A Heart Rate Variability-Based Paroxysmal Atrial Fibrillation Prediction System

Atrial fibrillation (AF) is characterized by totally disorganized atrial depolarizations without effective atrial contraction. It is the most common form of cardiac arrhythmia, affecting more than 46.3 million people worldwide and its incidence rate remains increasing. Although AF itself is not life...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied sciences Ročník 12; číslo 5; s. 2387
Hlavní autori: Mendez, Milna Maria, Hsu, Min-Chia, Yuan, Jenq-Tay, Lynn, Ke-Shiuan
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Basel MDPI AG 01.03.2022
Predmet:
ISSN:2076-3417, 2076-3417
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Atrial fibrillation (AF) is characterized by totally disorganized atrial depolarizations without effective atrial contraction. It is the most common form of cardiac arrhythmia, affecting more than 46.3 million people worldwide and its incidence rate remains increasing. Although AF itself is not life-threatening, its complications, such as strokes and heart failure, are lethal. About 25% of paroxysmal AF (PAF) patients become chronic for an observation period of more than one year. For long-term and real-time monitoring, a PAF prediction system was developed with four objectives: (1) high prediction accuracy, (2) fast computation, (3) small data storage, and (4) easy medical interpretations. The system takes a 400-point heart rate variability (HRV) sequence containing no AF episodes as the input and outputs whether the corresponding subject will experience AF episodes in the near future (i.e., 30 min). It first converts an input HRV sequence into four image matrices via extended Poincaré plots to capture inter- and intra-person features. Then, the system employs a convolutional neural network (CNN) to perform feature selection and classification based on the input image matrices. Some design issues of the system, including feature conversion and classifier structure, were formulated as a binary optimization problem, which was then solved via a genetic algorithm (GA). A numerical study involving 6085 400-point HRV sequences excerpted from three PhysioNet databases showed that the developed PAF prediction system achieved 87.9% and 87.2% accuracy on the validation and the testing datasets, respectively. The performance is competitive with that of the leading PAF prediction system in the literature, yet our system is much faster and more intensively tested. Furthermore, from the designed inter-person features, we found that PAF patients often possess lower (~60 beats/min) or higher (~100 beats/min) heart rates than non-PAF subjects. On the other hand, from the intra-person features, we observed that PAF patients often exhibit smaller variations (≤5 beats/min) in heart rate than non-PAF subjects, but they may experience short bursts of large heart rate changes sometimes, probably due to abnormal beats, such as premature atrial beats. The other findings warrant further investigations for their medical implications about the onset of PAF.
AbstractList Atrial fibrillation (AF) is characterized by totally disorganized atrial depolarizations without effective atrial contraction. It is the most common form of cardiac arrhythmia, affecting more than 46.3 million people worldwide and its incidence rate remains increasing. Although AF itself is not life-threatening, its complications, such as strokes and heart failure, are lethal. About 25% of paroxysmal AF (PAF) patients become chronic for an observation period of more than one year. For long-term and real-time monitoring, a PAF prediction system was developed with four objectives: (1) high prediction accuracy, (2) fast computation, (3) small data storage, and (4) easy medical interpretations. The system takes a 400-point heart rate variability (HRV) sequence containing no AF episodes as the input and outputs whether the corresponding subject will experience AF episodes in the near future (i.e., 30 min). It first converts an input HRV sequence into four image matrices via extended Poincaré plots to capture inter- and intra-person features. Then, the system employs a convolutional neural network (CNN) to perform feature selection and classification based on the input image matrices. Some design issues of the system, including feature conversion and classifier structure, were formulated as a binary optimization problem, which was then solved via a genetic algorithm (GA). A numerical study involving 6085 400-point HRV sequences excerpted from three PhysioNet databases showed that the developed PAF prediction system achieved 87.9% and 87.2% accuracy on the validation and the testing datasets, respectively. The performance is competitive with that of the leading PAF prediction system in the literature, yet our system is much faster and more intensively tested. Furthermore, from the designed inter-person features, we found that PAF patients often possess lower (~60 beats/min) or higher (~100 beats/min) heart rates than non-PAF subjects. On the other hand, from the intra-person features, we observed that PAF patients often exhibit smaller variations (≤5 beats/min) in heart rate than non-PAF subjects, but they may experience short bursts of large heart rate changes sometimes, probably due to abnormal beats, such as premature atrial beats. The other findings warrant further investigations for their medical implications about the onset of PAF.
Author Hsu, Min-Chia
Yuan, Jenq-Tay
Mendez, Milna Maria
Lynn, Ke-Shiuan
Author_xml – sequence: 1
  givenname: Milna Maria
  surname: Mendez
  fullname: Mendez, Milna Maria
– sequence: 2
  givenname: Min-Chia
  surname: Hsu
  fullname: Hsu, Min-Chia
– sequence: 3
  givenname: Jenq-Tay
  surname: Yuan
  fullname: Yuan, Jenq-Tay
– sequence: 4
  givenname: Ke-Shiuan
  orcidid: 0000-0002-4570-8809
  surname: Lynn
  fullname: Lynn, Ke-Shiuan
BookMark eNptUU1LAzEQDaJgrZ78AwseZTXZbLLJsRarQqHi1zVMsllJ2TY1ScH-e2OrUMS5zGPmzePNzAk6XPqlReic4CtKJb6G1YpUmFVUNAdoUOGGl7QmzeEePkZnMc5xDkmoIHiAZqPi3kJIxRMkW7xBcKBd79KmvIFo2-IRgv_cxAX0xSjlZl9MnA6u7yE5vyweg22d2cLnTUx2cYqOOuijPfvJQ_Q6uX0Z35fT2d3DeDQtDeV1KltsLDMdZ6ZtOQcqhJZUSFtRqzVQxjOQWkisO143layFISbzjCG0kZWmQ_Sw0209zNUquAWEjfLg1Lbgw7vKWznTW2WBdhobzLNwbTsqMOsYa3BlWkIEkVnrYqe1Cv5jbWNSc78Oy2xfVZw2TNQM08wiO5YJPsZgO2Vc2l4hBXC9Ilh9v0HtvSHPXP6Z-XX6H_sL3eeJoQ
CitedBy_id crossref_primary_10_2147_MDER_S513233
crossref_primary_10_3390_e26010082
crossref_primary_10_1016_j_chaos_2023_114047
crossref_primary_10_3390_a15070231
Cites_doi 10.1161/CIRCULATIONAHA.113.005119
10.1109/TBME.2003.821030
10.1006/cviu.2000.0897
10.1007/BF02478504
10.1016/j.cmpb.2016.07.016
10.1155/2018/9050812
10.1016/S0002-8703(98)70030-4
10.1109/TBME.1985.325532
10.1161/01.CIR.101.23.e215
10.1063/1.166141
10.1097/00000542-199907000-00007
10.1186/1475-925X-8-38
10.1161/CIR.0000000000000659
10.1109/JEEIT.2019.8717369
10.1016/0167-2789(85)90011-9
10.1109/ACCESS.2019.2896880
10.1016/j.compbiomed.2021.104367
10.1007/978-3-642-71001-8_15
10.1007/s11517-006-0119-0
10.1103/RevModPhys.57.617
10.1109/TBME.1976.324577
10.1109/PROC.1966.4634
10.1109/TIT.1976.1055501
10.1007/s10916-018-1088-1
10.1016/S0022-0736(95)80017-4
10.1016/j.cmpb.2010.07.011
10.1016/j.physa.2018.06.022
10.1109/JBHI.2019.2957809
10.1042/cs0910201
10.1103/PhysRevLett.50.346
10.1016/S0010-4825(99)00018-9
10.1109/10.959330
10.18632/aging.101386
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
DOA
DOI 10.3390/app12052387
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central
ProQuest Central Essentials - QC
Proquest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
DOAJ
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central
ProQuest One Academic Middle East (New)
ProQuest One Academic UKI Edition
ProQuest Central Essentials
ProQuest Central Korea
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_ea3fb0c06ba34ef3805f55702cd11819
10_3390_app12052387
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
ID FETCH-LOGICAL-c364t-d0ce5cf65cdd66a388b9389e23ebba35623e9b890bf6472948c1c6a3cc13792b3
IEDL.DBID DOA
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000769497800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Tue Oct 14 18:57:18 EDT 2025
Mon Jun 30 11:08:48 EDT 2025
Sat Nov 29 07:12:00 EST 2025
Tue Nov 18 21:59:34 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-d0ce5cf65cdd66a388b9389e23ebba35623e9b890bf6472948c1c6a3cc13792b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4570-8809
OpenAccessLink https://doaj.org/article/ea3fb0c06ba34ef3805f55702cd11819
PQID 2637584503
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_ea3fb0c06ba34ef3805f55702cd11819
proquest_journals_2637584503
crossref_citationtrail_10_3390_app12052387
crossref_primary_10_3390_app12052387
PublicationCentury 2000
PublicationDate 2022-03-01
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Goldberger (ref_32) 2000; 101
Benjamin (ref_3) 2019; 139
Sessa (ref_10) 2018; 10
Chugh (ref_2) 2014; 129
ref_14
Wolf (ref_25) 1985; 16
Mohebbi (ref_40) 2012; 105
Park (ref_41) 2009; 8
ref_13
ref_33
Brennan (ref_38) 2001; 48
Jalali (ref_9) 2019; 24
ref_30
Lempel (ref_19) 1976; 22
Liu (ref_37) 2018; 2018
Thakor (ref_36) 1983; 21
DePetrillo (ref_24) 1999; 29
Nassif (ref_29) 2019; 7
ref_16
Wyndham (ref_1) 2000; 27
Anwar (ref_31) 2018; 42
Allan (ref_18) 1966; 54
Eckmann (ref_26) 1985; 57
Pillarisetti (ref_5) 2009; 2
Acharya (ref_15) 2006; 44
Dilaveris (ref_21) 1998; 135
Peng (ref_7) 1995; 5
Parsi (ref_42) 2021; 133
ref_45
ref_22
ref_44
Pan (ref_34) 1985; BME-32
ref_43
Moeslund (ref_28) 2001; 81
Narin (ref_12) 2018; 509
Fano (ref_17) 1947; 72
Goovaerts (ref_35) 1976; 23
Aronow (ref_4) 2009; 1
ref_27
Boon (ref_11) 2016; 134
Kamen (ref_39) 1996; 91
Peng (ref_6) 1995; 28
Grassberger (ref_23) 1983; 50
Thong (ref_8) 2004; 51
Amar (ref_20) 1999; 91
References_xml – volume: 129
  start-page: 837
  year: 2014
  ident: ref_2
  article-title: Worldwide Epidemiology of Atrial Fibrillation: A Global Burden of Disease 2010 Study
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.113.005119
– volume: 27
  start-page: 257
  year: 2000
  ident: ref_1
  article-title: Atrial fibrillation: The most common arrhythmia
  publication-title: Tex. Hear. Inst. J.
– volume: 51
  start-page: 561
  year: 2004
  ident: ref_8
  article-title: Prediction of Paroxysmal Atrial Fibrillation by Analysis of Atrial Premature Complexes
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2003.821030
– volume: 72
  start-page: 26
  year: 1947
  ident: ref_17
  article-title: Ionization Yield of Radiations. II. The Fluctuations of the Number of Ions
  publication-title: Phys. Rev. (Ser. I)
– volume: 81
  start-page: 231
  year: 2001
  ident: ref_28
  article-title: A Survey of Computer Vision-Based Human Motion Capture
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1006/cviu.2000.0897
– volume: 21
  start-page: 343
  year: 1983
  ident: ref_36
  article-title: Optimal QRS detector
  publication-title: Med Biol. Eng. Comput.
  doi: 10.1007/BF02478504
– volume: 134
  start-page: 187
  year: 2016
  ident: ref_11
  article-title: Paroxysmal atrial fibrillation prediction method with shorter HRV sequences
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2016.07.016
– volume: 2018
  start-page: 9050812
  year: 2018
  ident: ref_37
  article-title: Performance Analysis of Ten Common QRS Detectors on Different ECG Application Cases
  publication-title: J. Healthc. Eng.
  doi: 10.1155/2018/9050812
– volume: 135
  start-page: 733
  year: 1998
  ident: ref_21
  article-title: Simple electrocardiographic markers for the prediction of paroxysmal idiopathic atrial fibrillation
  publication-title: Am. Hear. J.
  doi: 10.1016/S0002-8703(98)70030-4
– volume: 1
  start-page: 154
  year: 2009
  ident: ref_4
  article-title: Atrial fibrillation: The new epidemic of the ageing world
  publication-title: J. Atr. Fibrillation
– volume: BME-32
  start-page: 230
  year: 1985
  ident: ref_34
  article-title: A Real-Time QRS Detection Algorithm
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.1985.325532
– volume: 101
  start-page: e215
  year: 2000
  ident: ref_32
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– ident: ref_16
– volume: 5
  start-page: 82
  year: 1995
  ident: ref_7
  article-title: Quantification of Scaling Exponents and Crossover Phenomena in Nonstationary Heartbeat Time Series
  publication-title: CHAOS
  doi: 10.1063/1.166141
– volume: 91
  start-page: 16
  year: 1999
  ident: ref_20
  article-title: Signal-averaged P-wave Duration Does Not Predict Atrial Fibrillation after Thoracic Surgery
  publication-title: J. Am. Soc. Anesthesiol.
  doi: 10.1097/00000542-199907000-00007
– volume: 8
  start-page: 38
  year: 2009
  ident: ref_41
  article-title: Atrial fibrillation detection by heart rate variability in Poincare plot
  publication-title: Biomed. Eng. Online
  doi: 10.1186/1475-925X-8-38
– ident: ref_14
– volume: 139
  start-page: e56
  year: 2019
  ident: ref_3
  article-title: Heart disease and stroke statistics—2019 update: A report from the American heart association
  publication-title: Circulation
  doi: 10.1161/CIR.0000000000000659
– ident: ref_30
  doi: 10.1109/JEEIT.2019.8717369
– ident: ref_44
– volume: 16
  start-page: 285
  year: 1985
  ident: ref_25
  article-title: Determining Lyapunov exponents from a time series
  publication-title: Phys. D Nonlinear Phenom.
  doi: 10.1016/0167-2789(85)90011-9
– volume: 7
  start-page: 19143
  year: 2019
  ident: ref_29
  article-title: Speech Recognition Using Deep Neural Networks: A Systematic Review
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2896880
– volume: 133
  start-page: 104367
  year: 2021
  ident: ref_42
  article-title: Prediction of paroxysmal atrial fibrillation using new heart rate variability features
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2021.104367
– ident: ref_22
  doi: 10.1007/978-3-642-71001-8_15
– volume: 44
  start-page: 1031
  year: 2006
  ident: ref_15
  article-title: Heart rate variability: A review
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-006-0119-0
– volume: 57
  start-page: 617
  year: 1985
  ident: ref_26
  article-title: Ergodic theory of chaos and strange attractors
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.57.617
– volume: 23
  start-page: 154
  year: 1976
  ident: ref_35
  article-title: A Digital QRS Detector Based on the Principle of Contour Limiting
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.1976.324577
– volume: 54
  start-page: 221
  year: 1966
  ident: ref_18
  article-title: Statistics of atomic frequency standards
  publication-title: Proc. IEEE
  doi: 10.1109/PROC.1966.4634
– volume: 2
  start-page: 191
  year: 2009
  ident: ref_5
  article-title: Evolution of paroxysmal atrial fibrillation to persistent or permanent atrial fibrillation: Predictors of progression
  publication-title: J. Atr. Fibrillation
– volume: 22
  start-page: 75
  year: 1976
  ident: ref_19
  article-title: On the complexity of finite sequences
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.1976.1055501
– volume: 42
  start-page: 226
  year: 2018
  ident: ref_31
  article-title: Medical Image Analysis using Convolutional Neural Networks: A Review
  publication-title: J. Med Syst.
  doi: 10.1007/s10916-018-1088-1
– volume: 28
  start-page: 59
  year: 1995
  ident: ref_6
  article-title: Fractal mechanisms and heart rate dynamics: Long-range correlations and their breakdown with disease
  publication-title: J. Electrocardiol.
  doi: 10.1016/S0022-0736(95)80017-4
– ident: ref_33
– ident: ref_27
– volume: 105
  start-page: 40
  year: 2012
  ident: ref_40
  article-title: Prediction of paroxysmal atrial fibrillation based on non-linear analysis and spectrum and bispectrum features of the heart rate variability signal
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2010.07.011
– volume: 509
  start-page: 56
  year: 2018
  ident: ref_12
  article-title: Early prediction of paroxysmal atrial fibrillation based on short-term heart rate variability
  publication-title: Phys. A Stat. Mech. Its Appl.
  doi: 10.1016/j.physa.2018.06.022
– volume: 24
  start-page: 407
  year: 2019
  ident: ref_9
  article-title: Atrial Fibrillation Prediction with Residual Network Using Sensitivity and Orthogonality Constraints
  publication-title: IEEE J. Biomed. Health Informatics
  doi: 10.1109/JBHI.2019.2957809
– ident: ref_13
– volume: 91
  start-page: 201
  year: 1996
  ident: ref_39
  article-title: Poincaré Plot of Heart Rate Variability Allows Quantitative Display of Parasympathetic Nervous Activity in Humans
  publication-title: Clin. Sci.
  doi: 10.1042/cs0910201
– volume: 50
  start-page: 346
  year: 1983
  ident: ref_23
  article-title: Characterization of Strange Attractors
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.50.346
– volume: 29
  start-page: 393
  year: 1999
  ident: ref_24
  article-title: Determining the Hurst exponent of fractal time series and its application to electrocardiographic analysis
  publication-title: Comput. Biol. Med.
  doi: 10.1016/S0010-4825(99)00018-9
– ident: ref_45
– ident: ref_43
– volume: 48
  start-page: 1342
  year: 2001
  ident: ref_38
  article-title: Do existing measures of Poincare plot geometry reflect nonlinear features of heart rate variability?
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.959330
– volume: 10
  start-page: 166
  year: 2018
  ident: ref_10
  article-title: Heart rate variability as predictive factor for sudden cardiac death
  publication-title: Aging
  doi: 10.18632/aging.101386
SSID ssj0000913810
Score 2.2580566
Snippet Atrial fibrillation (AF) is characterized by totally disorganized atrial depolarizations without effective atrial contraction. It is the most common form of...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 2387
SubjectTerms Algorithms
Cardiac arrhythmia
Classification
convolutional neural network
Datasets
Electrocardiography
genetic algorithm
Heart rate
heart rate variability
Neural networks
Noise
paroxysmal atrial fibrillation
poincaré plot
Sinuses
Wearable computers
SummonAdditionalLinks – databaseName: Proquest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB509aAH3-L6IgcPKhTbpu0mJ3HFxYOsi6h4K80kEUF3dbsK_nszbXZdULx4K-20JP3y-DKZfANwoLLIap2aIClSTq4bDApd-eAde3BvWI_0VavbFQ8PsucdbqUPqxyPidVArQdIPvKTOOOO2iZpyE9f3wLKGkW7qz6FxizMkVJZ0oC59kW3dzPxspDqpYjC-mAed-t72heOYvKFUhDd1FRUKfb_GJCrWaaz_N_yrcCS55fsrG4QqzBj-muwOKU6uAarvj-X7NCLTh-tw_UZu3SNfsRuHPlk924FXQt4fwZtN89p1iso3qV8oW9XmT5Yhw4LPNehdKw3pA2f6rLWQN-Au87F7fll4JMtBMizZBToEE2K1gGkdZYVXAglHZkxMTdKFZxokpFKyFBZUpyXicAInR1ixFsyVnwTGv1B32wBExZ11CpS5NrxkySRBUprBCrBDddomnA8_u85eiVySojxnLsVCYGUT4HUhIOJ8WstwPG7WZsAnJiQanZ1YzB8zH0nzE3BrQoxzFyFEmO5CFNLEmSxK69jOrIJu2Nsc9-Vy_wb2O2_H-_AQkxnI6oAtV1ojIbvZg_m8WP0VA73fcv8AnGh7mU
  priority: 102
  providerName: ProQuest
Title A Heart Rate Variability-Based Paroxysmal Atrial Fibrillation Prediction System
URI https://www.proquest.com/docview/2637584503
https://doaj.org/article/ea3fb0c06ba34ef3805f55702cd11819
Volume 12
WOSCitedRecordID wos000769497800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEB6ketCDWB9YH2UPPagQSLJJunu0YqmgNYhKPYXsCwSt0lbBf-_MJkpAwYu3JEwefDubnZmd-Qagp7LIGZPaIClTTqEbHZTGx-DResA7XD3Sl_3xWEwmMm-0-qKcsIoeuAKOorxOhTrMVMkT67gIU0e0UbE2VDPpS_fQ6mk4U_4fLCOirqoK8jj69bQfHMUUA6XkucYS5Jn6f_yI_eoy3ID12ixkp9XntGHJTjdhrUEWuAntehrO2VHNFX28BdenbIS6umA3aDOye3R8K97tj2CAy5NheUlpKvNnerZv0MGGlOP_VGXAsXxG-zT-sKIu34a74fnt2SioeyQEmmfJIjChtql2iKsxWVZyIZREG8TG3CpEjKwbK5WQoXJEFC8ToSONclpHvC9jxXegNX2Z2l1gwiGk_TLV3KBZkSSy1NJZoZXglhttO3DyBVuhawJx6mPxVKAjQRgXDYw70PsWfq14M34XGxD-3yJEdu0voAoUtQoUf6lABw6-Rq-oZ-C8iDOOrlCShnzvP96xD6sxFT747LMDaC1mb_YQVvT74nE-68Ly4Hyc33S9EuJZfnGVP3wCT1_iQA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fb9MwED6NDgl4ADZAFAb4YUiAFJHESWo_ILQBVat1JUIDbU_BPxHSaEdTQPun-Bu5S5xSCcTbHniLkktkx5_vzufzdwC7uki8tbmLMpVzCt2YSNkmBo_eA77hw0hPBtOpOD6W5Qb87M7CUFplpxMbRW3nhmLkz9OCo2ub5TF_efY1oqpRtLvaldBoYXHgzn_gkq1-MX6N4_s4TYdvjl6NolBVIDK8yJaRjY3LjceWWFsUiguhJVptl3KnteLkDziphYy1J2p1mQmTGJQzJuEDmWqO370EmxmCXfRgsxwflierqA6xbIokbg8Cci5j2odOUoq9UtLemulrKgT8YQAaqza88b_9j5twPfjPbK8F_BZsuNk2XFtjVdyGraCvavYkkGo_vQVv99gIW7tk79C5Zh8UzrsmLfg82kc7blmpKJ-n_kLfbiqZsCEdhjhtUwVZuaANreay5Xi_De8vpJt3oDebz9xdYMIbmwxUbrhF_yvLpDLSO2G04I5b4_rwrBvnygSmdSr4cVrhiotAUa2Bog-7K-GzlmDk72L7BJiVCLGCNzfmi09VUDKVU9zr2MQFdihznos490SxlmJ70ZOTfdjpsFQFVVVXv4F079-PH8GV0dHhpJqMpwf34WpK50CaZLwd6C0X39wDuGy-Lz_Xi4dhVjD4eNHA-wXJqUwJ
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3fT9RAEJ4gGKMPKKjxAHUfMFGThrbb9nYfjAHxwgU8G6MGnur-JCR4h9dDw7_mX-dMuz0v0fjGg29NO212u9_OzM7OfgOwrYvEW5u7KFM5p9CNiZRtYvDoPeAbPoz0UX80EsfHslyCn91ZGEqr7HRio6jtxFCMfCctOLq2WR7zHR_SIsr9weuLbxFVkKKd1q6cRguRQ3f1A5dv9avhPo71szQdvP345iAKFQYiw4tsFtnYuNx4bJW1RaG4EFqiBXcpd1orTr6Bk1rIWHuiWZeZMIlBOWMS3pep5vjdG7CCLnmGc2ylHL4rT-YRHmLcFEncHgrkXMa0J52kFIelBL4FM9hUC_jDGDQWbnD3f_4392A1-NVst50Ia7DkxutwZ4FtcR3Wgh6r2fNAtv3iPrzfZQfY2hn7gE43-6xwPjbpwlfRHtp3y0pFeT71V_p2U-GEDeiQxHmbQsjKKW10NZct9_sD-HQt3XwIy-PJ2D0CJryxSV_lhlvEQ5ZJZaR3wmjBHbfG9eBlN-aVCQzsVAjkvMKVGAGkWgBID7bnwhct8cjfxfYIPHMRYgtvbkymp1VQPpVT3OvYxAV2KHOeizj3RL2WYnvRw5M92OpwVQUVVle_QbXx78dP4RairToajg434XZKx0OaHL0tWJ5NL91juGm-z87q6ZMwQRh8uW7c_QIIplTJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Heart+Rate+Variability-Based+Paroxysmal+Atrial+Fibrillation+Prediction+System&rft.jtitle=Applied+sciences&rft.au=Milna+Maria+Mendez&rft.au=Min-Chia+Hsu&rft.au=Jenq-Tay+Yuan&rft.au=Ke-Shiuan+Lynn&rft.date=2022-03-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=5&rft.spage=2387&rft_id=info:doi/10.3390%2Fapp12052387&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ea3fb0c06ba34ef3805f55702cd11819
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon