Skin Cancer Disease Detection Using Transfer Learning Technique

Melanoma is a fatal type of skin cancer; the fury spread results in a high fatality rate when the malignancy is not treated at an initial stage. The patients’ lives can be saved by accurately detecting skin cancer at an initial stage. A quick and precise diagnosis might help increase the patient’s s...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences Vol. 12; no. 11; p. 5714
Main Authors: Rashid, Javed, Ishfaq, Maryam, Ali, Ghulam, Saeed, Muhammad R., Hussain, Mubasher, Alkhalifah, Tamim, Alturise, Fahad, Samand, Noor
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.06.2022
Subjects:
ISSN:2076-3417, 2076-3417
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Melanoma is a fatal type of skin cancer; the fury spread results in a high fatality rate when the malignancy is not treated at an initial stage. The patients’ lives can be saved by accurately detecting skin cancer at an initial stage. A quick and precise diagnosis might help increase the patient’s survival rate. It necessitates the development of a computer-assisted diagnostic support system. This research proposes a novel deep transfer learning model for melanoma classification using MobileNetV2. The MobileNetV2 is a deep convolutional neural network that classifies the sample skin lesions as malignant or benign. The performance of the proposed deep learning model is evaluated using the ISIC 2020 dataset. The dataset contains less than 2% malignant samples, raising the class imbalance. Various data augmentation techniques were applied to tackle the class imbalance issue and add diversity to the dataset. The experimental results demonstrate that the proposed deep learning technique outperforms state-of-the-art deep learning techniques in terms of accuracy and computational cost.
AbstractList Melanoma is a fatal type of skin cancer; the fury spread results in a high fatality rate when the malignancy is not treated at an initial stage. The patients’ lives can be saved by accurately detecting skin cancer at an initial stage. A quick and precise diagnosis might help increase the patient’s survival rate. It necessitates the development of a computer-assisted diagnostic support system. This research proposes a novel deep transfer learning model for melanoma classification using MobileNetV2. The MobileNetV2 is a deep convolutional neural network that classifies the sample skin lesions as malignant or benign. The performance of the proposed deep learning model is evaluated using the ISIC 2020 dataset. The dataset contains less than 2% malignant samples, raising the class imbalance. Various data augmentation techniques were applied to tackle the class imbalance issue and add diversity to the dataset. The experimental results demonstrate that the proposed deep learning technique outperforms state-of-the-art deep learning techniques in terms of accuracy and computational cost.
Author Alturise, Fahad
Samand, Noor
Ali, Ghulam
Hussain, Mubasher
Rashid, Javed
Saeed, Muhammad R.
Ishfaq, Maryam
Alkhalifah, Tamim
Author_xml – sequence: 1
  givenname: Javed
  orcidid: 0000-0003-3416-9720
  surname: Rashid
  fullname: Rashid, Javed
– sequence: 2
  givenname: Maryam
  surname: Ishfaq
  fullname: Ishfaq, Maryam
– sequence: 3
  givenname: Ghulam
  orcidid: 0000-0002-0726-2738
  surname: Ali
  fullname: Ali, Ghulam
– sequence: 4
  givenname: Muhammad R.
  surname: Saeed
  fullname: Saeed, Muhammad R.
– sequence: 5
  givenname: Mubasher
  surname: Hussain
  fullname: Hussain, Mubasher
– sequence: 6
  givenname: Tamim
  orcidid: 0000-0001-8407-2068
  surname: Alkhalifah
  fullname: Alkhalifah, Tamim
– sequence: 7
  givenname: Fahad
  orcidid: 0000-0001-9176-7984
  surname: Alturise
  fullname: Alturise, Fahad
– sequence: 8
  givenname: Noor
  surname: Samand
  fullname: Samand, Noor
BookMark eNptkE9PAyEQxYmpibX25BfYxKNZZWCXXU7GtP5LmniwngkLs5Va2Qrbg99e2hrTGLnATH7z3vBOycB3Hgk5B3rFuaTXer0GBlBWUByRIaOVyHkB1eDgfULGMS5pOhJ4DXRIbl7enc8m2hsM2dRF1BGzKfZoetf57DU6v8jmQfvYJmCGOvhdB82bd58bPCPHrV5FHP_cIzK_v5tPHvPZ88PT5HaWGy6KPrdbQ9kYapmphBBNUzbGpFrWrWC2sLTBVlNAsKXFuuSstmB1IaGRwho-Ik97WdvppVoH96HDl-q0U7tGFxZKh96ZFaqmYpoZC7WVZcE51hqlkEgtiMoK2ySti73WOnTpB7FXy24TfNpeMVGlEZCUJepyT5nQxRiw_XUFqrZ5q4O8Ew1_aON6vY2wD9qt_p35BuW6hB4
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3516884
crossref_primary_10_32604_cmc_2023_032005
crossref_primary_10_1007_s44196_025_00772_0
crossref_primary_10_32604_cmes_2024_050124
crossref_primary_10_3390_diagnostics13091579
crossref_primary_10_3390_math11163601
crossref_primary_10_1080_00051144_2023_2293515
crossref_primary_10_1080_0954898X_2024_2428705
crossref_primary_10_3390_diagnostics14010089
crossref_primary_10_1016_j_bspc_2024_107141
crossref_primary_10_1016_j_eswa_2022_119352
crossref_primary_10_1111_srt_13524
crossref_primary_10_1111_1556_4029_70076
crossref_primary_10_3390_diagnostics15010099
crossref_primary_10_1038_s41598_024_67424_9
crossref_primary_10_1109_JBHI_2023_3308697
crossref_primary_10_1155_acis_8442143
crossref_primary_10_1109_ACCESS_2024_3412791
crossref_primary_10_32604_cmc_2023_035287
crossref_primary_10_1016_j_compbiomed_2024_108572
crossref_primary_10_1111_srt_13519
crossref_primary_10_1016_j_postharvbio_2025_113396
crossref_primary_10_3390_app12147317
crossref_primary_10_3390_diagnostics14060636
crossref_primary_10_1016_j_compbiomed_2024_108910
crossref_primary_10_1007_s00521_024_10227_w
crossref_primary_10_3390_cancers15072179
crossref_primary_10_1109_ACCESS_2023_3253430
crossref_primary_10_1038_s41598_025_02700_w
crossref_primary_10_1002_jemt_24823
crossref_primary_10_3389_fphys_2023_1324042
crossref_primary_10_1016_j_rineng_2025_104201
crossref_primary_10_1063_5_0176219
crossref_primary_10_1080_00032719_2024_2333960
crossref_primary_10_1186_s40537_024_00936_3
crossref_primary_10_32604_cmc_2023_040356
crossref_primary_10_1016_j_heliyon_2024_e40608
crossref_primary_10_1016_j_measen_2023_100865
crossref_primary_10_3390_diagnostics13111911
crossref_primary_10_32604_cmes_2024_048932
crossref_primary_10_3390_bioengineering10080979
crossref_primary_10_29121_shodhkosh_v5_i6_2024_5107
crossref_primary_10_1080_13682199_2023_2229018
crossref_primary_10_3390_sym15122213
Cites_doi 10.1007/978-3-319-47157-0_20
10.1001/jamadermatol.2015.1187
10.4103/AZMJ.AZMJ_67_17
10.1016/j.csbj.2014.11.005
10.1046/j.1365-2133.2003.05023.x
10.1109/AITC.2019.8920908
10.1109/ACCESS.2020.2998098
10.3390/electronics10172064
10.1109/CVPR.2018.00716
10.1109/TMI.2016.2642839
10.1016/j.jid.2018.01.028
10.1371/journal.pone.0217293
10.1016/j.bspc.2019.02.018
10.1109/IES50839.2020.9231676
10.1007/978-3-319-24888-2_15
10.1177/117693510600200030
10.1016/j.eswa.2015.04.034
10.1001/jamadermatol.2016.0624
10.1007/s11042-019-7652-y
10.3390/s18020556
10.1504/IJKEDM.2018.095523
10.1016/j.media.2017.07.005
10.1097/00008390-199806000-00009
10.1109/CVPR.2018.00474
10.1007/978-3-030-00928-1_43
10.2196/11936
10.3322/caac.21409
10.1109/TMI.2016.2633551
10.1007/s11042-020-09067-2
10.1109/CVPR.2016.90
10.1007/978-3-319-75420-8_54
10.1177/1941738109338923
10.3389/fmed.2019.00180
10.1007/s11042-020-09637-4
10.1109/SIU53274.2021.9477985
10.1016/j.ijleo.2017.04.084
10.1093/annonc/mdy166
10.1007/978-3-030-13469-3_85
10.3390/app12010088
10.1038/nature14539
10.1109/ISBI.2017.7950523
10.1038/nature21056
10.1186/s40537-014-0007-7
10.1007/s11042-021-10952-7
10.1590/S0365-05962013000100020
10.1007/978-3-030-00934-2_18
10.1007/978-981-13-6783-0_4
10.1158/1078-0432.CCR-03-0039
10.3390/app10072488
10.3390/en12214128
10.4018/978-1-5225-7107-0.ch010
10.1109/TBME.2018.2866166
10.1007/s11831-019-09344-w
10.1016/j.ejca.2019.05.023
10.1016/j.ifacol.2015.10.185
10.1109/ACCESS.2019.2926837
10.3389/fmed.2019.00191
10.1109/CVPR.2017.195
10.1016/j.jid.2016.01.035
10.1038/s41586-019-0912-1
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app12115714
DatabaseName CrossRef
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Publicly Available Content Database
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_b72a2cd18d95433e8ae969e0d167d6db
10_3390_app12115714
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c364t-d09139bc0d2c7666bb5bccbc098f62d4d0befa01e1d5de85328d1da491b96dc3
IEDL.DBID DOA
ISICitedReferencesCount 50
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000808875500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Fri Oct 03 12:43:59 EDT 2025
Mon Jun 30 07:31:05 EDT 2025
Tue Nov 18 22:25:31 EST 2025
Sat Nov 29 07:19:15 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-d09139bc0d2c7666bb5bccbc098f62d4d0befa01e1d5de85328d1da491b96dc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9176-7984
0000-0003-3416-9720
0000-0001-8407-2068
0000-0002-0726-2738
OpenAccessLink https://doaj.org/article/b72a2cd18d95433e8ae969e0d167d6db
PQID 2674331902
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_b72a2cd18d95433e8ae969e0d167d6db
proquest_journals_2674331902
crossref_primary_10_3390_app12115714
crossref_citationtrail_10_3390_app12115714
PublicationCentury 2000
PublicationDate 2022-06-01
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Gandhi (ref_2) 2015; 99
Giotis (ref_43) 2015; 42
Burroni (ref_20) 2004; 10
ref_58
Xie (ref_7) 2016; 36
ref_55
ref_10
ref_54
Bomm (ref_11) 2013; 88
Dalila (ref_8) 2017; 140
ref_51
ref_18
ref_15
ref_59
Nath (ref_21) 2014; e-ISSN
Abbas (ref_49) 2019; 78
Filali (ref_47) 2020; 79
Gershenwald (ref_13) 2017; 67
ref_60
Yu (ref_52) 2016; 36
ref_69
ref_68
ref_23
ref_22
LeCun (ref_31) 2015; 521
Zhou (ref_56) 2020; 8
ref_63
Khan (ref_46) 2019; 7
Fujisawa (ref_33) 2019; 6
Cruz (ref_25) 2006; 2
ref_29
Kato (ref_12) 2019; 6
ref_27
ref_26
Dargan (ref_28) 2020; 27
Han (ref_62) 2018; 138
Ibrahim (ref_14) 2017; 15
ref_72
ref_71
ref_70
Yu (ref_53) 2018; 66
ref_36
Almansour (ref_50) 2016; 16
ref_35
Shaikhina (ref_65) 2015; 48
Brinker (ref_32) 2018; 20
ref_74
ref_73
Litjens (ref_34) 2017; 42
Whiteman (ref_6) 2016; 136
Najafabadi (ref_30) 2015; 2
Kourou (ref_24) 2015; 13
ref_38
ref_37
Reichstein (ref_67) 2019; 566
Hu (ref_48) 2019; 51
Binder (ref_19) 1998; 8
ref_45
Carrera (ref_17) 2016; 152
ref_44
ref_42
ref_41
ref_40
ref_1
Carli (ref_16) 2003; 148
Hosny (ref_57) 2020; 79
Esteva (ref_64) 2017; 542
ref_9
Brinker (ref_61) 2019; 119
Harrison (ref_3) 2009; 1
ref_5
Attaran (ref_66) 2018; 5
ref_4
Haenssle (ref_39) 2018; 29
Mijwil (ref_75) 2021; 80
References_xml – ident: ref_9
– ident: ref_40
  doi: 10.1007/978-3-319-47157-0_20
– ident: ref_74
– ident: ref_68
– ident: ref_5
  doi: 10.1001/jamadermatol.2015.1187
– volume: 15
  start-page: 203
  year: 2017
  ident: ref_14
  article-title: Dermoscopy versus skin biopsy in diagnosis of suspicious skin lesions
  publication-title: Al-Azhar Assiut Med. J.
  doi: 10.4103/AZMJ.AZMJ_67_17
– volume: 13
  start-page: 8
  year: 2015
  ident: ref_24
  article-title: Machine learning applications in cancer prognosis and prediction
  publication-title: Comput. Struct. Biotechnol. J.
  doi: 10.1016/j.csbj.2014.11.005
– volume: 148
  start-page: 981
  year: 2003
  ident: ref_16
  article-title: Pattern analysis, not simplified algorithms, is the most reliable method for teaching dermoscopy for melanoma diagnosis to residents in dermatology
  publication-title: Br. J. Dermatol.
  doi: 10.1046/j.1365-2133.2003.05023.x
– ident: ref_1
– ident: ref_44
  doi: 10.1109/AITC.2019.8920908
– volume: 8
  start-page: 101309
  year: 2020
  ident: ref_56
  article-title: Classifying melanoma skin lesions using convolutional spiking neural networks with unsupervised stdp learning rule
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2998098
– ident: ref_27
  doi: 10.3390/electronics10172064
– ident: ref_72
  doi: 10.1109/CVPR.2018.00716
– volume: 36
  start-page: 994
  year: 2016
  ident: ref_52
  article-title: Automated melanoma recognition in dermoscopy images via very deep residual networks
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2642839
– volume: 138
  start-page: 1529
  year: 2018
  ident: ref_62
  article-title: Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm
  publication-title: J. Investig. Dermatol.
  doi: 10.1016/j.jid.2018.01.028
– ident: ref_63
  doi: 10.1371/journal.pone.0217293
– ident: ref_4
– volume: 51
  start-page: 200
  year: 2019
  ident: ref_48
  article-title: Classification of melanoma based on feature similarity measurement for codebook learning in the bag-of-features model
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2019.02.018
– ident: ref_54
  doi: 10.1109/IES50839.2020.9231676
– ident: ref_38
  doi: 10.1007/978-3-319-24888-2_15
– ident: ref_69
– ident: ref_10
– volume: 2
  start-page: 117693510600200030
  year: 2006
  ident: ref_25
  article-title: Applications of machine learning in cancer prediction and prognosis
  publication-title: Cancer Inform.
  doi: 10.1177/117693510600200030
– volume: 42
  start-page: 6578
  year: 2015
  ident: ref_43
  article-title: MED-NODE: A computer-assisted melanoma diagnosis system using non-dermoscopic images
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.04.034
– volume: 152
  start-page: 798
  year: 2016
  ident: ref_17
  article-title: Validity and reliability of dermoscopic criteria used to differentiate nevi from melanoma: A web-based international dermoscopy society study
  publication-title: JAMA Dermatol.
  doi: 10.1001/jamadermatol.2016.0624
– volume: 78
  start-page: 23559
  year: 2019
  ident: ref_49
  article-title: DermoDeep-A classification of melanoma-nevus skin lesions using multi-feature fusion of visual features and deep neural network
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-019-7652-y
– ident: ref_41
  doi: 10.3390/s18020556
– volume: 5
  start-page: 277
  year: 2018
  ident: ref_66
  article-title: Machine learning: The new’big thing’for competitive advantage
  publication-title: Int. J. Knowl. Eng. Data Min.
  doi: 10.1504/IJKEDM.2018.095523
– volume: 42
  start-page: 60
  year: 2017
  ident: ref_34
  article-title: A survey on deep learning in medical image analysis
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.07.005
– volume: 16
  start-page: 135
  year: 2016
  ident: ref_50
  article-title: Classification of Dermoscopic skin cancer images using color and hybrid texture features
  publication-title: IJCSNS Int. J. Comput. Sci. Netw. Secur.
– ident: ref_59
– volume: 8
  start-page: 261
  year: 1998
  ident: ref_19
  article-title: Epiluminescence microscopy-based classification of pigmented skin lesions using computerized image analysis and an artificial neural network
  publication-title: Melanoma Res.
  doi: 10.1097/00008390-199806000-00009
– ident: ref_71
  doi: 10.1109/CVPR.2018.00474
– volume: e-ISSN
  start-page: 2278-0661
  year: 2014
  ident: ref_21
  article-title: Artificial intelligence in power systems
  publication-title: IOSR J. Comput. Eng. (IOSR-JCE)
– ident: ref_37
  doi: 10.1007/978-3-030-00928-1_43
– volume: 99
  start-page: 1323
  year: 2015
  ident: ref_2
  article-title: Skin cancer epidemiology, detection, and management
  publication-title: Med Clin.
– volume: 20
  start-page: e11936
  year: 2018
  ident: ref_32
  article-title: Skin cancer classification using convolutional neural networks: Systematic review
  publication-title: J. Med. Internet Res.
  doi: 10.2196/11936
– volume: 67
  start-page: 472
  year: 2017
  ident: ref_13
  article-title: Melanoma staging: Evidence-based changes in the American Joint Committee on Cancer eighth edition cancer staging manual
  publication-title: CA Cancer J. Clin.
  doi: 10.3322/caac.21409
– volume: 36
  start-page: 849
  year: 2016
  ident: ref_7
  article-title: Melanoma classification on dermoscopy images using a neural network ensemble model
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2633551
– volume: 79
  start-page: 24029
  year: 2020
  ident: ref_57
  article-title: Skin melanoma classification using ROI and data augmentation with deep convolutional neural networks
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-09067-2
– ident: ref_35
  doi: 10.1109/CVPR.2016.90
– ident: ref_51
  doi: 10.1007/978-3-319-75420-8_54
– volume: 1
  start-page: 335
  year: 2009
  ident: ref_3
  article-title: Ultraviolet light and skin cancer in athletes
  publication-title: Sport. Health
  doi: 10.1177/1941738109338923
– volume: 6
  start-page: 180
  year: 2019
  ident: ref_12
  article-title: Dermoscopy of melanoma and non-melanoma skin cancers
  publication-title: Front. Med.
  doi: 10.3389/fmed.2019.00180
– volume: 79
  start-page: 31219
  year: 2020
  ident: ref_47
  article-title: Efficient fusion of handcrafted and pre-trained CNNs features to classify melanoma skin cancer
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-09637-4
– ident: ref_60
  doi: 10.1109/SIU53274.2021.9477985
– volume: 140
  start-page: 749
  year: 2017
  ident: ref_8
  article-title: Segmentation and classification of melanoma and benign skin lesions
  publication-title: Optik
  doi: 10.1016/j.ijleo.2017.04.084
– ident: ref_18
– volume: 29
  start-page: 1836
  year: 2018
  ident: ref_39
  article-title: Man against machine: Diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists
  publication-title: Ann. Oncol.
  doi: 10.1093/annonc/mdy166
– ident: ref_55
  doi: 10.1007/978-3-030-13469-3_85
– ident: ref_26
  doi: 10.3390/app12010088
– volume: 521
  start-page: 436
  year: 2015
  ident: ref_31
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: ref_42
  doi: 10.1109/ISBI.2017.7950523
– volume: 542
  start-page: 115
  year: 2017
  ident: ref_64
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– volume: 2
  start-page: 1
  year: 2015
  ident: ref_30
  article-title: Deep learning applications and challenges in big data analytics
  publication-title: J. Big Data
  doi: 10.1186/s40537-014-0007-7
– volume: 80
  start-page: 26255
  year: 2021
  ident: ref_75
  article-title: Skin cancer disease images classification using deep learning solutions Multimedia Tools and Applications
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-021-10952-7
– volume: 88
  start-page: 125
  year: 2013
  ident: ref_11
  article-title: Biopsy guided by dermoscopy in cutaneous pigmented lesion-case report
  publication-title: An. Bras. Dermatol.
  doi: 10.1590/S0365-05962013000100020
– ident: ref_36
  doi: 10.1007/978-3-030-00934-2_18
– ident: ref_29
– ident: ref_58
  doi: 10.1007/978-981-13-6783-0_4
– volume: 10
  start-page: 1881
  year: 2004
  ident: ref_20
  article-title: Melanoma computer-aided diagnosis: Reliability and feasibility study
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-03-0039
– ident: ref_15
  doi: 10.3390/app10072488
– ident: ref_23
  doi: 10.3390/en12214128
– ident: ref_45
  doi: 10.4018/978-1-5225-7107-0.ch010
– volume: 66
  start-page: 1006
  year: 2018
  ident: ref_53
  article-title: Melanoma recognition in dermoscopy images via aggregated deep convolutional features
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2018.2866166
– volume: 27
  start-page: 1071
  year: 2020
  ident: ref_28
  article-title: A survey of deep learning and its applications: A new paradigm to machine learning
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-019-09344-w
– volume: 119
  start-page: 11
  year: 2019
  ident: ref_61
  article-title: Deep neural networks are superior to dermatologists in melanoma image classification
  publication-title: Eur. J. Cancer
  doi: 10.1016/j.ejca.2019.05.023
– volume: 48
  start-page: 469
  year: 2015
  ident: ref_65
  article-title: Machine learning for predictive modelling based on small data in biomedical engineering
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2015.10.185
– volume: 7
  start-page: 90132
  year: 2019
  ident: ref_46
  article-title: Classification of melanoma and nevus in digital images for diagnosis of skin cancer
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2926837
– ident: ref_70
– ident: ref_22
– volume: 6
  start-page: 191
  year: 2019
  ident: ref_33
  article-title: The possibility of deep learning-based, computer-aided skin tumor classifiers
  publication-title: Front. Med.
  doi: 10.3389/fmed.2019.00191
– ident: ref_73
  doi: 10.1109/CVPR.2017.195
– volume: 136
  start-page: 1161
  year: 2016
  ident: ref_6
  article-title: The growing burden of invasive melanoma: Projections of incidence rates and numbers of new cases in six susceptible populations through 2031
  publication-title: J. Investig. Dermatol.
  doi: 10.1016/j.jid.2016.01.035
– volume: 566
  start-page: 195
  year: 2019
  ident: ref_67
  article-title: Deep learning and process understanding for data-driven Earth system science
  publication-title: Nature
  doi: 10.1038/s41586-019-0912-1
SSID ssj0000913810
Score 2.5318606
Snippet Melanoma is a fatal type of skin cancer; the fury spread results in a high fatality rate when the malignancy is not treated at an initial stage. The patients’...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 5714
SubjectTerms Accuracy
Artificial intelligence
Biopsy
Classification
Datasets
Deep learning
Dermatology
ISIC-2020 dataset
Lymphatic system
Machine learning
malignant melanoma
Melanoma
Methods
MobileNetV2
Neural networks
Skin cancer
Skin diseases
Support vector machines
Tumors
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELagZYABaAFRKCgDAyBF2K7z8IToSwyoqlCHblFsX1AFSksb-P3YjlMqgVjYEvuGKN-dz3c-f4fQlYwAeMyYtrQg9VlK9JOIpA-dVAosWcbBIv0UjUbxdMrHLuG2cmWV1ZpoF2o1lyZHfkdNtbzWF0zvF---6RplTlddC41tVDdMZayG6t3BaPy8zrIY1suY4PJiXkfH9-Zc2LCaBfbezoYrsoz9PxZk62WGB__9vkO07_aX3kOpEA20BXkT7W2wDjZRw9nzyrt2pNM3R3rT_jrLvZ7RgaXXL09tvD4UtlIr92xlgWcdW6YFHCurHqkoYI_RZDiY9B5911zBl52QFb6yhKBCYkVlpGMYIQIhpX7ncRZSxRQWkKWYAFGBAu3UaayIShkngodKdk5QLZ_ncIo8ikMZMsyAYB0tkphjIEAz0IM63GFpC91WvzmRjnjc9L94S3QAYjBJNjBpafWphBcl38bvYl2D11rEkGTbgfnyJXE2l4iIplQqEiseaGwgToGHHLAiYWT6aLVQu4IycZa7Sr5xPPt7-hztUnMVwmZk2qhWLD_gAu3Iz2K2Wl46RfwCkj_new
  priority: 102
  providerName: ProQuest
Title Skin Cancer Disease Detection Using Transfer Learning Technique
URI https://www.proquest.com/docview/2674331902
https://doaj.org/article/b72a2cd18d95433e8ae969e0d167d6db
Volume 12
WOSCitedRecordID wos000808875500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dS8MwEA8yfdAHcVNxOkcffFChmKTpRx7dFwo6huxhPpUmucJQqmzVv99L2klBwRffmnDQcr_kLtfc_Y6QCx0DyEQI3Glh5ouM4ZOKtQ9BphXVIpfgkH6Ip9NksZCzRqsvmxNW0QNXirtRMc-4NiwxMhRBAEkGMpJADYti2wzJWl889TSCKWeDJbPUVVVBXoBxvb0PtmxmoavXabggx9T_wxA77zI5IPv1sdC7rT6nTbag6JC9Bllgh7Trbbj2Lmuu6KtDPGu_LAtvaKFbeaPqssUbQekSrArPJQR4zh_lKFCTqeLMhrn1iMwn4_nwzq97Ivg6iETpG8fjqTQ1XMcYeigVKq1xLJM84kYYqiDPKANmQgPoi3limMmEZEpGRgfHpFW8FXBCPE4jHQkqgFEM8lgiKTDgOeAkRiki65LrjZZSXfOF27YVrynGDValaUOlXUR9I_xe0WT8Ljaw6v4WsdzWbgIRT2vE078Q75LeBqy03nDrlNtiCjQnlJ_-xzvOyC63dQ7ud0uPtMrVB5yTHf1ZLterPtkejKezp75bczia3T_Onr8AqUjb-g
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRLlALRQsVDAB5AAKcJ2nA8fEIIuVVfdrvawh3KyYnuCKlC27C4gfhT_kbGTlJVA3HrgljgjS7GfZzz2zBuAp65A1KVStNKyKlGVoCdbuATTylnuVK0xzvSkmE7LszM924KffS5MCKvsdWJU1H7hwhn5Kxmi5QkvXL65-JKEqlHhdrUvodHC4gR_fCeXbfV6PKL5fSbl0fv54XHSVRVIXJqrdeIjE6Z13EtX0Obd2sw6R--6rHPplecW64oLFD7zSNZMll74Smlhde5dSt1eg21FWC8HsD0bn84-XB7qhK5Lwds8wDTVPFxDBxK1LKYJbVi-WCDgD_0fjdrR7f9sOO7ArW73zN62cN-FLWz24OYGp-Ie7HbaasWed5TaL-6SS_LpvGGHAeFLNmrvpNgI1zEOrWExboJFs12TQMc5Sy09we09mF_FX-3DoFk0eB-Y5LnLFVcoOPnCotQcBcoaqZGcOVUN4WU_q8Z1tOqhusdnQ-5VgIDZgMCQFkcvfNGyifxd7F2Ax6VIoACPDYvlR9NpFGMLWUnnRel1RlDAskKda-Re5EWoEjaEgx45ptNLK_MbNg_-_fkJ3Dien07MZDw9eQg7MiR9xLOnAxisl1_xEVx339bnq-Xjbg0wMFcMs19BY0Zj
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VFiF6KLQUsaVADiABUlTbcT58qBB0WbFqWe2hh3KyYnuCKlC23V1A_LT-O8aOU1YCceuBW-KMIiV-M-OxZ94APLcloqqkJE3L61TWnK5MaVPMamuYlY3CMNMn5WRSnZ2p6Rpc9bUwPq2yt4nBULuZ9XvkB8JnyxNemDhoYlrEdDh6c3GZ-g5S_qS1b6fRQeQYf_6g8G1xOB7SXL8QYvT-9OhDGjsMpDYr5DJ1gRXTWOaELWkhb0xurKV7VTWFcNIxg03NOHKXOyTPJirHXS0VN6pwNqPX3oINWpFLUrGN6fjj9NP1Bo9_dcVZVxOYZYr5I2lPqJaHkqEVLxiaBfzhC4KDG937j3_NfdiKq-rkbacG27CG7Q5srnAt7sB2tGKL5GWk2n71gEKVL-dtcuSRP0-G3VlVMsRlyE9rk5BPkQR33pBA5KKlkZ74dhdOb-KrHsJ6O2vxESSCFbaQTCJnFCPzSjHkKBqkQQryZD2A1_0Maxvp1n3Xj6-awi4PB70ChwEpTS980bGM_F3snYfKtYinBg8Ds_lnHS2NNqWohXW8cionWGBVoyoUMseL0ncPG8B-jyId7dVC_4bQ3r8fP4M7hC19Mp4cP4a7wteChC2pfVhfzr_hE7htvy_PF_OnUR0S0DeMsl_fYk8j
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Skin+Cancer+Disease+Detection+Using+Transfer+Learning+Technique&rft.jtitle=Applied+sciences&rft.au=Javed+Rashid&rft.au=Maryam+Ishfaq&rft.au=Ghulam+Ali&rft.au=Muhammad+R.+Saeed&rft.date=2022-06-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=11&rft.spage=5714&rft_id=info:doi/10.3390%2Fapp12115714&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b72a2cd18d95433e8ae969e0d167d6db
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon