Some Incomplete Hypergeometric Functions and Incomplete Riemann-Liouville Fractional Integral Operators

Very recently, the incomplete Pochhammer ratios were defined in terms of the incomplete beta function B y ( x , z ) . With the help of these incomplete Pochhammer ratios, we introduce new incomplete Gauss, confluent hypergeometric, and Appell’s functions and investigate several properties of them su...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Mathematics (Basel) Ročník 7; číslo 5; s. 483
Hlavní autoři: Özarslan, Mehmet Ali, Ustaoğlu, Ceren
Médium: Journal Article
Jazyk:angličtina
Vydáno: Basel MDPI AG 01.05.2019
Témata:
ISSN:2227-7390, 2227-7390
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Very recently, the incomplete Pochhammer ratios were defined in terms of the incomplete beta function B y ( x , z ) . With the help of these incomplete Pochhammer ratios, we introduce new incomplete Gauss, confluent hypergeometric, and Appell’s functions and investigate several properties of them such as integral representations, derivative formulas, transformation formulas, and recurrence relations. Furthermore, incomplete Riemann-Liouville fractional integral operators are introduced. This definition helps us to obtain linear and bilinear generating relations for the new incomplete Gauss hypergeometric functions.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2227-7390
2227-7390
DOI:10.3390/math7050483