Skin Cancer Disease Detection Using Transfer Learning Technique
Melanoma is a fatal type of skin cancer; the fury spread results in a high fatality rate when the malignancy is not treated at an initial stage. The patients’ lives can be saved by accurately detecting skin cancer at an initial stage. A quick and precise diagnosis might help increase the patient’s s...
Uložené v:
| Vydané v: | Applied sciences Ročník 12; číslo 11; s. 5714 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Basel
MDPI AG
01.06.2022
|
| Predmet: | |
| ISSN: | 2076-3417, 2076-3417 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Melanoma is a fatal type of skin cancer; the fury spread results in a high fatality rate when the malignancy is not treated at an initial stage. The patients’ lives can be saved by accurately detecting skin cancer at an initial stage. A quick and precise diagnosis might help increase the patient’s survival rate. It necessitates the development of a computer-assisted diagnostic support system. This research proposes a novel deep transfer learning model for melanoma classification using MobileNetV2. The MobileNetV2 is a deep convolutional neural network that classifies the sample skin lesions as malignant or benign. The performance of the proposed deep learning model is evaluated using the ISIC 2020 dataset. The dataset contains less than 2% malignant samples, raising the class imbalance. Various data augmentation techniques were applied to tackle the class imbalance issue and add diversity to the dataset. The experimental results demonstrate that the proposed deep learning technique outperforms state-of-the-art deep learning techniques in terms of accuracy and computational cost. |
|---|---|
| AbstractList | Melanoma is a fatal type of skin cancer; the fury spread results in a high fatality rate when the malignancy is not treated at an initial stage. The patients’ lives can be saved by accurately detecting skin cancer at an initial stage. A quick and precise diagnosis might help increase the patient’s survival rate. It necessitates the development of a computer-assisted diagnostic support system. This research proposes a novel deep transfer learning model for melanoma classification using MobileNetV2. The MobileNetV2 is a deep convolutional neural network that classifies the sample skin lesions as malignant or benign. The performance of the proposed deep learning model is evaluated using the ISIC 2020 dataset. The dataset contains less than 2% malignant samples, raising the class imbalance. Various data augmentation techniques were applied to tackle the class imbalance issue and add diversity to the dataset. The experimental results demonstrate that the proposed deep learning technique outperforms state-of-the-art deep learning techniques in terms of accuracy and computational cost. |
| Author | Alturise, Fahad Samand, Noor Ali, Ghulam Hussain, Mubasher Rashid, Javed Saeed, Muhammad R. Ishfaq, Maryam Alkhalifah, Tamim |
| Author_xml | – sequence: 1 givenname: Javed orcidid: 0000-0003-3416-9720 surname: Rashid fullname: Rashid, Javed – sequence: 2 givenname: Maryam surname: Ishfaq fullname: Ishfaq, Maryam – sequence: 3 givenname: Ghulam orcidid: 0000-0002-0726-2738 surname: Ali fullname: Ali, Ghulam – sequence: 4 givenname: Muhammad R. surname: Saeed fullname: Saeed, Muhammad R. – sequence: 5 givenname: Mubasher surname: Hussain fullname: Hussain, Mubasher – sequence: 6 givenname: Tamim orcidid: 0000-0001-8407-2068 surname: Alkhalifah fullname: Alkhalifah, Tamim – sequence: 7 givenname: Fahad orcidid: 0000-0001-9176-7984 surname: Alturise fullname: Alturise, Fahad – sequence: 8 givenname: Noor surname: Samand fullname: Samand, Noor |
| BookMark | eNptkE9PAyEQxYmpibX25BfYxKNZZWCXXU7GtP5LmniwngkLs5Va2Qrbg99e2hrTGLnATH7z3vBOycB3Hgk5B3rFuaTXer0GBlBWUByRIaOVyHkB1eDgfULGMS5pOhJ4DXRIbl7enc8m2hsM2dRF1BGzKfZoetf57DU6v8jmQfvYJmCGOvhdB82bd58bPCPHrV5FHP_cIzK_v5tPHvPZ88PT5HaWGy6KPrdbQ9kYapmphBBNUzbGpFrWrWC2sLTBVlNAsKXFuuSstmB1IaGRwho-Ik97WdvppVoH96HDl-q0U7tGFxZKh96ZFaqmYpoZC7WVZcE51hqlkEgtiMoK2ySti73WOnTpB7FXy24TfNpeMVGlEZCUJepyT5nQxRiw_XUFqrZ5q4O8Ew1_aON6vY2wD9qt_p35BuW6hB4 |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3516884 crossref_primary_10_32604_cmc_2023_032005 crossref_primary_10_1007_s44196_025_00772_0 crossref_primary_10_32604_cmes_2024_050124 crossref_primary_10_3390_diagnostics13091579 crossref_primary_10_3390_math11163601 crossref_primary_10_1080_00051144_2023_2293515 crossref_primary_10_1080_0954898X_2024_2428705 crossref_primary_10_3390_diagnostics14010089 crossref_primary_10_1016_j_bspc_2024_107141 crossref_primary_10_1016_j_eswa_2022_119352 crossref_primary_10_1111_srt_13524 crossref_primary_10_1111_1556_4029_70076 crossref_primary_10_3390_diagnostics15010099 crossref_primary_10_1038_s41598_024_67424_9 crossref_primary_10_1109_JBHI_2023_3308697 crossref_primary_10_1155_acis_8442143 crossref_primary_10_1109_ACCESS_2024_3412791 crossref_primary_10_32604_cmc_2023_035287 crossref_primary_10_1016_j_compbiomed_2024_108572 crossref_primary_10_1111_srt_13519 crossref_primary_10_1016_j_postharvbio_2025_113396 crossref_primary_10_3390_app12147317 crossref_primary_10_3390_diagnostics14060636 crossref_primary_10_1016_j_compbiomed_2024_108910 crossref_primary_10_1007_s00521_024_10227_w crossref_primary_10_3390_cancers15072179 crossref_primary_10_1109_ACCESS_2023_3253430 crossref_primary_10_1038_s41598_025_02700_w crossref_primary_10_1002_jemt_24823 crossref_primary_10_3389_fphys_2023_1324042 crossref_primary_10_1016_j_rineng_2025_104201 crossref_primary_10_1063_5_0176219 crossref_primary_10_1080_00032719_2024_2333960 crossref_primary_10_1186_s40537_024_00936_3 crossref_primary_10_32604_cmc_2023_040356 crossref_primary_10_1016_j_heliyon_2024_e40608 crossref_primary_10_1016_j_measen_2023_100865 crossref_primary_10_3390_diagnostics13111911 crossref_primary_10_32604_cmes_2024_048932 crossref_primary_10_3390_bioengineering10080979 crossref_primary_10_29121_shodhkosh_v5_i6_2024_5107 crossref_primary_10_1080_13682199_2023_2229018 crossref_primary_10_3390_sym15122213 |
| Cites_doi | 10.1007/978-3-319-47157-0_20 10.1001/jamadermatol.2015.1187 10.4103/AZMJ.AZMJ_67_17 10.1016/j.csbj.2014.11.005 10.1046/j.1365-2133.2003.05023.x 10.1109/AITC.2019.8920908 10.1109/ACCESS.2020.2998098 10.3390/electronics10172064 10.1109/CVPR.2018.00716 10.1109/TMI.2016.2642839 10.1016/j.jid.2018.01.028 10.1371/journal.pone.0217293 10.1016/j.bspc.2019.02.018 10.1109/IES50839.2020.9231676 10.1007/978-3-319-24888-2_15 10.1177/117693510600200030 10.1016/j.eswa.2015.04.034 10.1001/jamadermatol.2016.0624 10.1007/s11042-019-7652-y 10.3390/s18020556 10.1504/IJKEDM.2018.095523 10.1016/j.media.2017.07.005 10.1097/00008390-199806000-00009 10.1109/CVPR.2018.00474 10.1007/978-3-030-00928-1_43 10.2196/11936 10.3322/caac.21409 10.1109/TMI.2016.2633551 10.1007/s11042-020-09067-2 10.1109/CVPR.2016.90 10.1007/978-3-319-75420-8_54 10.1177/1941738109338923 10.3389/fmed.2019.00180 10.1007/s11042-020-09637-4 10.1109/SIU53274.2021.9477985 10.1016/j.ijleo.2017.04.084 10.1093/annonc/mdy166 10.1007/978-3-030-13469-3_85 10.3390/app12010088 10.1038/nature14539 10.1109/ISBI.2017.7950523 10.1038/nature21056 10.1186/s40537-014-0007-7 10.1007/s11042-021-10952-7 10.1590/S0365-05962013000100020 10.1007/978-3-030-00934-2_18 10.1007/978-981-13-6783-0_4 10.1158/1078-0432.CCR-03-0039 10.3390/app10072488 10.3390/en12214128 10.4018/978-1-5225-7107-0.ch010 10.1109/TBME.2018.2866166 10.1007/s11831-019-09344-w 10.1016/j.ejca.2019.05.023 10.1016/j.ifacol.2015.10.185 10.1109/ACCESS.2019.2926837 10.3389/fmed.2019.00191 10.1109/CVPR.2017.195 10.1016/j.jid.2016.01.035 10.1038/s41586-019-0912-1 |
| ContentType | Journal Article |
| Copyright | 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/app12115714 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest One Academic ProQuest One Academic (New) ProQuest - Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ: Directory of Open Access Journal (DOAJ) |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_b72a2cd18d95433e8ae969e0d167d6db 10_3390_app12115714 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c364t-d09139bc0d2c7666bb5bccbc098f62d4d0befa01e1d5de85328d1da491b96dc3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 50 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000808875500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Fri Oct 03 12:43:59 EDT 2025 Mon Jun 30 07:31:05 EDT 2025 Tue Nov 18 22:25:31 EST 2025 Sat Nov 29 07:19:15 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c364t-d09139bc0d2c7666bb5bccbc098f62d4d0befa01e1d5de85328d1da491b96dc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9176-7984 0000-0003-3416-9720 0000-0001-8407-2068 0000-0002-0726-2738 |
| OpenAccessLink | https://doaj.org/article/b72a2cd18d95433e8ae969e0d167d6db |
| PQID | 2674331902 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_b72a2cd18d95433e8ae969e0d167d6db proquest_journals_2674331902 crossref_primary_10_3390_app12115714 crossref_citationtrail_10_3390_app12115714 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-01 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2022 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Gandhi (ref_2) 2015; 99 Giotis (ref_43) 2015; 42 Burroni (ref_20) 2004; 10 ref_58 Xie (ref_7) 2016; 36 ref_55 ref_10 ref_54 Bomm (ref_11) 2013; 88 Dalila (ref_8) 2017; 140 ref_51 ref_18 ref_15 ref_59 Nath (ref_21) 2014; e-ISSN Abbas (ref_49) 2019; 78 Filali (ref_47) 2020; 79 Gershenwald (ref_13) 2017; 67 ref_60 Yu (ref_52) 2016; 36 ref_69 ref_68 ref_23 ref_22 LeCun (ref_31) 2015; 521 Zhou (ref_56) 2020; 8 ref_63 Khan (ref_46) 2019; 7 Fujisawa (ref_33) 2019; 6 Cruz (ref_25) 2006; 2 ref_29 Kato (ref_12) 2019; 6 ref_27 ref_26 Dargan (ref_28) 2020; 27 Han (ref_62) 2018; 138 Ibrahim (ref_14) 2017; 15 ref_72 ref_71 ref_70 Yu (ref_53) 2018; 66 ref_36 Almansour (ref_50) 2016; 16 ref_35 Shaikhina (ref_65) 2015; 48 Brinker (ref_32) 2018; 20 ref_74 ref_73 Litjens (ref_34) 2017; 42 Whiteman (ref_6) 2016; 136 Najafabadi (ref_30) 2015; 2 Kourou (ref_24) 2015; 13 ref_38 ref_37 Reichstein (ref_67) 2019; 566 Hu (ref_48) 2019; 51 Binder (ref_19) 1998; 8 ref_45 Carrera (ref_17) 2016; 152 ref_44 ref_42 ref_41 ref_40 ref_1 Carli (ref_16) 2003; 148 Hosny (ref_57) 2020; 79 Esteva (ref_64) 2017; 542 ref_9 Brinker (ref_61) 2019; 119 Harrison (ref_3) 2009; 1 ref_5 Attaran (ref_66) 2018; 5 ref_4 Haenssle (ref_39) 2018; 29 Mijwil (ref_75) 2021; 80 |
| References_xml | – ident: ref_9 – ident: ref_40 doi: 10.1007/978-3-319-47157-0_20 – ident: ref_74 – ident: ref_68 – ident: ref_5 doi: 10.1001/jamadermatol.2015.1187 – volume: 15 start-page: 203 year: 2017 ident: ref_14 article-title: Dermoscopy versus skin biopsy in diagnosis of suspicious skin lesions publication-title: Al-Azhar Assiut Med. J. doi: 10.4103/AZMJ.AZMJ_67_17 – volume: 13 start-page: 8 year: 2015 ident: ref_24 article-title: Machine learning applications in cancer prognosis and prediction publication-title: Comput. Struct. Biotechnol. J. doi: 10.1016/j.csbj.2014.11.005 – volume: 148 start-page: 981 year: 2003 ident: ref_16 article-title: Pattern analysis, not simplified algorithms, is the most reliable method for teaching dermoscopy for melanoma diagnosis to residents in dermatology publication-title: Br. J. Dermatol. doi: 10.1046/j.1365-2133.2003.05023.x – ident: ref_1 – ident: ref_44 doi: 10.1109/AITC.2019.8920908 – volume: 8 start-page: 101309 year: 2020 ident: ref_56 article-title: Classifying melanoma skin lesions using convolutional spiking neural networks with unsupervised stdp learning rule publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2998098 – ident: ref_27 doi: 10.3390/electronics10172064 – ident: ref_72 doi: 10.1109/CVPR.2018.00716 – volume: 36 start-page: 994 year: 2016 ident: ref_52 article-title: Automated melanoma recognition in dermoscopy images via very deep residual networks publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2642839 – volume: 138 start-page: 1529 year: 2018 ident: ref_62 article-title: Classification of the clinical images for benign and malignant cutaneous tumors using a deep learning algorithm publication-title: J. Investig. Dermatol. doi: 10.1016/j.jid.2018.01.028 – ident: ref_63 doi: 10.1371/journal.pone.0217293 – ident: ref_4 – volume: 51 start-page: 200 year: 2019 ident: ref_48 article-title: Classification of melanoma based on feature similarity measurement for codebook learning in the bag-of-features model publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2019.02.018 – ident: ref_54 doi: 10.1109/IES50839.2020.9231676 – ident: ref_38 doi: 10.1007/978-3-319-24888-2_15 – ident: ref_69 – ident: ref_10 – volume: 2 start-page: 117693510600200030 year: 2006 ident: ref_25 article-title: Applications of machine learning in cancer prediction and prognosis publication-title: Cancer Inform. doi: 10.1177/117693510600200030 – volume: 42 start-page: 6578 year: 2015 ident: ref_43 article-title: MED-NODE: A computer-assisted melanoma diagnosis system using non-dermoscopic images publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.04.034 – volume: 152 start-page: 798 year: 2016 ident: ref_17 article-title: Validity and reliability of dermoscopic criteria used to differentiate nevi from melanoma: A web-based international dermoscopy society study publication-title: JAMA Dermatol. doi: 10.1001/jamadermatol.2016.0624 – volume: 78 start-page: 23559 year: 2019 ident: ref_49 article-title: DermoDeep-A classification of melanoma-nevus skin lesions using multi-feature fusion of visual features and deep neural network publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-019-7652-y – ident: ref_41 doi: 10.3390/s18020556 – volume: 5 start-page: 277 year: 2018 ident: ref_66 article-title: Machine learning: The new’big thing’for competitive advantage publication-title: Int. J. Knowl. Eng. Data Min. doi: 10.1504/IJKEDM.2018.095523 – volume: 42 start-page: 60 year: 2017 ident: ref_34 article-title: A survey on deep learning in medical image analysis publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.07.005 – volume: 16 start-page: 135 year: 2016 ident: ref_50 article-title: Classification of Dermoscopic skin cancer images using color and hybrid texture features publication-title: IJCSNS Int. J. Comput. Sci. Netw. Secur. – ident: ref_59 – volume: 8 start-page: 261 year: 1998 ident: ref_19 article-title: Epiluminescence microscopy-based classification of pigmented skin lesions using computerized image analysis and an artificial neural network publication-title: Melanoma Res. doi: 10.1097/00008390-199806000-00009 – ident: ref_71 doi: 10.1109/CVPR.2018.00474 – volume: e-ISSN start-page: 2278-0661 year: 2014 ident: ref_21 article-title: Artificial intelligence in power systems publication-title: IOSR J. Comput. Eng. (IOSR-JCE) – ident: ref_37 doi: 10.1007/978-3-030-00928-1_43 – volume: 99 start-page: 1323 year: 2015 ident: ref_2 article-title: Skin cancer epidemiology, detection, and management publication-title: Med Clin. – volume: 20 start-page: e11936 year: 2018 ident: ref_32 article-title: Skin cancer classification using convolutional neural networks: Systematic review publication-title: J. Med. Internet Res. doi: 10.2196/11936 – volume: 67 start-page: 472 year: 2017 ident: ref_13 article-title: Melanoma staging: Evidence-based changes in the American Joint Committee on Cancer eighth edition cancer staging manual publication-title: CA Cancer J. Clin. doi: 10.3322/caac.21409 – volume: 36 start-page: 849 year: 2016 ident: ref_7 article-title: Melanoma classification on dermoscopy images using a neural network ensemble model publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2633551 – volume: 79 start-page: 24029 year: 2020 ident: ref_57 article-title: Skin melanoma classification using ROI and data augmentation with deep convolutional neural networks publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-020-09067-2 – ident: ref_35 doi: 10.1109/CVPR.2016.90 – ident: ref_51 doi: 10.1007/978-3-319-75420-8_54 – volume: 1 start-page: 335 year: 2009 ident: ref_3 article-title: Ultraviolet light and skin cancer in athletes publication-title: Sport. Health doi: 10.1177/1941738109338923 – volume: 6 start-page: 180 year: 2019 ident: ref_12 article-title: Dermoscopy of melanoma and non-melanoma skin cancers publication-title: Front. Med. doi: 10.3389/fmed.2019.00180 – volume: 79 start-page: 31219 year: 2020 ident: ref_47 article-title: Efficient fusion of handcrafted and pre-trained CNNs features to classify melanoma skin cancer publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-020-09637-4 – ident: ref_60 doi: 10.1109/SIU53274.2021.9477985 – volume: 140 start-page: 749 year: 2017 ident: ref_8 article-title: Segmentation and classification of melanoma and benign skin lesions publication-title: Optik doi: 10.1016/j.ijleo.2017.04.084 – ident: ref_18 – volume: 29 start-page: 1836 year: 2018 ident: ref_39 article-title: Man against machine: Diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists publication-title: Ann. Oncol. doi: 10.1093/annonc/mdy166 – ident: ref_55 doi: 10.1007/978-3-030-13469-3_85 – ident: ref_26 doi: 10.3390/app12010088 – volume: 521 start-page: 436 year: 2015 ident: ref_31 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – ident: ref_42 doi: 10.1109/ISBI.2017.7950523 – volume: 542 start-page: 115 year: 2017 ident: ref_64 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature21056 – volume: 2 start-page: 1 year: 2015 ident: ref_30 article-title: Deep learning applications and challenges in big data analytics publication-title: J. Big Data doi: 10.1186/s40537-014-0007-7 – volume: 80 start-page: 26255 year: 2021 ident: ref_75 article-title: Skin cancer disease images classification using deep learning solutions Multimedia Tools and Applications publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-021-10952-7 – volume: 88 start-page: 125 year: 2013 ident: ref_11 article-title: Biopsy guided by dermoscopy in cutaneous pigmented lesion-case report publication-title: An. Bras. Dermatol. doi: 10.1590/S0365-05962013000100020 – ident: ref_36 doi: 10.1007/978-3-030-00934-2_18 – ident: ref_29 – ident: ref_58 doi: 10.1007/978-981-13-6783-0_4 – volume: 10 start-page: 1881 year: 2004 ident: ref_20 article-title: Melanoma computer-aided diagnosis: Reliability and feasibility study publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-03-0039 – ident: ref_15 doi: 10.3390/app10072488 – ident: ref_23 doi: 10.3390/en12214128 – ident: ref_45 doi: 10.4018/978-1-5225-7107-0.ch010 – volume: 66 start-page: 1006 year: 2018 ident: ref_53 article-title: Melanoma recognition in dermoscopy images via aggregated deep convolutional features publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2018.2866166 – volume: 27 start-page: 1071 year: 2020 ident: ref_28 article-title: A survey of deep learning and its applications: A new paradigm to machine learning publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-019-09344-w – volume: 119 start-page: 11 year: 2019 ident: ref_61 article-title: Deep neural networks are superior to dermatologists in melanoma image classification publication-title: Eur. J. Cancer doi: 10.1016/j.ejca.2019.05.023 – volume: 48 start-page: 469 year: 2015 ident: ref_65 article-title: Machine learning for predictive modelling based on small data in biomedical engineering publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2015.10.185 – volume: 7 start-page: 90132 year: 2019 ident: ref_46 article-title: Classification of melanoma and nevus in digital images for diagnosis of skin cancer publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2926837 – ident: ref_70 – ident: ref_22 – volume: 6 start-page: 191 year: 2019 ident: ref_33 article-title: The possibility of deep learning-based, computer-aided skin tumor classifiers publication-title: Front. Med. doi: 10.3389/fmed.2019.00191 – ident: ref_73 doi: 10.1109/CVPR.2017.195 – volume: 136 start-page: 1161 year: 2016 ident: ref_6 article-title: The growing burden of invasive melanoma: Projections of incidence rates and numbers of new cases in six susceptible populations through 2031 publication-title: J. Investig. Dermatol. doi: 10.1016/j.jid.2016.01.035 – volume: 566 start-page: 195 year: 2019 ident: ref_67 article-title: Deep learning and process understanding for data-driven Earth system science publication-title: Nature doi: 10.1038/s41586-019-0912-1 |
| SSID | ssj0000913810 |
| Score | 2.531929 |
| Snippet | Melanoma is a fatal type of skin cancer; the fury spread results in a high fatality rate when the malignancy is not treated at an initial stage. The patients’... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 5714 |
| SubjectTerms | Accuracy Artificial intelligence Biopsy Classification Datasets Deep learning Dermatology ISIC-2020 dataset Lymphatic system Machine learning malignant melanoma Melanoma Methods MobileNetV2 Neural networks Skin cancer Skin diseases Support vector machines Tumors |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BywADUB6iUFCGDoAUETt2HhPiKaaqQgxskV9BFSgtTeH343PcUgnEwhjnZEW5sz_7fP4-gD7ngsaxUCG36BgyozgKubNQWHAyiRQIW05sIh0MsufnfOgTbrUvq5zPiW6i1mOFOfILitXyNl4iejl5D1E1Ck9XvYTGKrSRqYy1oH19Nxg-LrIsyHqZkai5mBfb_T2eCyOrGXf3dpagyDH2_5iQHcrcb_33-7Zh068vg6smIDqwYqod2FhiHdyBjh_PdXDqSafPdu2i_XVUBTcYA9Pgtjm1CW7NzFVqVYGrLAgcsJXWwLOy2pY5BewePN3fPd08hF5cIVRxwmahdoSgUkWaqtTuYaTkUin7nGdlQjXTkTSliIghmmtjQZ1mmmjBciLzRKt4H1rVuDIHEAgmWaoIUTQpWVxS24fI0lRTHXFt139dOJ__5kJ54nHUv3gr7AYEfVIs-aQL_YXxpOHb-N3sGv21MEGSbNcwnr4UfswVMqWCKk0ynXPrG5MJkye5iTRJUtTR6kJv7srCj9y6-Pbj4d-vj2Cd4lUIl5HpQWs2_TDHsKY-Z6N6euID8QtTz-cy priority: 102 providerName: ProQuest |
| Title | Skin Cancer Disease Detection Using Transfer Learning Technique |
| URI | https://www.proquest.com/docview/2674331902 https://doaj.org/article/b72a2cd18d95433e8ae969e0d167d6db |
| Volume | 12 |
| WOSCitedRecordID | wos000808875500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yPehB3FSczpHDDioUm6-2Obq5oQfHkB3mqeSrMJQqW_XvN0mzUVDw4jHh0Zb3kvd7r8n7PQAGjAlMiFARs-gYUaOYa-ROI2HBySRSONjyzSbS6TRbLPis0erL3Qmr6YFrxd3KFAusNMo0Z5QQkwnDE25ijZLUNUNy3tdGPY1kyvtgjhx1VV2QR2xe786DHZsZ8_U6DQjyTP0_HLFHl8kROAxhIbyrP6cNdkzZAQcNssAOaIdtuIZXgSv6-tjG2q_LEo6c6Vbwvj5sgfem8hesSugvBECPR4UVCGSqdmbD3HoC5pPxfPQQhZ4IkSIJrSLteTylijVWqU09pGRSKTvmWZFgTXUsTSFiZJBm2lgsxplGWlCOJE-0IqegVb6X5gxAQSVNFUIKJwUlBbbPEFmaaqxjpm3Y1gU3Gy3lKvCFu7YVb7nNG5xK84ZKu2CwFf6oaTJ-Fxs6dW9FHLe1n7AWz4PF878s3gW9jbHysOHWOXbFFNadxPj8P95xAfaxq3Pwv1t6oFWtPs0l2FNf1XK96oPd4Xg6e-77NWdHs8en2cs3p5XbsQ |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LbxMxEB6VtBJwAFqKSCngQysB0qprr72PQ1VBQ9WobZRDDuVk-bVVBdqUJID6o_iPjL3eEAnErQeO6x1Z2vXnGT9mvg9gTwjFskyZRGB0TLgzwgu580RhcHK5Vj5sBbGJYjQqLy-r8Rr87GphfFpl5xODo7ZT48_ID5jPlke8pOzo5mviVaP87WonodHC4szd_sAt2_xwOMDx3Wfs5OPk-DSJqgKJyXK-SGxgwtQmtcwUuHjXWmhj8Lkq65xZblPtapVSR62wDqMZKy21ildUV7k1GXZ7D9Y5Yr3swfp4eDH-tDzU8V2XNG3rALOsSv01tCdRE6FMaCXyBYGAP_x_CGonj_-z3_EEHsXVM3nfwn0T1lyzBQ9XOBW3YDN6qzl5Eym13z7FLcnn64Yce4TPyKC9kyIDtwh5aA0JeRMkhO0aDSLnLLZ0BLfbMLmLr3oGvWbauOdAFNe8MJQaltc8qxn2ocqisMymwuLqtg_vulGVJtKqe3WPLxK3Vx4CcgUCfdhbGt-0bCJ_N_vg4bE08RTgoWE6u5LRo0hdMMWMpaWtBELBlcpVeeVSS_PCq4T1YbdDjox-aS5_w2bn369fw_3TycW5PB-Ozl7AA-aLPsLZ0y70FrNv7iVsmO-L6_nsVZwDBOQdw-wX_alGGg |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LTxRBEK4gGKMHEMS4AtoHTNRkwnRP9zwOxCjrhg262QMHPHX6NYRgZnF3lfDT_HdU9_Qsm2i8cfA4PZVOZvrrqn5UfR_AvhCKZZkyicDomHBnhBdy54nC4ORyrXzYCmITxWhUnp1V4xX43dXC-LTKzicGR20nxp-RHzCfLY94SdlBHdMixv3Bh6sfiVeQ8jetnZxGC5ETd3ON27fZ4bCPY_2GscHn06PjJCoMJCbL-TyxgRVTm9QyU-BCXmuhjcHnqqxzZrlNtatVSh21wjqMbKy01CpeUV3l1mTY7QNYwxU5xym2Nh5-HX9bHPD4rkuatjWBWVal_kraE6qJUDK0FAWDWMAfsSAEuMHGf_xrnsJ6XFWTj-002IQV12zBkyWuxS3YjF5sRt5Gqu13z3CrcnnRkCOP_Cnpt3dVpO_mIT-tISGfgoRwXqNB5KLFlo74dhtO7-OrnsNqM2ncCyCKa14YSg3La57VDPtQZVFYZlNhcdXbg_fdCEsT6da96sd3idsuDwe5BIce7C-Mr1qWkb-bffJQWZh4avDQMJmey-hppC6YYsbS0lYCYeFK5aq8cqmleeHVw3qw26FIRn81k3cQevnv16_hEWJLfhmOTnbgMfO1IOFIahdW59Ofbg8eml_zi9n0VZwOBOQ9o-wWgyhO2g |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Skin+Cancer+Disease+Detection+Using+Transfer+Learning+Technique&rft.jtitle=Applied+sciences&rft.au=Javed+Rashid&rft.au=Maryam+Ishfaq&rft.au=Ghulam+Ali&rft.au=Muhammad+R.+Saeed&rft.date=2022-06-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=11&rft.spage=5714&rft_id=info:doi/10.3390%2Fapp12115714&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_b72a2cd18d95433e8ae969e0d167d6db |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |