Comparative Analysis of Selection Hyper-Heuristics for Real-World Multi-Objective Optimization Problems
As exact algorithms are unfeasible to solve real optimization problems, due to their computational complexity, meta-heuristics are usually used to solve them. However, choosing a meta-heuristic to solve a particular optimization problem is a non-trivial task, and often requires a time-consuming tria...
Gespeichert in:
| Veröffentlicht in: | Applied sciences Jg. 11; H. 19; S. 9153 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Basel
MDPI AG
01.10.2021
|
| Schlagworte: | |
| ISSN: | 2076-3417, 2076-3417 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | As exact algorithms are unfeasible to solve real optimization problems, due to their computational complexity, meta-heuristics are usually used to solve them. However, choosing a meta-heuristic to solve a particular optimization problem is a non-trivial task, and often requires a time-consuming trial and error process. Hyper-heuristics, which are heuristics to choose heuristics, have been proposed as a means to both simplify and improve algorithm selection or configuration for optimization problems. This paper novel presents a novel cross-domain evaluation for multi-objective optimization: we investigate how four state-of-the-art online hyper-heuristics with different characteristics perform in order to find solutions for eighteen real-world multi-objective optimization problems. These hyper-heuristics were designed in previous studies and tackle the algorithm selection problem from different perspectives: Election-Based, based on Reinforcement Learning and based on a mathematical function. All studied hyper-heuristics control a set of five Multi-Objective Evolutionary Algorithms (MOEAs) as Low-Level (meta-)Heuristics (LLHs) while finding solutions for the optimization problem. To our knowledge, this work is the first to deal conjointly with the following issues: (i) selection of meta-heuristics instead of simple operators (ii) focus on multi-objective optimization problems, (iii) experiments on real world problems and not just function benchmarks. In our experiments, we computed, for each algorithm execution, Hypervolume and IGD+ and compared the results considering the Kruskal–Wallis statistical test. Furthermore, we ranked all the tested algorithms considering three different Friedman Rankings to summarize the cross-domain analysis. Our results showed that hyper-heuristics have a better cross-domain performance than single meta-heuristics, which makes them excellent candidates for solving new multi-objective optimization problems. |
|---|---|
| AbstractList | As exact algorithms are unfeasible to solve real optimization problems, due to their computational complexity, meta-heuristics are usually used to solve them. However, choosing a meta-heuristic to solve a particular optimization problem is a non-trivial task, and often requires a time-consuming trial and error process. Hyper-heuristics, which are heuristics to choose heuristics, have been proposed as a means to both simplify and improve algorithm selection or configuration for optimization problems. This paper novel presents a novel cross-domain evaluation for multi-objective optimization: we investigate how four state-of-the-art online hyper-heuristics with different characteristics perform in order to find solutions for eighteen real-world multi-objective optimization problems. These hyper-heuristics were designed in previous studies and tackle the algorithm selection problem from different perspectives: Election-Based, based on Reinforcement Learning and based on a mathematical function. All studied hyper-heuristics control a set of five Multi-Objective Evolutionary Algorithms (MOEAs) as Low-Level (meta-)Heuristics (LLHs) while finding solutions for the optimization problem. To our knowledge, this work is the first to deal conjointly with the following issues: (i) selection of meta-heuristics instead of simple operators (ii) focus on multi-objective optimization problems, (iii) experiments on real world problems and not just function benchmarks. In our experiments, we computed, for each algorithm execution, Hypervolume and IGD+ and compared the results considering the Kruskal–Wallis statistical test. Furthermore, we ranked all the tested algorithms considering three different Friedman Rankings to summarize the cross-domain analysis. Our results showed that hyper-heuristics have a better cross-domain performance than single meta-heuristics, which makes them excellent candidates for solving new multi-objective optimization problems. |
| Author | Özcan, Ender de Carvalho, Vinicius Renan Sichman, Jaime Simão |
| Author_xml | – sequence: 1 givenname: Vinicius Renan orcidid: 0000-0002-4623-7244 surname: de Carvalho fullname: de Carvalho, Vinicius Renan – sequence: 2 givenname: Ender orcidid: 0000-0003-0276-1391 surname: Özcan fullname: Özcan, Ender – sequence: 3 givenname: Jaime Simão orcidid: 0000-0001-8924-9643 surname: Sichman fullname: Sichman, Jaime Simão |
| BookMark | eNptkdtKAzEQhoMoeOqVL7Dgpawmmz3lUopaQal4wMswm0wkJW3WJBXq07ttRUScmxmGb_5h_jkkuwu_QEJOGD3nXNAL6HvGmBCs4jvkoKBNnfOSNbu_6n0yinFGhxCMt4wekLexn_cQINkPzC4X4FbRxsyb7AkdqmT9Ipusegz5BJfBxmRVzIwP2SOCy199cDq7X7pk82k3W_ODyrRPdm4_YTP8EHzncB6PyZ4BF3H0nY_Iy_XV83iS301vbseXd7nidZlypbkAAEVNXRScl8BVKyhTHW0qbbDiukNEQ40wRiDTeqANIEJZN03Xan5Ebre62sNM9sHOIaykBys3DR_eJIThCofSiJazutOqbnWpq0IINKopeNnWquqaatA63Wr1wb8vMSY588sweBRlUbVUVEXDi4E621Iq-BgDmp-tjMr1Y-Svxww0-0MrmzZWpQDW_TvzBeHVlQo |
| CitedBy_id | crossref_primary_10_1016_j_engappai_2023_105830 crossref_primary_10_3390_app122010576 crossref_primary_10_3390_math11112420 crossref_primary_10_3390_bdcc6040104 crossref_primary_10_1007_s13042_022_01623_6 crossref_primary_10_1016_j_aei_2023_101977 crossref_primary_10_1016_j_cie_2023_109815 crossref_primary_10_1016_j_procs_2023_10_391 crossref_primary_10_3390_app15147754 crossref_primary_10_1080_23302674_2024_2424200 crossref_primary_10_3390_math10091544 crossref_primary_10_1007_s11831_023_09966_1 crossref_primary_10_1051_e3sconf_202561602025 crossref_primary_10_3390_biomimetics8080587 crossref_primary_10_3390_math11194170 crossref_primary_10_32604_cmes_2025_060481 |
| Cites_doi | 10.1007/978-3-319-91086-4_14 10.1007/s40313-019-00526-2 10.1007/978-3-319-24306-1_13 10.1109/TEVC.2013.2281534 10.1007/s00158-007-0163-x 10.1016/0022-2569(70)90064-9 10.1007/s00366-012-0254-1 10.1109/TEVC.2017.2785346 10.1016/j.renene.2016.12.022 10.1587/transinf.E96.D.2309 10.1109/ACCESS.2020.3001973 10.1109/CEC48606.2020.9185489 10.1023/A:1008202821328 10.1080/03052150108940926 10.1007/978-3-319-42978-6 10.1109/MCDM.2007.369117 10.1109/LAWP.2016.2614498 10.1007/978-3-030-67716-9_2 10.1007/978-3-319-22183-0 10.1016/j.ejor.2019.07.073 10.1109/4235.797969 10.1109/TEVC.2013.2239648 10.1145/2739480.2754725 10.1145/2739482.2768462 10.1057/jors.2013.71 10.1109/3468.650319 10.1016/j.tcs.2005.05.020 10.1109/BRACIS.2015.11 10.1016/j.swevo.2011.02.002 10.1109/TEVC.2005.861417 10.1109/4235.996017 10.1002/mcda.1518 10.1109/ICEAA.2017.8065394 10.1007/978-90-481-9097-3_11 10.1080/07408178408974675 10.1007/3-540-44629-X_11 10.1023/A:1009690717521 10.1109/CEC.2017.7969423 10.1016/S0950-5849(01)00189-6 10.1007/978-3-540-30217-9_84 10.1023/A:1015516501242 10.1145/2463372.2463541 10.1007/978-1-4419-1665-5_15 10.1109/TEVC.2014.2308294 10.1109/TEVC.2007.892759 10.1016/j.swevo.2020.100818 10.1007/s00158-004-0450-8 10.1016/j.asoc.2020.106520 10.1016/j.ins.2013.12.040 10.1016/j.eswa.2013.12.050 10.1145/1143997.1144112 10.1109/MCDM.2009.4938830 10.1109/TEVC.2008.920671 10.1007/978-3-319-15934-8_28 10.1073/pnas.0610471104 10.1145/2463372.2463375 10.1023/A:1013689704352 |
| ContentType | Journal Article |
| Copyright | 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU COVID DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/app11199153 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Coronavirus Research Database ProQuest Central ProQuest Central Premium ProQuest One Academic ProQuest - Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Open Access Full Text url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_f98316bdc68d4d5299efc723486c5b75 10_3390_app11199153 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC COVID DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c364t-cd39aaac0f622334a3c8901cb075dfe53dbeeef0f9ff9e1dd9aafaeea4677b8d3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 15 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000707028700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Fri Oct 03 12:53:17 EDT 2025 Mon Jun 30 07:28:20 EDT 2025 Sat Nov 29 07:16:17 EST 2025 Tue Nov 18 21:36:11 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 19 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c364t-cd39aaac0f622334a3c8901cb075dfe53dbeeef0f9ff9e1dd9aafaeea4677b8d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8924-9643 0000-0002-4623-7244 0000-0003-0276-1391 |
| OpenAccessLink | https://doaj.org/article/f98316bdc68d4d5299efc723486c5b75 |
| PQID | 2580952732 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_f98316bdc68d4d5299efc723486c5b75 proquest_journals_2580952732 crossref_primary_10_3390_app11199153 crossref_citationtrail_10_3390_app11199153 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-10-01 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | ref_50 Liao (ref_19) 2008; 35 Maashi (ref_6) 2014; 41 Gunawan (ref_72) 2005; 29 ref_14 ref_58 ref_57 ref_12 ref_56 ref_11 ref_55 ref_10 ref_54 ref_51 Lalbakhsh (ref_53) 2013; 96 ref_17 ref_16 Golinski (ref_40) 1970; 5 Ghiassi (ref_35) 1984; 16 Li (ref_24) 2017; 105 Jamshidi (ref_80) 2021; 348 ref_61 Yang (ref_75) 2013; 29 ref_60 Tan (ref_67) 2002; 17 Santiago (ref_44) 2021; 61 Zhang (ref_76) 2007; 11 ref_69 ref_68 Harman (ref_78) 2001; 43 ref_21 ref_65 ref_63 Li (ref_3) 2019; 23 Lalbakhsh (ref_59) 2017; 16 ref_29 ref_28 Zitzler (ref_64) 1999; 3 ref_27 ref_26 Goh (ref_66) 2009; 13 Drake (ref_2) 2020; 285 Fonseca (ref_22) 1998; 28 ref_71 Burke (ref_4) 2010; Volume 146 ref_70 Auer (ref_9) 2002; 47 Hansen (ref_37) 2000; 6 Burke (ref_1) 2013; 64 Vrugt (ref_23) 2007; 104 Stadler (ref_39) 1993; 150 ref_32 ref_31 ref_30 ref_74 ref_73 ao (ref_15) 2014; 267 ref_38 Jain (ref_34) 2014; 18 Larson (ref_36) 2020; 31 Zitzler (ref_25) 2004; Volume 3242 Almeida (ref_13) 2020; 95 Karafotias (ref_45) 2015; 19 Huband (ref_18) 2006; 10 Derrac (ref_77) 2011; 1 ref_47 ref_46 Atahran (ref_48) 2014; 21 ref_43 ref_42 ref_41 Li (ref_8) 2014; 18 Deb (ref_20) 2002; 6 Dorigo (ref_52) 2005; 344 Jamshidi (ref_79) 2020; 8 Storn (ref_62) 1997; 11 Tapabrata (ref_33) 2001; 33 ref_49 ref_5 ref_7 |
| References_xml | – ident: ref_5 doi: 10.1007/978-3-319-91086-4_14 – ident: ref_32 – volume: 31 start-page: 119 year: 2020 ident: ref_36 article-title: Applying Social Choice Theory to Solve Engineering Multi-objective Optimization Problems publication-title: J. Control Autom. Electr. Syst. doi: 10.1007/s40313-019-00526-2 – ident: ref_68 – ident: ref_10 doi: 10.1007/978-3-319-24306-1_13 – volume: 18 start-page: 602 year: 2014 ident: ref_34 article-title: An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2281534 – volume: 35 start-page: 561 year: 2008 ident: ref_19 article-title: Multiobjective optimization for crash safety design of vehicles using stepwise regression model publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-007-0163-x – ident: ref_65 – volume: 5 start-page: 287 year: 1970 ident: ref_40 article-title: Optimal synthesis problems solved by means of nonlinear programming and random methods publication-title: J. Mech. doi: 10.1016/0022-2569(70)90064-9 – volume: 29 start-page: 175 year: 2013 ident: ref_75 article-title: Multiobjective firefly algorithm for continuous optimization publication-title: Eng. Comput. doi: 10.1007/s00366-012-0254-1 – volume: 23 start-page: 59 year: 2019 ident: ref_3 article-title: A Learning Automata-Based Multiobjective Hyper-Heuristic publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2017.2785346 – ident: ref_42 – ident: ref_61 – volume: 105 start-page: 473 year: 2017 ident: ref_24 article-title: Multi-objective evolutionary algorithms and hyper-heuristics for wind farm layout optimisation publication-title: Renew. Energy doi: 10.1016/j.renene.2016.12.022 – volume: 96 start-page: 2309 year: 2013 ident: ref_53 article-title: An Improved Model of Ant Colony Optimization Using a Novel Pheromone Update Strategy publication-title: IEICE Trans. Inf. Syst. doi: 10.1587/transinf.E96.D.2309 – volume: 8 start-page: 109581 year: 2020 ident: ref_79 article-title: Artificial Intelligence and COVID-19: Deep Learning Approaches for Diagnosis and Treatment publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3001973 – ident: ref_51 doi: 10.1109/CEC48606.2020.9185489 – ident: ref_58 – volume: 11 start-page: 341 year: 1997 ident: ref_62 article-title: Differential Evolution—A Simple and Efficient Heuristic for global Optimization over Continuous Spaces publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 – volume: 33 start-page: 399 year: 2001 ident: ref_33 article-title: Multiobjective Design Optimization by an Evolutionary Algorithm publication-title: Eng. Optim. doi: 10.1080/03052150108940926 – ident: ref_31 – ident: ref_56 – ident: ref_63 doi: 10.1007/978-3-319-42978-6 – ident: ref_27 – ident: ref_69 – ident: ref_70 doi: 10.1109/MCDM.2007.369117 – volume: 16 start-page: 912 year: 2017 ident: ref_59 article-title: Multiobjective Particle Swarm Optimization to Design a Time-Delay Equalizer Metasurface for an Electromagnetic Band-Gap Resonator Antenna publication-title: IEEE Antennas Wirel. Propag. Lett. doi: 10.1109/LAWP.2016.2614498 – volume: 348 start-page: 9 year: 2021 ident: ref_80 article-title: Deep Learning Techniques and COVID-19 Drug Discovery: Fundamentals, State-of-the-Art and Future Directions publication-title: Emerg. Technol. Dur. Era COVID-19 Pandemic doi: 10.1007/978-3-030-67716-9_2 – ident: ref_49 doi: 10.1007/978-3-319-22183-0 – volume: 285 start-page: 405 year: 2020 ident: ref_2 article-title: Recent Advances in Selection Hyper-heuristics publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2019.07.073 – volume: 3 start-page: 257 year: 1999 ident: ref_64 article-title: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach publication-title: Trans. Evol. Comput. doi: 10.1109/4235.797969 – ident: ref_41 – volume: 18 start-page: 114 year: 2014 ident: ref_8 article-title: Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2239648 – ident: ref_14 doi: 10.1145/2739480.2754725 – ident: ref_38 – ident: ref_71 doi: 10.1145/2739482.2768462 – ident: ref_17 – volume: 64 start-page: 1695 year: 2013 ident: ref_1 article-title: Hyper-heuristics: A survey of the state of the art publication-title: J. Oper. Res. Soc. doi: 10.1057/jors.2013.71 – volume: 28 start-page: 26 year: 1998 ident: ref_22 article-title: Multiobjective Optimization and Multiple Constraint Handling with Evolutionary Algorithms. I. A Unified Formulation publication-title: IEEE Trans. Syst. Man Cybern. Part A doi: 10.1109/3468.650319 – volume: 344 start-page: 243 year: 2005 ident: ref_52 article-title: Ant colony optimization theory: A survey publication-title: Theor. Comput. Sci. doi: 10.1016/j.tcs.2005.05.020 – ident: ref_28 – ident: ref_16 doi: 10.1109/BRACIS.2015.11 – volume: 1 start-page: 3 year: 2011 ident: ref_77 article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2011.02.002 – volume: 10 start-page: 477 year: 2006 ident: ref_18 article-title: A review of multiobjective test problems and a scalable test problem toolkit publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2005.861417 – volume: 6 start-page: 182 year: 2002 ident: ref_20 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.996017 – volume: 21 start-page: 279 year: 2014 ident: ref_48 article-title: A Multicriteria Dial-a-Ride Problem with an Ecological Measure and Heterogeneous Vehicles publication-title: J. Multi-Criteria Decis. Anal. doi: 10.1002/mcda.1518 – ident: ref_60 doi: 10.1109/ICEAA.2017.8065394 – ident: ref_30 doi: 10.1007/978-90-481-9097-3_11 – ident: ref_47 – volume: 16 start-page: 106 year: 1984 ident: ref_35 article-title: An application of multiple criteria decision-making principles for planning machining operations publication-title: IIE Trans. doi: 10.1080/07408178408974675 – ident: ref_7 doi: 10.1007/3-540-44629-X_11 – volume: 6 start-page: 419 year: 2000 ident: ref_37 article-title: Use of substitute scalarizing functions to guide a local search based heuristic: The case of moTSP publication-title: J. Heuristics doi: 10.1023/A:1009690717521 – ident: ref_43 doi: 10.1109/CEC.2017.7969423 – volume: 43 start-page: 833 year: 2001 ident: ref_78 article-title: Search-based software engineering publication-title: Inf. Softw. Technol. doi: 10.1016/S0950-5849(01)00189-6 – volume: Volume 3242 start-page: 832 year: 2004 ident: ref_25 article-title: Indicator-Based Selection in Multiobjective Search publication-title: Parallel Problem Solving from Nature—PPSN VIII doi: 10.1007/978-3-540-30217-9_84 – volume: 150 start-page: 211 year: 1993 ident: ref_39 article-title: Multicriteria Optimization in Engineering: A Tutorial and Survey publication-title: Struct. Optim. Status Promise – volume: 17 start-page: 251 year: 2002 ident: ref_67 article-title: Evolutionary Algorithms for Multi-Objective Optimization: Performance Assessments and Comparisons publication-title: Artif. Intell. Rev. doi: 10.1023/A:1015516501242 – ident: ref_26 doi: 10.1145/2463372.2463541 – ident: ref_21 – ident: ref_73 – volume: Volume 146 start-page: 449 year: 2010 ident: ref_4 article-title: A classification of hyper-heuristic approaches publication-title: Handbook of Metaheuristics doi: 10.1007/978-1-4419-1665-5_15 – volume: 19 start-page: 167 year: 2015 ident: ref_45 article-title: Parameter control in evolutionary algorithms: Trends and challenges publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2014.2308294 – volume: 11 start-page: 712 year: 2007 ident: ref_76 article-title: MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2007.892759 – volume: 61 start-page: 100818 year: 2021 ident: ref_44 article-title: Micro-Genetic algorithm with fuzzy selection of operators for multi-Objective optimization: FAME publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2020.100818 – volume: 29 start-page: 50 year: 2005 ident: ref_72 article-title: Multi-objective robust optimization using a sensitivity region concept publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-004-0450-8 – ident: ref_50 – ident: ref_29 – ident: ref_54 – ident: ref_46 – ident: ref_12 – volume: 95 start-page: 106520 year: 2020 ident: ref_13 article-title: Hyper-heuristics using multi-armed bandit models for multi-objective optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106520 – volume: 267 start-page: 119 year: 2014 ident: ref_15 article-title: A Multi-objective Optimization Approach for the Integration and Test Order Problem publication-title: Inf. Sci. doi: 10.1016/j.ins.2013.12.040 – volume: 41 start-page: 4475 year: 2014 ident: ref_6 article-title: A multi-objective hyper-heuristic based on choice function publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2013.12.050 – ident: ref_74 doi: 10.1145/1143997.1144112 – ident: ref_55 doi: 10.1109/MCDM.2009.4938830 – volume: 13 start-page: 103 year: 2009 ident: ref_66 article-title: A Competitive-Cooperative Coevolutionary Paradigm for Dynamic Multiobjective Optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.920671 – ident: ref_11 doi: 10.1007/978-3-319-15934-8_28 – volume: 104 start-page: 708 year: 2007 ident: ref_23 article-title: Improved evolutionary optimization from genetically adaptive multimethod search publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0610471104 – ident: ref_57 doi: 10.1145/2463372.2463375 – volume: 47 start-page: 235 year: 2002 ident: ref_9 article-title: Finite-time Analysis of the Multiarmed Bandit Problem publication-title: Mach. Learn. doi: 10.1023/A:1013689704352 |
| SSID | ssj0000913810 |
| Score | 2.313941 |
| Snippet | As exact algorithms are unfeasible to solve real optimization problems, due to their computational complexity, meta-heuristics are usually used to solve them.... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 9153 |
| SubjectTerms | artificial intelligence Distance learning evolutionary algorithms Genetic algorithms Heuristic Mathematical functions meta-heuristics multi-objective optimization Mutation online algorithm selection Optimization |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT-MwFH5iO8CBYRtRhhn5wAGQLJLYcZwTGhCop1KxSNyieEMgpi1N4ffz7LiFEYgL1-QdLL3ts_38fQB7PDOcay6oVllBuXAplVY66oNFJamRSqggNlH0evL2tuzHA7cmjlVOa2Io1Gao_Rn5UZZLRAPYbLPj0RP1qlH-djVKaMzDomcqwzhfPDnr9S9npyye9VKmSfswj-H-3t8LY3ojKsrZf60oMPZ_KMihy5z_-O761mA14kvytw2IdZizgw1Yecc6uAHrMZ8bsh9Jpw824e70jQacTJlKyNCRqyCUg94jXdyyjmnXPkdyZ4J4l1wi0KRhIoeEt7z0Qj20NZRcYDX6F595kn4rXNNswc352fVpl0YRBqqZ4BOqDSvrutaJE4gkGK-ZloghtEKsYZzNmVHWWpe40rnSpsagtautrbECF0oa9hMWBsOB3QbiqQ1NnovCasYTi13CCKURQiTWc9DUHTic-qPSkaHcC2U8VrhT8c6r3jmvA3sz41FLzPG52Yl37MzEs2mHD8PxXRWTs3KlZKlQRgtpuMmxQ1uni4xxKXSuirwDu1OfVzHFm-rN4Ttf__4Fy5kfhAkTgLuwMBk_29-wpF8m9834T4zYVz1O-HQ priority: 102 providerName: ProQuest |
| Title | Comparative Analysis of Selection Hyper-Heuristics for Real-World Multi-Objective Optimization Problems |
| URI | https://www.proquest.com/docview/2580952732 https://doaj.org/article/f98316bdc68d4d5299efc723486c5b75 |
| Volume | 11 |
| WOSCitedRecordID | wos000707028700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Open Access Full Text customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NTxsxEB1V0AMcEKFUhC_5kENbyWJ37fV6jyQiCgfCirZSelqtvyqqkqAk8PsZex1IVSQuHHc1klfj8Zs32vEbgB7PDOeaC6pVVlAuXEqllY76YFFJaqQSKgybKMZjOZmU1dqoL98T1soDt447c6VkqVBGC2m4yRE9rdNFxrgUOldFUC9NinKtmAoYXKZeuqq9kMewrvf_g_FYIxvK2T8pKCj1_wfEIbsMd2En0kJy3n5OBz7Y6R5sr4kF7kEnHsMF-RK1or9-gt-DF_VushIYITNHvof5Nuh0MsJKc05H9iFqMhOkqeQG-SENjTQkXMGl1-pPC33kGkHkLt7OJFU7b2axDz-HFz8GIxpnJ1DNBF9SbVjZNI1OnEACwHjDtMTUrxVSBONszoyy1rrElc6VNjUGrV1jbYPAWShp2GfYmM6m9gCIVyQ0eS4KqxlPLIK7EUpj5k-sl45puvBt5c5aR2FxP9_ib40Fhvd9veb7LvSeje9bPY3Xzfp-X55NvAh2eIGhUcfQqN8KjS4cr3a1jidzUWe5RFaJpC07fI81jmAr810uob3vGDaW8wd7Ah_14_J2MT-Fzf7FuLo5DcGJT9XlVfXrCaBL7FA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRJwAFpAbGnBhyIBkkUSO45zQIgWql213a6gSOUU4q8KBLvtZgviT_EbGTvOtgjErQeuyShS4pd54495D2CTZ4ZzzQXVKisoFy6l0kpHPVhUkhqphApmE8VoJI-OyvES_Ox6Yfyxyi4nhkRtptqvkT_PconVAJJt9vLklHrXKL-72llotLDYtT--45SteTF8jeP7OMt23hxuD2h0FaCaCT6n2rCyrmudOIHUyHjNtERS1ArJ0zibM6OstS5xpXOlTY3BaFdbW2NKKZQ0DJ97BZY5gj3pwfJ4uD_-sFjV8SqbMk3aRkDGysTvQ2M6wSosZ79RX3AI-IMAAqvt3PrfvsdtuBnrZ_KqBfwKLNnJKty4oKq4CisxXzXkSRTVfnoHjrfPZc5Jp8RCpo68C0ZAiE4ywCn5jA7sWRSvJljPk7dYSNNw4oiEXmV6oD63HEEOMNt-jW2sZNwa8zR34f2lvP496E2mE3sfiJduNHkuCqsZTyyyoBFKY4mUWK-xU_fhWTf-lY4K7N4I5EuFMzEPluoCWPqwuQg-aYVH_h625YG0CPFq4eHCdHZcxeRTuVKyVCijhTTc5FiBWKeLjHEpdK6KvA_rHcaqmMKa6hxga_--_QiuDQ7396q94Wj3AVzP_KGfcNpxHXrz2ZndgKv62_xTM3sY_xYCHy8bkL8ALPpbew |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLULlALRQsbSAD0UCJKtJ7DjOASH6sdqqaLsqIPUW4q8KBLtlswX1r_HrGDvOtgjErQeuyShSkud5M_bMG4AtnhnONRdUq6ygXLiUSisd9WBRSWqkEioMmyhGI3lyUo6X4GfXC-PLKjufGBy1mWq_R76d5RKjASTbbNvFsojx3uD12TfqJ0j5k9ZunEYLkUN78QPTt-bVwR7-62dZNth_vzukccIA1UzwOdWGlXVd68QJpEnGa6YlEqRWSKTG2ZwZZa11iSudK21qDFq72toa3UuhpGH43BuwXDBMenqwvLM_Gh8vdni84qZMk7YpkLEy8WfS6FowIsvZbzQYpgX8QQaB4QZ3_-dvcw_uxLiavGkXwios2cka3L6itrgGq9GPNeR5FNt-cR9Ody_lz0mn0EKmjrwLA4IQtWSIqfqMDu15FLUmGOeTYwywaahEIqGHmR6pzy13kCP0wl9jeysZtwN7mgfw4Vpefx16k-nEPgTiJR1NnovCasYTi-xohNIYOiXWa-_UfXjZYaHSUZndDwj5UmGG5oFTXQFOH7YWxmetIMnfzXY8qBYmXkU8XJjOTqvolCpXSpYKZbSQhpscIxPrdJExLoXOVZH3YbPDWxVdW1Ndgu3Rv28_hVuIwurtwehwA1YyXwsUiiA3oTefndvHcFN_n39qZk_iwiHw8brx-AsKRGQV |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+Analysis+of+Selection+Hyper-Heuristics+for+Real-World+Multi-Objective+Optimization+Problems&rft.jtitle=Applied+sciences&rft.au=Vinicius+Renan+de+Carvalho&rft.au=Ender+%C3%96zcan&rft.au=Jaime+Sim%C3%A3o+Sichman&rft.date=2021-10-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=11&rft.issue=19&rft.spage=9153&rft_id=info:doi/10.3390%2Fapp11199153&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f98316bdc68d4d5299efc723486c5b75 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |