An SQP Algorithm for Structural Topology Optimization Based on Majorization–Minimization Method
When applying the sequential quadratic programming (SQP) algorithm to topology optimization, using the quasi-Newton methods or calculating the Hessian matrix directly will result in a considerable amount of calculation, making it computationally infeasible when the number of optimization variables i...
Uložené v:
| Vydané v: | Applied sciences Ročník 12; číslo 13; s. 6304 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.07.2022
|
| Predmet: | |
| ISSN: | 2076-3417, 2076-3417 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | When applying the sequential quadratic programming (SQP) algorithm to topology optimization, using the quasi-Newton methods or calculating the Hessian matrix directly will result in a considerable amount of calculation, making it computationally infeasible when the number of optimization variables is large. To solve the above problems, this paper creatively proposes a method for calculating the approximate Hessian matrix for structural topology optimization with minimum compliance problems. Then, the second-order Taylor expansion transforms the original problem into a series of separable and easy-to-solve convex quadratic programming (QP) subproblems. Finally, the quadratic programming optimality criteria (QPOC) method and the QP solver of MATLAB are used to solve the subproblems. Compared with other sequential quadratic programming methods, the advantage of the proposed method is that the Hessian matrix is diagonally positive definite and its calculation is simple. Numerical experiments on an MBB beam and cantilever beam verify the feasibility and efficiency of the proposed method. |
|---|---|
| AbstractList | When applying the sequential quadratic programming (SQP) algorithm to topology optimization, using the quasi-Newton methods or calculating the Hessian matrix directly will result in a considerable amount of calculation, making it computationally infeasible when the number of optimization variables is large. To solve the above problems, this paper creatively proposes a method for calculating the approximate Hessian matrix for structural topology optimization with minimum compliance problems. Then, the second-order Taylor expansion transforms the original problem into a series of separable and easy-to-solve convex quadratic programming (QP) subproblems. Finally, the quadratic programming optimality criteria (QPOC) method and the QP solver of MATLAB are used to solve the subproblems. Compared with other sequential quadratic programming methods, the advantage of the proposed method is that the Hessian matrix is diagonally positive definite and its calculation is simple. Numerical experiments on an MBB beam and cantilever beam verify the feasibility and efficiency of the proposed method. |
| Author | Zhang, Qiliang Liao, Weilong Meng, Huanli |
| Author_xml | – sequence: 1 givenname: Weilong orcidid: 0000-0003-2270-241X surname: Liao fullname: Liao, Weilong – sequence: 2 givenname: Qiliang orcidid: 0000-0003-0010-6879 surname: Zhang fullname: Zhang, Qiliang – sequence: 3 givenname: Huanli surname: Meng fullname: Meng, Huanli |
| BookMark | eNptkUtOwzAQhi1UJErpigtEYokKdhwn9bJUPCq1KqhlbTl-tK7SODjOoqy4AzfkJJgGQYWYzYx-ffPPaOYUdEpbKgDOEbzCmMJrXlUoRjjFMDkC3Rhm6QAnKOsc1CegX9cbGIIiPESwC_iojBZPj9GoWFln_HobaeuihXeN8I3jRbS0lS3sahfNK2-25pV7Y8vohtdKRqGY8U3oa9WPt_eZKX-hmfJrK8_AseZFrfrfuQee726X44fBdH4_GY-mA4HTxA-kImmitcgRTggmMiEZkVwhmsugY0pSTclQcUSw0ESoQKlY61hQKDTSHPfApPWVlm9Y5cyWux2z3LC9YN2KceeNKBRTGCEotcwl1ImIVY5iiFMFseY5pRQGr4vWq3L2pVG1ZxvbuDKsz-J0SGiGU0oDddlSwtm6dkr_TEWQfb2EHbwk0OgPLYzfH8o7bop_ez4B6HSSug |
| CitedBy_id | crossref_primary_10_1016_j_compstruc_2025_107825 crossref_primary_10_1016_j_istruc_2023_04_120 crossref_primary_10_1016_j_engstruct_2025_120507 crossref_primary_10_1016_j_amc_2023_127903 crossref_primary_10_3934_math_2025648 |
| Cites_doi | 10.3390/app12094220 10.1007/s00170-005-0387-0 10.3390/app11156671 10.1016/0045-7825(88)90086-2 10.1007/s00158-010-0594-7 10.1016/j.engstruct.2013.08.012 10.1007/s10107-012-0514-2 10.1007/s11044-005-2530-y 10.1137/0802028 10.1198/0003130042836 10.1007/s00466-008-0312-0 10.1007/978-3-642-14922-1_69 10.1109/TSP.2016.2601299 10.1016/S0045-7825(02)00559-5 10.1002/nme.1620240207 10.1007/s00158-014-1084-0 10.1007/s00158-006-0087-x 10.1007/BF01742754 10.1016/j.autcon.2020.103084 10.1115/1.4027609 10.1214/08-STS264 10.1137/S1052623499362822 10.1007/s00158-015-1381-2 10.1007/s00158-011-0739-3 10.1007/BF01650949 10.1007/BF01279647 10.1137/S1052623402413227 10.1080/10556780512331318182 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/app12136304 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_e3110dfdbd0f4c2eb12036e03fab9990 10_3390_app12136304 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c364t-de564ffcb134535d4575dae19bd64f3956f958ea153cf5ce345e2ff2c90cf1fa3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000822169700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Tue Oct 14 19:04:46 EDT 2025 Mon Jun 30 11:08:12 EDT 2025 Tue Nov 18 21:34:48 EST 2025 Sat Nov 29 07:11:34 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 13 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c364t-de564ffcb134535d4575dae19bd64f3956f958ea153cf5ce345e2ff2c90cf1fa3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0003-0010-6879 0000-0003-2270-241X |
| OpenAccessLink | https://doaj.org/article/e3110dfdbd0f4c2eb12036e03fab9990 |
| PQID | 2685973699 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_e3110dfdbd0f4c2eb12036e03fab9990 proquest_journals_2685973699 crossref_primary_10_3390_app12136304 crossref_citationtrail_10_3390_app12136304 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-07-01 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Svanberg (ref_13) 1987; 24 Rozvany (ref_20) 1992; 4 Wang (ref_6) 2003; 192 Ananiev (ref_9) 2005; 13 Gomes (ref_11) 2011; 30 Rong (ref_16) 2013; 56 Huang (ref_8) 2008; 43 ref_10 Etman (ref_15) 2012; 45 Andreassen (ref_24) 2011; 43 Haber (ref_25) 1996; 11 Hunter (ref_19) 2004; 58 Sigmund (ref_29) 2007; 33 Wu (ref_21) 2010; 25 Kikuchi (ref_4) 1988; 71 Lewis (ref_17) 2013; 141 ref_23 Zuo (ref_30) 2007; 32 Serafini (ref_28) 2005; 20 Vantyghem (ref_2) 2020; 112 ref_1 Mehrotra (ref_26) 1992; 2 ref_3 (ref_5) 1989; 1 Wright (ref_27) 2004; 14 Stolpe (ref_18) 2016; 53 Guo (ref_7) 2014; 81 Svanberg (ref_14) 2002; 12 Park (ref_12) 2014; 50 Sun (ref_22) 2017; 65 |
| References_xml | – ident: ref_3 doi: 10.3390/app12094220 – volume: 32 start-page: 787 year: 2007 ident: ref_30 article-title: Study of key algorithms in topology optimization publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-005-0387-0 – ident: ref_1 doi: 10.3390/app11156671 – volume: 71 start-page: 197 year: 1988 ident: ref_4 article-title: Generating optimal topologies in structural design using a homogenization method publication-title: Comput. Method. Appl. M. doi: 10.1016/0045-7825(88)90086-2 – volume: 43 start-page: 1 year: 2011 ident: ref_24 article-title: Efficient topology optimization in MATLAB using 88 lines of code publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-010-0594-7 – volume: 56 start-page: 2098 year: 2013 ident: ref_16 article-title: Topological optimization design of structures under random excitations using SQP method publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2013.08.012 – volume: 141 start-page: 135 year: 2013 ident: ref_17 article-title: Nonsmooth optimization via quasi-Newton methods publication-title: Math. Program. doi: 10.1007/s10107-012-0514-2 – volume: 13 start-page: 25 year: 2005 ident: ref_9 article-title: On Equivalence Between Optimality Criteria and Projected Gradient Methods with Application to Topology Optimization Problem publication-title: Multibody Syst. Dyn. doi: 10.1007/s11044-005-2530-y – ident: ref_23 – volume: 2 start-page: 575 year: 1992 ident: ref_26 article-title: On the Implementation of a Primal-Dual Interior Point Method publication-title: SIAM J. Optim. doi: 10.1137/0802028 – volume: 58 start-page: 30 year: 2004 ident: ref_19 article-title: A Tutorial on MM Algorithms publication-title: Am. Stat. doi: 10.1198/0003130042836 – volume: 43 start-page: 393 year: 2008 ident: ref_8 article-title: Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials publication-title: Comput. Mech. doi: 10.1007/s00466-008-0312-0 – ident: ref_10 doi: 10.1007/978-3-642-14922-1_69 – volume: 65 start-page: 794 year: 2017 ident: ref_22 article-title: Majorization-Minimization Algorithms in Signal Processing, Communications, and Machine Learning publication-title: IEEE T. Signal Proces. doi: 10.1109/TSP.2016.2601299 – volume: 192 start-page: 227 year: 2003 ident: ref_6 article-title: A level set method for structural topology optimization publication-title: Comput. Method. Appl. M. doi: 10.1016/S0045-7825(02)00559-5 – volume: 24 start-page: 359 year: 1987 ident: ref_13 article-title: The method of moving asymptotes-a new method for structural optimization publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/nme.1620240207 – volume: 30 start-page: 53 year: 2011 ident: ref_11 article-title: An SLP algorithm and its application to topology optimization publication-title: Comput. Appl. Math. – volume: 50 start-page: 739 year: 2014 ident: ref_12 article-title: A globally convergent sequential convex programming using an enhanced two-point diagonal quadratic approximation for structural optimization publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-014-1084-0 – volume: 33 start-page: 401 year: 2007 ident: ref_29 article-title: Morphology-based black and white filters for topology optimization publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-006-0087-x – volume: 4 start-page: 250 year: 1992 ident: ref_20 article-title: Generalized shape optimization without homogenization publication-title: Struct. Optim. doi: 10.1007/BF01742754 – volume: 112 start-page: 103084 year: 2020 ident: ref_2 article-title: 3D printing of a post-tensioned concrete girder designed by topology optimization publication-title: Automat. Constr. doi: 10.1016/j.autcon.2020.103084 – volume: 81 start-page: 081009 year: 2014 ident: ref_7 article-title: Doing Topology Optimization Explicitly and Geometrically—A New Moving Morphable Components Based Framework publication-title: J. Appl. Mech. doi: 10.1115/1.4027609 – volume: 25 start-page: 492 year: 2010 ident: ref_21 article-title: The MM alternative to EM publication-title: Stat. Sci. doi: 10.1214/08-STS264 – volume: 12 start-page: 555 year: 2002 ident: ref_14 article-title: A Class of Globally Convergent Optimization Methods Based on Conservative Convex Separable Approximations publication-title: SIAM J. Optim. doi: 10.1137/S1052623499362822 – volume: 53 start-page: 1315 year: 2016 ident: ref_18 article-title: An efficient second-order SQP method for structural topology optimization publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-015-1381-2 – volume: 45 start-page: 479 year: 2012 ident: ref_15 article-title: First-order sequential convex programming using approximate diagonal QP subproblems publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-011-0739-3 – volume: 1 start-page: 193 year: 1989 ident: ref_5 article-title: Optimal shape design as a material distribution problem publication-title: Struct. Optim. doi: 10.1007/BF01650949 – volume: 11 start-page: 1 year: 1996 ident: ref_25 article-title: A new approach to variable-topology shape design using a constraint on perimeter publication-title: Struct. Optim. doi: 10.1007/BF01279647 – volume: 14 start-page: 1074 year: 2004 ident: ref_27 article-title: A feasible trust-region sequential quadratic programming algorithm publication-title: SIAM J. Optim. doi: 10.1137/S1052623402413227 – volume: 20 start-page: 353 year: 2005 ident: ref_28 article-title: Gradient projection methods for quadratic programs and applications in training support vector machines publication-title: Optim. Methods Softw. doi: 10.1080/10556780512331318182 |
| SSID | ssj0000913810 |
| Score | 2.2695858 |
| Snippet | When applying the sequential quadratic programming (SQP) algorithm to topology optimization, using the quasi-Newton methods or calculating the Hessian matrix... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 6304 |
| SubjectTerms | Algorithms Approximation Compliance Hessian matrix Linear programming majorization–minimization Methods Optimization sequential quadratic programming topology optimization Variables |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB1B4QAHdkTZ5EMPgBSRxM52Qi0CcWkpm8QtcryUopJCWyFx4x_4Q76EceK2SCAu3CJnYkUaz2KP5z2AWha6kdA-dzzPtOTIEE2KRZGDkSTCiB4pnfGCbCJqteL7-6RtD9yG9lrl2CcWjlr2hTkjP_bDGHNfGibJyfOLY1ijTHXVUmjMwpxBKsN1Ptc4a7WvJ6csBvUy9tyyMY_i_t7UhQ2KWUgtNds4FBWI_T8cchFlzpf_-38rsGTzS1IvF8QqzKh8DRa_oQ6uwaq15yE5sKDTh-vA6zm5uWqTeq-Ds44enghms-SmQJc1yBzktmRTeCOX6GSebPcmaWAQlAQfmvwRvytHP98_mt18KtQsWKo34O787Pb0wrH0C46gIRs5UgUh01pkHmUBDSTDzE5y5SWZxHGKGyudBLHi6DOFDoRCKeVr7YvEFdrTnG5CJe_nagtInCmJmYwKeCIZ44ILFsZZxHFe6XuaVeForIlUWGxyQ5HRS3GPYtSWflNbFWoT4ecSkuN3sYZR6UTE4GgXA_1BJ7VmmSqK6Y_UMpOuZsLHwGUKs8qlmmeYOrtV2B1rO7XGPUynqt7--_UOLPimW6K43bsLFdSZ2oN58TrqDgf7dq1-AVf99pc priority: 102 providerName: ProQuest |
| Title | An SQP Algorithm for Structural Topology Optimization Based on Majorization–Minimization Method |
| URI | https://www.proquest.com/docview/2685973699 https://doaj.org/article/e3110dfdbd0f4c2eb12036e03fab9990 |
| Volume | 12 |
| WOSCitedRecordID | wos000822169700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8QwFH6IetCDuOK4kYMHFYptky45zoiihxnrBnoqaRYd0SqOCN78D_5Df4kvaUYHFLx4a8PrwsvLW0je9wFsVmmYSROLIIpsS45KcUmxLAswkmQY0TNtKuHIJrJeL7-85MUI1Zc9E9bAAzeK29UUA5QyqlKhYTJG12K3znRIjagwuXHVepjxkWLK-WAeWeiqpiGPYl1v94MtellKPSXbMAQ5pP4fjthFl4NZmPFpIWk3vzMHY7qeh-kRsMB5mPPLcEC2PFb09gKIdk3OTgrSvrt-wDL_5p5gEkrOHCisBdQg5w0Jwis5Rt9w75suSQdjlyJ40RW3-Fwz-vH23u3X30JdRy69CBcH--d7h4FnTQgkTdlzoHSSMmNkFVGW0EQxTMiU0BGvFI5TrIcMT3It0NVJk0iNUjo2JpY8lCYygi7BeP1Q62UgeaUVJiA6EVwxJqSQLM2rTOB7VRwZ1oKdoSJL6SHFLbPFXYmlhdV6OaL1Fmx-CT82SBq_i3XsjHyJWPhrN4BGUXqjKP8yihasDeez9GtyUMZpjtUTTTlf-Y9vrMJUbFsh3NHdNRjHmdXrMClfnvuDpw2Y6Oz3itMNZ5Z4Vxx1i6tPvZvq7g |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3dTtRAFD7BhUS9UAGNq4hzAQmQNLYz078LYxaRsIEuS1iS9apO5wcx0EV2o-HOd_A9fCifxDPtdCHBcMcFd830tEk735xz5ud8H8BKEfmxNFR4QWBLclSEQ4rHsYeRJMaIHmtTiEpsIu71kuEw7c_An6YWxh6rbHxi5ajVSNo18nc0SjD3ZVGafjj_7lnVKLu72kho1LDY1Zc_cco2ft_dwv5dpXT70-DjjudUBTzJIj7xlA4jbowsAsZDFiqOCYsSOkgLhe0M5wsmDRMt0BVIE0qNVpoaQ2XqSxMYwfC9D2CWW7C3YLbfzfqfp6s6lmUzCfy6EJCx1Lf70JY1LWJOCq4JfZVCwI0AUEW17af37X88gycufyadGvDzMKPLBXh8jVVxAeadvxqTNUeqvb4IolOSw4M-6Zwe41dMvp4RzNbJYcWea5lHyKBWi7gk--hEz1x1KtnEIK8IXmTiGz5Xt_799Ts7Ka-MskqF-zkc3cmHv4BWOSr1SyBJoRVmajoUqeJcSCF5lBSxwPcqGhjeho2m53PpuNetBMhpjnMwC5P8GkzasDI1Pq8pR_5vtmkhNDWxPOFVw-jiOHduJ9cM0ztlVKF8wyXFwGw3nrXPjChwauC3YalBV-6c1zi_gtar22-_hYc7g2wv3-v2dl_DI2orQ6qTzEvQwv7Tb2BO_picjC-W3Tgh8OWuofgPrxRV7g |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB7Rparg0AJt1aUUfKBSqRSR2M7foULLz4oV3W0qQKKn1PEPUEEW2BUVt75D34bH6ZN0nDgLUqveOPQWORNLTj7PjGPP9wGsFpEfS0OFFwS2JEdFOKV4HHsYSWKM6LE2hajEJuLBIDk6SrMpuG1qYeyxysYnVo5aDaX9R75OowRzXxal6bpxxyKy7e7GxaVnFaTsTmsjp1FDZE_ffMfl2-hDbxu_9VtKuzsHW7ueUxjwJIv42FM6jLgxsggYD1moOCYvSuggLRS2M1w7mDRMtEC3IE0oNVppagyVqS9NYATDfh_BNKbknLZgOuv1sy-TPzyWcTMJ_LookLHUt3vSlkEtYk4WrgmDlVrAH8GginDdZ__zu5mDpy6vJp16IszDlC4XYPYe2-ICzDs_NiLvHNn22nMQnZLsf85I5-wYRzE-OSeYxZP9ilXXMpKQg1pF4oZ8Qud67qpWySYGf0Xwoi--4XN1668fP_un5Z1Rv1LnfgGHDzLwl9Aqh6V-BSQptMIMTociVZwLKSSPkiIW2K-igeFteN-gIJeOk91Kg5zluDazkMnvQaYNqxPji5qK5O9mmxZOExPLH141DK-Oc-eOcs0w7VNGFco3XFIM2HZDWvvMiAKXDH4blhqk5c6pjfI7mC3--_YKPEH85R97g73XMENtwUh1wHkJWvj59Bt4LK_Hp6OrZTdlCHx9aCT-BoGNXq4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+SQP+Algorithm+for+Structural+Topology+Optimization+Based+on+Majorization%E2%80%93Minimization+Method&rft.jtitle=Applied+sciences&rft.au=Weilong+Liao&rft.au=Qiliang+Zhang&rft.au=Huanli+Meng&rft.date=2022-07-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=13&rft.spage=6304&rft_id=info:doi/10.3390%2Fapp12136304&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_e3110dfdbd0f4c2eb12036e03fab9990 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |