Towards Optimal Multi-Level Checkpointing

We provide a framework to analyze multi-level checkpointing protocols, by formally defining a <inline-formula> <tex-math notation="LaTeX">k</tex-math> <inline-graphic xlink:href="benoit-ieq1-2643660.gif"/> </inline-formula>-level checkpointing patter...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on computers Vol. 66; no. 7; pp. 1212 - 1226
Main Authors: Benoit, Anne, Cavelan, Aurelien, Le Fevre, Valentin, Robert, Yves, Sun, Hongyang
Format: Journal Article
Language:English
Published: New York IEEE 01.07.2017
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Subjects:
ISSN:0018-9340, 1557-9956
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We provide a framework to analyze multi-level checkpointing protocols, by formally defining a <inline-formula> <tex-math notation="LaTeX">k</tex-math> <inline-graphic xlink:href="benoit-ieq1-2643660.gif"/> </inline-formula>-level checkpointing pattern. We provide a first-order approximation to the optimal checkpointing period, and show that the corresponding overhead is in the order of <inline-formula> <tex-math notation="LaTeX">\sum _{\ell =1}^{k}\sqrt{2\lambda _\ell C_\ell}</tex-math> <inline-graphic xlink:href="benoit-ieq2-2643660.gif"/> </inline-formula>, where <inline-formula> <tex-math notation="LaTeX">\lambda _\ell</tex-math> <inline-graphic xlink:href="benoit-ieq3-2643660.gif"/> </inline-formula> is the error rate at level  <inline-formula><tex-math notation="LaTeX">\ell</tex-math> <inline-graphic xlink:href="benoit-ieq4-2643660.gif"/> </inline-formula>, and <inline-formula> <tex-math notation="LaTeX">C_\ell</tex-math> <inline-graphic xlink:href="benoit-ieq5-2643660.gif"/> </inline-formula> the checkpointing cost at level <inline-formula><tex-math notation="LaTeX">\ell </tex-math> <inline-graphic xlink:href="benoit-ieq6-2643660.gif"/> </inline-formula>. This nicely extends the classical Young/Daly formula on single-level checkpointing. Furthermore, we are able to fully characterize the shape of the optimal pattern (number and positions of checkpoints), and we provide a dynamic programming algorithm to determine the optimal subset of levels to be used. Finally, we perform simulations to check the accuracy of the theoretical study and to confirm the optimality of the subset of levels returned by the dynamic programming algorithm. The results nicely corroborate the theoretical study, and demonstrate the usefulness of multi-level checkpointing with the optimal subset of levels.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9340
1557-9956
DOI:10.1109/TC.2016.2643660