LQR-based control strategy for improving human–robot companionship and natural obstacle avoidance

In the dynamic and unstructured environment of human–robot symbiosis, companion robots require natural human–robot interaction and autonomous intelligence through multimodal information fusion to achieve effective collaboration. Nevertheless, the control precision and coordination of the accompanyin...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Biomimetic intelligence and robotics Ročník 4; číslo 4; s. 100185
Hlavní autori: Su, Zefan, Yao, Hanchen, Peng, Jianwei, Liao, Zhelin, Wang, Zengwei, Yu, Hui, Dai, Houde, Lueth, Tim C.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.12.2024
Elsevier
Predmet:
ISSN:2667-3797, 2667-3797
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In the dynamic and unstructured environment of human–robot symbiosis, companion robots require natural human–robot interaction and autonomous intelligence through multimodal information fusion to achieve effective collaboration. Nevertheless, the control precision and coordination of the accompanying actions are not satisfactory in practical applications. This is primarily attributed to the difficulties in the motion coordination between the accompanying target and the mobile robot. This paper proposes a companion control strategy based on the Linear Quadratic Regulator (LQR) to enhance the coordination and precision of robot companion tasks. This method enables the robot to adapt to sudden changes in the companion target’s motion. Besides, the robot could smoothly avoid obstacles during the companion process. Firstly, a human–robot companion interaction model based on nonholonomic constraints is developed to determine the relative position and orientation between the robot and the companion target. Then, an LQR-based companion controller incorporating behavioral dynamics is introduced to simultaneously avoid obstacles and track the companion target’s direction and velocity. Finally, various simulations and real-world human–robot companion experiments are conducted to regulate the relative position, orientation, and velocity between the target object and the robot platform. Experimental results demonstrate the superiority of this approach over conventional control algorithms in terms of control distance and directional errors throughout system operation. The proposed LQR-based control strategy ensures coordinated and consistent motion with target persons in social companion scenarios.
AbstractList In the dynamic and unstructured environment of human–robot symbiosis, companion robots require natural human–robot interaction and autonomous intelligence through multimodal information fusion to achieve effective collaboration. Nevertheless, the control precision and coordination of the accompanying actions are not satisfactory in practical applications. This is primarily attributed to the difficulties in the motion coordination between the accompanying target and the mobile robot. This paper proposes a companion control strategy based on the Linear Quadratic Regulator (LQR) to enhance the coordination and precision of robot companion tasks. This method enables the robot to adapt to sudden changes in the companion target’s motion. Besides, the robot could smoothly avoid obstacles during the companion process. Firstly, a human–robot companion interaction model based on nonholonomic constraints is developed to determine the relative position and orientation between the robot and the companion target. Then, an LQR-based companion controller incorporating behavioral dynamics is introduced to simultaneously avoid obstacles and track the companion target’s direction and velocity. Finally, various simulations and real-world human–robot companion experiments are conducted to regulate the relative position, orientation, and velocity between the target object and the robot platform. Experimental results demonstrate the superiority of this approach over conventional control algorithms in terms of control distance and directional errors throughout system operation. The proposed LQR-based control strategy ensures coordinated and consistent motion with target persons in social companion scenarios.
ArticleNumber 100185
Author Yu, Hui
Yao, Hanchen
Lueth, Tim C.
Su, Zefan
Wang, Zengwei
Peng, Jianwei
Liao, Zhelin
Dai, Houde
Author_xml – sequence: 1
  givenname: Zefan
  orcidid: 0009-0002-7958-6886
  surname: Su
  fullname: Su, Zefan
  organization: School of Advanced Manufacturing, Fuzhou University, Jinjiang 362251, China
– sequence: 2
  givenname: Hanchen
  orcidid: 0000-0001-7822-4088
  surname: Yao
  fullname: Yao, Hanchen
  organization: Quanzhou Institute of Equipment Manufacturing, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Jinjiang 362200, China
– sequence: 3
  givenname: Jianwei
  surname: Peng
  fullname: Peng, Jianwei
  organization: Quanzhou Institute of Equipment Manufacturing, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Jinjiang 362200, China
– sequence: 4
  givenname: Zhelin
  surname: Liao
  fullname: Liao, Zhelin
  organization: Quanzhou Institute of Equipment Manufacturing, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Jinjiang 362200, China
– sequence: 5
  givenname: Zengwei
  orcidid: 0000-0003-4867-4795
  surname: Wang
  fullname: Wang, Zengwei
  organization: Institute of Micro Technology and Medical Device Technology (MIMED), School of Engineering and Design, Technical University of Munich, Garching 85748, Germany
– sequence: 6
  givenname: Hui
  surname: Yu
  fullname: Yu, Hui
  email: yuhui@fjirsm.ac.cn
  organization: Quanzhou Institute of Equipment Manufacturing, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Jinjiang 362200, China
– sequence: 7
  givenname: Houde
  orcidid: 0000-0001-7417-7974
  surname: Dai
  fullname: Dai, Houde
  email: dhd@fjirsm.ac.cn
  organization: Quanzhou Institute of Equipment Manufacturing, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Jinjiang 362200, China
– sequence: 8
  givenname: Tim C.
  surname: Lueth
  fullname: Lueth, Tim C.
  organization: Institute of Micro Technology and Medical Device Technology (MIMED), School of Engineering and Design, Technical University of Munich, Garching 85748, Germany
BookMark eNp9kEtKBDEQhoMo-DyBm1ygx6QfSffChYiPgQFRdB0qSfWYYSYZkjjgzjt4Q09idERcuaqiqP-vv75DsuuDR0JOOZtwxsXZYqJdDHpSs7otE8b7bocc1ELIqpGD3P3T75OTlBaMsVqygcvhgJjZ_UOlIaGlJvgcw5KmHCHj_JWOIVK3WsewcX5On19W4D_e3supkMvyag3eBZ-e3ZqCt9RDfomwpEGnDGaJFDbBWfAGj8neCMuEJz_1iDxdXz1e3lazu5vp5cWsMo1oc2UsDl1fa4vYi74BLTqsW8vs0HZoOgHYG8Y6oe3IgEk58tEArwWDRmsJTXNEpltfG2Ch1tGtIL6qAE59D0KcK4jZlWyqBQ5oeuikHduey3K2th0ULEzzFm3xarZeJoaUIo6_fpypL-xqob6xqy_saou9qM63KixvbhxGlYzDgsC6iCaXHO5f_SdzmZFk
Cites_doi 10.1007/s12369-019-00559-2
10.1016/j.robot.2022.104317
10.1007/s10919-009-0077-y
10.1007/s10514-007-9075-2
10.1177/0278364919881683
10.1109/TIE.2003.821894
10.1109/TCDS.2018.2825641
10.1109/TIE.2013.2262758
10.1177/027836498600500106
10.1038/s41598-023-33837-1
10.1109/TSMC.2018.2871104
10.1145/2157689.2157799
10.1109/TMECH.2021.3068138
ContentType Journal Article
Copyright 2024 The Author(s)
Copyright_xml – notice: 2024 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.birob.2024.100185
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals (WRLC)
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2667-3797
ExternalDocumentID oai_doaj_org_article_4a1aec8a57df481782b2d5a2700b14ed
10_1016_j_birob_2024_100185
S2667379724000433
GroupedDBID 0R~
6I.
AAEDW
AAFTH
AALRI
AAXUO
ADVLN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M41
M~E
ROL
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
CITATION
ID FETCH-LOGICAL-c364t-cde9582bdee8683ab65e24d0d945ec56ae8c0056bdf0a077f1fca1260a3bb7a33
IEDL.DBID DOA
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001350425800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2667-3797
IngestDate Fri Oct 03 12:43:27 EDT 2025
Sat Nov 29 03:44:59 EST 2025
Sat Dec 28 15:52:05 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 4
Keywords Human–robot interaction
Linear quadratic regulator
Behavioral dynamics
Human-accompanying robots
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-cde9582bdee8683ab65e24d0d945ec56ae8c0056bdf0a077f1fca1260a3bb7a33
ORCID 0009-0002-7958-6886
0000-0003-4867-4795
0000-0001-7417-7974
0000-0001-7822-4088
OpenAccessLink https://doaj.org/article/4a1aec8a57df481782b2d5a2700b14ed
ParticipantIDs doaj_primary_oai_doaj_org_article_4a1aec8a57df481782b2d5a2700b14ed
crossref_primary_10_1016_j_birob_2024_100185
elsevier_sciencedirect_doi_10_1016_j_birob_2024_100185
PublicationCentury 2000
PublicationDate December 2024
2024-12-00
2024-12-01
PublicationDateYYYYMMDD 2024-12-01
PublicationDate_xml – month: 12
  year: 2024
  text: December 2024
PublicationDecade 2020
PublicationTitle Biomimetic intelligence and robotics
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Prassler, Bank, Kluge (b18) 2002; Vol. 2
Zoboli, Andrieu, Astolfi, Casadei, Dibangoye, Nadri (b22) 2021
Arechavaleta, Laumond, Hicheur, Berthoz (b20) 2008; 25
Yan, Huang, Yang, Hasegawa, Fukuda (b3) 2021; 27
Peng, Liao, Su, Yao, Zeng, Dai (b7) 2023
Zhao, Yang, Li, Xu, She, Yan (b21) 2024
Li, Milligan, Blythe, Zhang, Edwards, Palmarini, Corner, Ji, Zhang, Namdeo (b4) 2023; 13
Xue, Yao, Zhang, Huang, Zhu, Dai (b14) 2022
Islam, Hong, Sattar (b2) 2019; 38
Morales, Kanda, Hagita (b12) 2014; 3
Fajen, Warren (b23) 2003; 29
Morioka, Lee, Hashimoto (b15) 2004; 51
Yuan, Zhang, Sun, Liu, Cai (b8) 2018; 51
Y. Morales, S. Satake, R. Huq, D. Glas, T. Kanda, N. Hagita, How do people walk side-by-side? Using a computational model of human behavior for a social robot, in: Proceedings of the 7th Annual ACM/IEEE International Conference on Human-Robot Interaction, 2012, pp. 301–308.
Repiso, Garrell, Sanfeliu (b10) 2020; 12
Yao, Dai, Zhao, Liu, Zhao (b13) 2021
Hu, Wang, Ho (b16) 2013; 61
Honig, Oron-Gilad, Zaichyk, Sarne-Fleischmann, Olatunji, Edan (b1) 2018; 10
Costa (b9) 2010; 34
Toan, Hoang, Khoi, Yi (b5) 2023; 160
Khatib (b19) 1986; 5
Sun, Sun, Liu (b6) 2016
Tian, Ma (b17) 2022
Yuan (10.1016/j.birob.2024.100185_b8) 2018; 51
Costa (10.1016/j.birob.2024.100185_b9) 2010; 34
Sun (10.1016/j.birob.2024.100185_b6) 2016
10.1016/j.birob.2024.100185_b11
Repiso (10.1016/j.birob.2024.100185_b10) 2020; 12
Li (10.1016/j.birob.2024.100185_b4) 2023; 13
Toan (10.1016/j.birob.2024.100185_b5) 2023; 160
Xue (10.1016/j.birob.2024.100185_b14) 2022
Zoboli (10.1016/j.birob.2024.100185_b22) 2021
Prassler (10.1016/j.birob.2024.100185_b18) 2002; Vol. 2
Zhao (10.1016/j.birob.2024.100185_b21) 2024
Yao (10.1016/j.birob.2024.100185_b13) 2021
Peng (10.1016/j.birob.2024.100185_b7) 2023
Tian (10.1016/j.birob.2024.100185_b17) 2022
Arechavaleta (10.1016/j.birob.2024.100185_b20) 2008; 25
Khatib (10.1016/j.birob.2024.100185_b19) 1986; 5
Hu (10.1016/j.birob.2024.100185_b16) 2013; 61
Morioka (10.1016/j.birob.2024.100185_b15) 2004; 51
Honig (10.1016/j.birob.2024.100185_b1) 2018; 10
Islam (10.1016/j.birob.2024.100185_b2) 2019; 38
Morales (10.1016/j.birob.2024.100185_b12) 2014; 3
Fajen (10.1016/j.birob.2024.100185_b23) 2003; 29
Yan (10.1016/j.birob.2024.100185_b3) 2021; 27
References_xml – volume: 160
  year: 2023
  ident: b5
  article-title: The human-following strategy for mobile robots in mixed environments
  publication-title: Robot. Auton. Syst.
– volume: 51
  start-page: 229
  year: 2004
  end-page: 237
  ident: b15
  article-title: Human-following mobile robot in a distributed intelligent sensor network
  publication-title: IEEE Trans. Ind. Electron.
– start-page: 2651
  year: 2021
  end-page: 2656
  ident: b13
  article-title: Laser-based side-by-side following for human-following robots
  publication-title: 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems
– start-page: 2258
  year: 2021
  end-page: 2263
  ident: b22
  article-title: Reinforcement learning policies with local LQR guarantees for nonlinear discrete-time systems
  publication-title: 2021 60th IEEE Conference on Decision and Control
– volume: 25
  start-page: 25
  year: 2008
  end-page: 35
  ident: b20
  article-title: On the nonholonomic nature of human locomotion
  publication-title: Auton. Robots
– volume: 10
  start-page: 936
  year: 2018
  end-page: 954
  ident: b1
  article-title: Toward socially aware person-following robots
  publication-title: IEEE Trans. Cogn. Dev. Syst.
– start-page: 7354
  year: 2023
  end-page: 7360
  ident: b7
  article-title: Human-robot interaction dynamics-based impedance control strategy for enhancing social acceptance of human-following robot
  publication-title: 2023 China Automation Congress
– volume: 3
  start-page: 50
  year: 2014
  end-page: 73
  ident: b12
  article-title: Walking together: Side-by-side walking model for an interacting robot
  publication-title: J. Hum.-Robot Interact.
– start-page: 649
  year: 2016
  end-page: 654
  ident: b6
  article-title: Human comfort following behavior for service robots
  publication-title: 2016 IEEE International Conference on Robotics and Biomimetics
– volume: 34
  start-page: 15
  year: 2010
  end-page: 26
  ident: b9
  article-title: Interpersonal distances in group walking
  publication-title: J. Nonverbal Behav.
– volume: Vol. 2
  start-page: 1228
  year: 2002
  end-page: 1233
  ident: b18
  article-title: Motion coordination between a human and a mobile robot
  publication-title: IEEE/RSJ International Conference on Intelligent Robots and Systems
– volume: 38
  start-page: 1581
  year: 2019
  end-page: 1618
  ident: b2
  article-title: Person-following by autonomous robots: A categorical overview
  publication-title: Int. J. Robot. Res.
– volume: 12
  start-page: 909
  year: 2020
  end-page: 930
  ident: b10
  article-title: Adaptive side-by-side social robot navigation to approach and interact with people
  publication-title: Int. J. Soc. Robot.
– start-page: 333
  year: 2022
  end-page: 338
  ident: b14
  article-title: UWB-based adaptable side-by-side following for human-following robots
  publication-title: 2022 IEEE International Conference on Robotics and Biomimetics
– year: 2024
  ident: b21
  article-title: A Kalman–Koopman LQR control approach to robotic systems
  publication-title: IEEE Trans. Ind. Electron.
– volume: 5
  start-page: 90
  year: 1986
  end-page: 98
  ident: b19
  article-title: Real-time obstacle avoidance for manipulators and mobile robots
  publication-title: Int. J. Robot. Res.
– start-page: 349
  year: 2022
  end-page: 354
  ident: b17
  article-title: Behavioral dynamics-based impedance control for collision avoidance of human-following robots
  publication-title: 2022 IEEE International Conference on Real-Time Computing and Robotics
– volume: 27
  start-page: 537
  year: 2021
  end-page: 548
  ident: b3
  article-title: Human-following control of cane-type walking-aid robot within fixed relative posture
  publication-title: IEEE/ASME Trans. Mechatronics
– volume: 13
  start-page: 6512
  year: 2023
  ident: b4
  article-title: Exploring the role of human-following robots in supporting the mobility and wellbeing of older people
  publication-title: Sci. Rep.
– reference: Y. Morales, S. Satake, R. Huq, D. Glas, T. Kanda, N. Hagita, How do people walk side-by-side? Using a computational model of human behavior for a social robot, in: Proceedings of the 7th Annual ACM/IEEE International Conference on Human-Robot Interaction, 2012, pp. 301–308.
– volume: 61
  start-page: 1916
  year: 2013
  end-page: 1927
  ident: b16
  article-title: Design of sensing system and anticipative behavior for human following of mobile robots
  publication-title: IEEE Trans. Ind. Electron.
– volume: 51
  start-page: 354
  year: 2018
  end-page: 369
  ident: b8
  article-title: Laser-based intersection-aware human following with a mobile robot in indoor environments
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
– volume: 29
  start-page: 343
  year: 2003
  ident: b23
  article-title: Behavioral dynamics of steering, obstable avoidance, and route selection
  publication-title: J. Exp. Psychol.: Hum. Percept. Perform.
– volume: 12
  start-page: 909
  issue: 4
  year: 2020
  ident: 10.1016/j.birob.2024.100185_b10
  article-title: Adaptive side-by-side social robot navigation to approach and interact with people
  publication-title: Int. J. Soc. Robot.
  doi: 10.1007/s12369-019-00559-2
– volume: 160
  year: 2023
  ident: 10.1016/j.birob.2024.100185_b5
  article-title: The human-following strategy for mobile robots in mixed environments
  publication-title: Robot. Auton. Syst.
  doi: 10.1016/j.robot.2022.104317
– start-page: 2651
  year: 2021
  ident: 10.1016/j.birob.2024.100185_b13
  article-title: Laser-based side-by-side following for human-following robots
– start-page: 349
  year: 2022
  ident: 10.1016/j.birob.2024.100185_b17
  article-title: Behavioral dynamics-based impedance control for collision avoidance of human-following robots
– volume: 34
  start-page: 15
  year: 2010
  ident: 10.1016/j.birob.2024.100185_b9
  article-title: Interpersonal distances in group walking
  publication-title: J. Nonverbal Behav.
  doi: 10.1007/s10919-009-0077-y
– volume: 3
  start-page: 50
  issue: 2
  year: 2014
  ident: 10.1016/j.birob.2024.100185_b12
  article-title: Walking together: Side-by-side walking model for an interacting robot
  publication-title: J. Hum.-Robot Interact.
– volume: Vol. 2
  start-page: 1228
  year: 2002
  ident: 10.1016/j.birob.2024.100185_b18
  article-title: Motion coordination between a human and a mobile robot
– volume: 25
  start-page: 25
  year: 2008
  ident: 10.1016/j.birob.2024.100185_b20
  article-title: On the nonholonomic nature of human locomotion
  publication-title: Auton. Robots
  doi: 10.1007/s10514-007-9075-2
– volume: 38
  start-page: 1581
  issue: 14
  year: 2019
  ident: 10.1016/j.birob.2024.100185_b2
  article-title: Person-following by autonomous robots: A categorical overview
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/0278364919881683
– start-page: 649
  year: 2016
  ident: 10.1016/j.birob.2024.100185_b6
  article-title: Human comfort following behavior for service robots
– start-page: 7354
  year: 2023
  ident: 10.1016/j.birob.2024.100185_b7
  article-title: Human-robot interaction dynamics-based impedance control strategy for enhancing social acceptance of human-following robot
– volume: 51
  start-page: 229
  issue: 1
  year: 2004
  ident: 10.1016/j.birob.2024.100185_b15
  article-title: Human-following mobile robot in a distributed intelligent sensor network
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2003.821894
– volume: 10
  start-page: 936
  issue: 4
  year: 2018
  ident: 10.1016/j.birob.2024.100185_b1
  article-title: Toward socially aware person-following robots
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2018.2825641
– start-page: 2258
  year: 2021
  ident: 10.1016/j.birob.2024.100185_b22
  article-title: Reinforcement learning policies with local LQR guarantees for nonlinear discrete-time systems
– volume: 61
  start-page: 1916
  issue: 4
  year: 2013
  ident: 10.1016/j.birob.2024.100185_b16
  article-title: Design of sensing system and anticipative behavior for human following of mobile robots
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2013.2262758
– volume: 5
  start-page: 90
  issue: 1
  year: 1986
  ident: 10.1016/j.birob.2024.100185_b19
  article-title: Real-time obstacle avoidance for manipulators and mobile robots
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/027836498600500106
– volume: 13
  start-page: 6512
  issue: 1
  year: 2023
  ident: 10.1016/j.birob.2024.100185_b4
  article-title: Exploring the role of human-following robots in supporting the mobility and wellbeing of older people
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-023-33837-1
– start-page: 333
  year: 2022
  ident: 10.1016/j.birob.2024.100185_b14
  article-title: UWB-based adaptable side-by-side following for human-following robots
– volume: 29
  start-page: 343
  issue: 2
  year: 2003
  ident: 10.1016/j.birob.2024.100185_b23
  article-title: Behavioral dynamics of steering, obstable avoidance, and route selection
  publication-title: J. Exp. Psychol.: Hum. Percept. Perform.
– volume: 51
  start-page: 354
  issue: 1
  year: 2018
  ident: 10.1016/j.birob.2024.100185_b8
  article-title: Laser-based intersection-aware human following with a mobile robot in indoor environments
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
  doi: 10.1109/TSMC.2018.2871104
– ident: 10.1016/j.birob.2024.100185_b11
  doi: 10.1145/2157689.2157799
– volume: 27
  start-page: 537
  issue: 1
  year: 2021
  ident: 10.1016/j.birob.2024.100185_b3
  article-title: Human-following control of cane-type walking-aid robot within fixed relative posture
  publication-title: IEEE/ASME Trans. Mechatronics
  doi: 10.1109/TMECH.2021.3068138
– year: 2024
  ident: 10.1016/j.birob.2024.100185_b21
  article-title: A Kalman–Koopman LQR control approach to robotic systems
  publication-title: IEEE Trans. Ind. Electron.
SSID ssj0002709179
Score 2.2959769
Snippet In the dynamic and unstructured environment of human–robot symbiosis, companion robots require natural human–robot interaction and autonomous intelligence...
SourceID doaj
crossref
elsevier
SourceType Open Website
Index Database
Publisher
StartPage 100185
SubjectTerms Behavioral dynamics
Human-accompanying robots
Human–robot interaction
Linear quadratic regulator
Title LQR-based control strategy for improving human–robot companionship and natural obstacle avoidance
URI https://dx.doi.org/10.1016/j.birob.2024.100185
https://doaj.org/article/4a1aec8a57df481782b2d5a2700b14ed
Volume 4
WOSCitedRecordID wos001350425800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2667-3797
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002709179
  issn: 2667-3797
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2667-3797
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002709179
  issn: 2667-3797
  databaseCode: M~E
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV27SsRAFB1ELLQQn7i-mMLSYB6TzKRU2cVCFxWF7cKdF2SLRHbXBRvxH_xDv8Q7k0RSaWOTIoS5w71DzrnJ4VxCzsIEVChzE0CWy4CB1YFEFhuwWKmcI2ZrsH7YBB-PxWSS3_dGfTlNWGMP3CTugkEERglIubZMRAhoMtYpuP-lMmJGu7cvsp5eMzX1v9MQB3ne2Qx5QZcsZ7XEjjBm3njITU_uQZF37O8hUg9lRltks6WH9LLZ1jZZMdUO2eiZBu4SdfvwGDjw0bTVmdN5YzH7RpGB0rL7TED9_L2vj0_cUL2gXm1etfosCpWm3tQTo9USKSKGo7CsS-2OwR55Hg2frm-CdlRCoJKMLQKlTZ5iarQxIhMJyCw1MdOhzllqVJqBEcq5fkptQwg5t5FVEGEvA4mUHJJkn6xWdWUOCJXAEyEzyYXhTJhYWNf0SZsoK5AfZANy3mWteGkcMYpOKjYtfJILl-SiSfKAXLnM_jzq7Kz9DSxy0Ra5-KvIA5J1dSlaZtAgPi5V_hb98D-iH5F1t2QjYjkmq4vZqzkha2q5KOezU3_w8Hr3PvwG70riuQ
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=LQR-based+control+strategy+for+improving+human%E2%80%93robot+companionship+and+natural+obstacle+avoidance&rft.jtitle=Biomimetic+intelligence+and+robotics&rft.au=Zefan+Su&rft.au=Hanchen+Yao&rft.au=Jianwei+Peng&rft.au=Zhelin+Liao&rft.date=2024-12-01&rft.pub=Elsevier&rft.eissn=2667-3797&rft.volume=4&rft.issue=4&rft.spage=100185&rft_id=info:doi/10.1016%2Fj.birob.2024.100185&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_4a1aec8a57df481782b2d5a2700b14ed
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2667-3797&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2667-3797&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2667-3797&client=summon