OaL1Fmx-CT82SBq_i3XsjHyJWPhrN4BGUXqjKP8yihasDeez9GtyUMZpjtUTTTlf-Y9vrMJUbFsh3NHdNRjHmdXrMClfnvuDpw2Y6Oz3itMNZ5Z4Vxx1i6tPvZvq7g
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dTtRAFD7BhUS9UAGNq4hzAQmQNLYz078LYxaRsIEuS1iS9apO5wcx0EV2o-HOd_A9fCifxDPtdCHBcMcFd830tEk735xz5ud8H8BKEfmxNFR4QWBLclSEQ4rHsYeRJMaIHmtTiEpsIu71kuEw7c_An6YWxh6rbHxi5ajVSNo18nc0SjD3ZVGafjj_7lnVKLu72kho1LDY1Zc_cco2ft_dwv5dpXT70-DjjudUBTzJIj7xlA4jbowsAsZDFiqOCYsSOkgLhe0M5wsmDRMt0BVIE0qNVpoaQ2XqSxMYwfC9D2CWW7C3YLbfzfqfp6s6lmUzCfy6EJCx1Lf70JY1LWJOCq4JfZVCwI0AUEW17af37X88gycufyadGvDzMKPLBXh8jVVxAeadvxqTNUeqvb4IolOSw4M-6Zwe41dMvp4RzNbJYcWea5lHyKBWi7gk--hEz1x1KtnEIK8IXmTiGz5Xt_799Ts7Ka-MskqF-zkc3cmHv4BWOSr1SyBJoRVmajoUqeJcSCF5lBSxwPcqGhjeho2m53PpuNetBMhpjnMwC5P8GkzasDI1Pq8pR_5vtmkhNDWxPOFVw-jiOHduJ9cM0ztlVKF8wyXFwGw3nrXPjChwauC3YalBV-6c1zi_gtar22-_hYc7g2wv3-v2dl_DI2orQ6qTzEvQwv7Tb2BO_picjC-W3Tgh8OWuofgPrxRV7g
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB7Rparg0AJt1aUUfKBSqRSR2M7foULLz4oV3W0qQKKn1PEPUEEW2BUVt75D34bH6ZN0nDgLUqveOPQWORNLTj7PjGPP9wGsFpEfS0OFFwS2JEdFOKV4HHsYSWKM6LE2hajEJuLBIDk6SrMpuG1qYeyxysYnVo5aDaX9R75OowRzXxal6bpxxyKy7e7GxaVnFaTsTmsjp1FDZE_ffMfl2-hDbxu_9VtKuzsHW7ueUxjwJIv42FM6jLgxsggYD1moOCYvSuggLRS2M1w7mDRMtEC3IE0oNVppagyVqS9NYATDfh_BNKbknLZgOuv1sy-TPzyWcTMJ_LookLHUt3vSlkEtYk4WrgmDlVrAH8GginDdZ__zu5mDpy6vJp16IszDlC4XYPYe2-ICzDs_NiLvHNn22nMQnZLsf85I5-wYRzE-OSeYxZP9ilXXMpKQg1pF4oZ8Qud67qpWySYGf0Xwoi--4XN1668fP_un5Z1Rv1LnfgGHDzLwl9Aqh6V-BSQptMIMTociVZwLKSSPkiIW2K-igeFteN-gIJeOk91Kg5zluDazkMnvQaYNqxPji5qK5O9mmxZOExPLH141DK-Oc-eOcs0w7VNGFco3XFIM2HZDWvvMiAKXDH4blhqk5c6pjfI7mC3--_YKPEH85R97g73XMENtwUh1wHkJWvj59Bt4LK_Hp6OrZTdlCHx9aCT-BoGNXq4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+SQP+Algorithm+for+Structural+Topology+Optimization+Based+on+Majorization%E2%80%93Minimization+Method&rft.jtitle=Applied+sciences&rft.au=Weilong+Liao&rft.au=Qiliang+Zhang&rft.au=Huanli+Meng&rft.date=2022-07-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=13&rft.spage=6304&rft_id=info:doi/10.3390%2Fapp12136304&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e3110dfdbd0f4c2eb12036e03fab9990
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon