Comparative Analysis of Selection Hyper-Heuristics for Real-World Multi-Objective Optimization Problems

As exact algorithms are unfeasible to solve real optimization problems, due to their computational complexity, meta-heuristics are usually used to solve them. However, choosing a meta-heuristic to solve a particular optimization problem is a non-trivial task, and often requires a time-consuming tria...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences Jg. 11; H. 19; S. 9153
Hauptverfasser: de Carvalho, Vinicius Renan, Özcan, Ender, Sichman, Jaime Simão
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.10.2021
Schlagworte:
ISSN:2076-3417, 2076-3417
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract As exact algorithms are unfeasible to solve real optimization problems, due to their computational complexity, meta-heuristics are usually used to solve them. However, choosing a meta-heuristic to solve a particular optimization problem is a non-trivial task, and often requires a time-consuming trial and error process. Hyper-heuristics, which are heuristics to choose heuristics, have been proposed as a means to both simplify and improve algorithm selection or configuration for optimization problems. This paper novel presents a novel cross-domain evaluation for multi-objective optimization: we investigate how four state-of-the-art online hyper-heuristics with different characteristics perform in order to find solutions for eighteen real-world multi-objective optimization problems. These hyper-heuristics were designed in previous studies and tackle the algorithm selection problem from different perspectives: Election-Based, based on Reinforcement Learning and based on a mathematical function. All studied hyper-heuristics control a set of five Multi-Objective Evolutionary Algorithms (MOEAs) as Low-Level (meta-)Heuristics (LLHs) while finding solutions for the optimization problem. To our knowledge, this work is the first to deal conjointly with the following issues: (i) selection of meta-heuristics instead of simple operators (ii) focus on multi-objective optimization problems, (iii) experiments on real world problems and not just function benchmarks. In our experiments, we computed, for each algorithm execution, Hypervolume and IGD+ and compared the results considering the Kruskal–Wallis statistical test. Furthermore, we ranked all the tested algorithms considering three different Friedman Rankings to summarize the cross-domain analysis. Our results showed that hyper-heuristics have a better cross-domain performance than single meta-heuristics, which makes them excellent candidates for solving new multi-objective optimization problems.
AbstractList As exact algorithms are unfeasible to solve real optimization problems, due to their computational complexity, meta-heuristics are usually used to solve them. However, choosing a meta-heuristic to solve a particular optimization problem is a non-trivial task, and often requires a time-consuming trial and error process. Hyper-heuristics, which are heuristics to choose heuristics, have been proposed as a means to both simplify and improve algorithm selection or configuration for optimization problems. This paper novel presents a novel cross-domain evaluation for multi-objective optimization: we investigate how four state-of-the-art online hyper-heuristics with different characteristics perform in order to find solutions for eighteen real-world multi-objective optimization problems. These hyper-heuristics were designed in previous studies and tackle the algorithm selection problem from different perspectives: Election-Based, based on Reinforcement Learning and based on a mathematical function. All studied hyper-heuristics control a set of five Multi-Objective Evolutionary Algorithms (MOEAs) as Low-Level (meta-)Heuristics (LLHs) while finding solutions for the optimization problem. To our knowledge, this work is the first to deal conjointly with the following issues: (i) selection of meta-heuristics instead of simple operators (ii) focus on multi-objective optimization problems, (iii) experiments on real world problems and not just function benchmarks. In our experiments, we computed, for each algorithm execution, Hypervolume and IGD+ and compared the results considering the Kruskal–Wallis statistical test. Furthermore, we ranked all the tested algorithms considering three different Friedman Rankings to summarize the cross-domain analysis. Our results showed that hyper-heuristics have a better cross-domain performance than single meta-heuristics, which makes them excellent candidates for solving new multi-objective optimization problems.
Author Özcan, Ender
de Carvalho, Vinicius Renan
Sichman, Jaime Simão
Author_xml – sequence: 1
  givenname: Vinicius Renan
  orcidid: 0000-0002-4623-7244
  surname: de Carvalho
  fullname: de Carvalho, Vinicius Renan
– sequence: 2
  givenname: Ender
  orcidid: 0000-0003-0276-1391
  surname: Özcan
  fullname: Özcan, Ender
– sequence: 3
  givenname: Jaime Simão
  orcidid: 0000-0001-8924-9643
  surname: Sichman
  fullname: Sichman, Jaime Simão
BookMark eNptkdtKAzEQhoMoeOqVL7Dgpawmmz3lUopaQal4wMswm0wkJW3WJBXq07ttRUScmxmGb_5h_jkkuwu_QEJOGD3nXNAL6HvGmBCs4jvkoKBNnfOSNbu_6n0yinFGhxCMt4wekLexn_cQINkPzC4X4FbRxsyb7AkdqmT9Ipusegz5BJfBxmRVzIwP2SOCy199cDq7X7pk82k3W_ODyrRPdm4_YTP8EHzncB6PyZ4BF3H0nY_Iy_XV83iS301vbseXd7nidZlypbkAAEVNXRScl8BVKyhTHW0qbbDiukNEQ40wRiDTeqANIEJZN03Xan5Ebre62sNM9sHOIaykBys3DR_eJIThCofSiJazutOqbnWpq0IINKopeNnWquqaatA63Wr1wb8vMSY588sweBRlUbVUVEXDi4E621Iq-BgDmp-tjMr1Y-Svxww0-0MrmzZWpQDW_TvzBeHVlQo
CitedBy_id crossref_primary_10_1016_j_engappai_2023_105830
crossref_primary_10_3390_app122010576
crossref_primary_10_3390_math11112420
crossref_primary_10_3390_bdcc6040104
crossref_primary_10_1007_s13042_022_01623_6
crossref_primary_10_1016_j_aei_2023_101977
crossref_primary_10_1016_j_cie_2023_109815
crossref_primary_10_1016_j_procs_2023_10_391
crossref_primary_10_3390_app15147754
crossref_primary_10_1080_23302674_2024_2424200
crossref_primary_10_3390_math10091544
crossref_primary_10_1007_s11831_023_09966_1
crossref_primary_10_1051_e3sconf_202561602025
crossref_primary_10_3390_biomimetics8080587
crossref_primary_10_3390_math11194170
crossref_primary_10_32604_cmes_2025_060481
Cites_doi 10.1007/978-3-319-91086-4_14
10.1007/s40313-019-00526-2
10.1007/978-3-319-24306-1_13
10.1109/TEVC.2013.2281534
10.1007/s00158-007-0163-x
10.1016/0022-2569(70)90064-9
10.1007/s00366-012-0254-1
10.1109/TEVC.2017.2785346
10.1016/j.renene.2016.12.022
10.1587/transinf.E96.D.2309
10.1109/ACCESS.2020.3001973
10.1109/CEC48606.2020.9185489
10.1023/A:1008202821328
10.1080/03052150108940926
10.1007/978-3-319-42978-6
10.1109/MCDM.2007.369117
10.1109/LAWP.2016.2614498
10.1007/978-3-030-67716-9_2
10.1007/978-3-319-22183-0
10.1016/j.ejor.2019.07.073
10.1109/4235.797969
10.1109/TEVC.2013.2239648
10.1145/2739480.2754725
10.1145/2739482.2768462
10.1057/jors.2013.71
10.1109/3468.650319
10.1016/j.tcs.2005.05.020
10.1109/BRACIS.2015.11
10.1016/j.swevo.2011.02.002
10.1109/TEVC.2005.861417
10.1109/4235.996017
10.1002/mcda.1518
10.1109/ICEAA.2017.8065394
10.1007/978-90-481-9097-3_11
10.1080/07408178408974675
10.1007/3-540-44629-X_11
10.1023/A:1009690717521
10.1109/CEC.2017.7969423
10.1016/S0950-5849(01)00189-6
10.1007/978-3-540-30217-9_84
10.1023/A:1015516501242
10.1145/2463372.2463541
10.1007/978-1-4419-1665-5_15
10.1109/TEVC.2014.2308294
10.1109/TEVC.2007.892759
10.1016/j.swevo.2020.100818
10.1007/s00158-004-0450-8
10.1016/j.asoc.2020.106520
10.1016/j.ins.2013.12.040
10.1016/j.eswa.2013.12.050
10.1145/1143997.1144112
10.1109/MCDM.2009.4938830
10.1109/TEVC.2008.920671
10.1007/978-3-319-15934-8_28
10.1073/pnas.0610471104
10.1145/2463372.2463375
10.1023/A:1013689704352
ContentType Journal Article
Copyright 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app11199153
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
Coronavirus Research Database
ProQuest Central
ProQuest Central Premium
ProQuest One Academic
ProQuest - Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_f98316bdc68d4d5299efc723486c5b75
10_3390_app11199153
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
COVID
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c364t-cd39aaac0f622334a3c8901cb075dfe53dbeeef0f9ff9e1dd9aafaeea4677b8d3
IEDL.DBID DOA
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000707028700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Fri Oct 03 12:53:17 EDT 2025
Mon Jun 30 07:28:20 EDT 2025
Sat Nov 29 07:16:17 EST 2025
Tue Nov 18 21:36:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 19
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-cd39aaac0f622334a3c8901cb075dfe53dbeeef0f9ff9e1dd9aafaeea4677b8d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8924-9643
0000-0002-4623-7244
0000-0003-0276-1391
OpenAccessLink https://doaj.org/article/f98316bdc68d4d5299efc723486c5b75
PQID 2580952732
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_f98316bdc68d4d5299efc723486c5b75
proquest_journals_2580952732
crossref_primary_10_3390_app11199153
crossref_citationtrail_10_3390_app11199153
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References ref_50
Liao (ref_19) 2008; 35
Maashi (ref_6) 2014; 41
Gunawan (ref_72) 2005; 29
ref_14
ref_58
ref_57
ref_12
ref_56
ref_11
ref_55
ref_10
ref_54
ref_51
Lalbakhsh (ref_53) 2013; 96
ref_17
ref_16
Golinski (ref_40) 1970; 5
Ghiassi (ref_35) 1984; 16
Li (ref_24) 2017; 105
Jamshidi (ref_80) 2021; 348
ref_61
Yang (ref_75) 2013; 29
ref_60
Tan (ref_67) 2002; 17
Santiago (ref_44) 2021; 61
Zhang (ref_76) 2007; 11
ref_69
ref_68
Harman (ref_78) 2001; 43
ref_21
ref_65
ref_63
Li (ref_3) 2019; 23
Lalbakhsh (ref_59) 2017; 16
ref_29
ref_28
Zitzler (ref_64) 1999; 3
ref_27
ref_26
Goh (ref_66) 2009; 13
Drake (ref_2) 2020; 285
Fonseca (ref_22) 1998; 28
ref_71
Burke (ref_4) 2010; Volume 146
ref_70
Auer (ref_9) 2002; 47
Hansen (ref_37) 2000; 6
Burke (ref_1) 2013; 64
Vrugt (ref_23) 2007; 104
Stadler (ref_39) 1993; 150
ref_32
ref_31
ref_30
ref_74
ref_73
ao (ref_15) 2014; 267
ref_38
Jain (ref_34) 2014; 18
Larson (ref_36) 2020; 31
Zitzler (ref_25) 2004; Volume 3242
Almeida (ref_13) 2020; 95
Karafotias (ref_45) 2015; 19
Huband (ref_18) 2006; 10
Derrac (ref_77) 2011; 1
ref_47
ref_46
Atahran (ref_48) 2014; 21
ref_43
ref_42
ref_41
Li (ref_8) 2014; 18
Deb (ref_20) 2002; 6
Dorigo (ref_52) 2005; 344
Jamshidi (ref_79) 2020; 8
Storn (ref_62) 1997; 11
Tapabrata (ref_33) 2001; 33
ref_49
ref_5
ref_7
References_xml – ident: ref_5
  doi: 10.1007/978-3-319-91086-4_14
– ident: ref_32
– volume: 31
  start-page: 119
  year: 2020
  ident: ref_36
  article-title: Applying Social Choice Theory to Solve Engineering Multi-objective Optimization Problems
  publication-title: J. Control Autom. Electr. Syst.
  doi: 10.1007/s40313-019-00526-2
– ident: ref_68
– ident: ref_10
  doi: 10.1007/978-3-319-24306-1_13
– volume: 18
  start-page: 602
  year: 2014
  ident: ref_34
  article-title: An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point Based Nondominated Sorting Approach, Part II: Handling Constraints and Extending to an Adaptive Approach
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281534
– volume: 35
  start-page: 561
  year: 2008
  ident: ref_19
  article-title: Multiobjective optimization for crash safety design of vehicles using stepwise regression model
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-007-0163-x
– ident: ref_65
– volume: 5
  start-page: 287
  year: 1970
  ident: ref_40
  article-title: Optimal synthesis problems solved by means of nonlinear programming and random methods
  publication-title: J. Mech.
  doi: 10.1016/0022-2569(70)90064-9
– volume: 29
  start-page: 175
  year: 2013
  ident: ref_75
  article-title: Multiobjective firefly algorithm for continuous optimization
  publication-title: Eng. Comput.
  doi: 10.1007/s00366-012-0254-1
– volume: 23
  start-page: 59
  year: 2019
  ident: ref_3
  article-title: A Learning Automata-Based Multiobjective Hyper-Heuristic
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2785346
– ident: ref_42
– ident: ref_61
– volume: 105
  start-page: 473
  year: 2017
  ident: ref_24
  article-title: Multi-objective evolutionary algorithms and hyper-heuristics for wind farm layout optimisation
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2016.12.022
– volume: 96
  start-page: 2309
  year: 2013
  ident: ref_53
  article-title: An Improved Model of Ant Colony Optimization Using a Novel Pheromone Update Strategy
  publication-title: IEICE Trans. Inf. Syst.
  doi: 10.1587/transinf.E96.D.2309
– volume: 8
  start-page: 109581
  year: 2020
  ident: ref_79
  article-title: Artificial Intelligence and COVID-19: Deep Learning Approaches for Diagnosis and Treatment
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3001973
– ident: ref_51
  doi: 10.1109/CEC48606.2020.9185489
– ident: ref_58
– volume: 11
  start-page: 341
  year: 1997
  ident: ref_62
  article-title: Differential Evolution—A Simple and Efficient Heuristic for global Optimization over Continuous Spaces
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
– volume: 33
  start-page: 399
  year: 2001
  ident: ref_33
  article-title: Multiobjective Design Optimization by an Evolutionary Algorithm
  publication-title: Eng. Optim.
  doi: 10.1080/03052150108940926
– ident: ref_31
– ident: ref_56
– ident: ref_63
  doi: 10.1007/978-3-319-42978-6
– ident: ref_27
– ident: ref_69
– ident: ref_70
  doi: 10.1109/MCDM.2007.369117
– volume: 16
  start-page: 912
  year: 2017
  ident: ref_59
  article-title: Multiobjective Particle Swarm Optimization to Design a Time-Delay Equalizer Metasurface for an Electromagnetic Band-Gap Resonator Antenna
  publication-title: IEEE Antennas Wirel. Propag. Lett.
  doi: 10.1109/LAWP.2016.2614498
– volume: 348
  start-page: 9
  year: 2021
  ident: ref_80
  article-title: Deep Learning Techniques and COVID-19 Drug Discovery: Fundamentals, State-of-the-Art and Future Directions
  publication-title: Emerg. Technol. Dur. Era COVID-19 Pandemic
  doi: 10.1007/978-3-030-67716-9_2
– ident: ref_49
  doi: 10.1007/978-3-319-22183-0
– volume: 285
  start-page: 405
  year: 2020
  ident: ref_2
  article-title: Recent Advances in Selection Hyper-heuristics
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2019.07.073
– volume: 3
  start-page: 257
  year: 1999
  ident: ref_64
  article-title: Multiobjective Evolutionary Algorithms: A Comparative Case Study and the Strength Pareto Approach
  publication-title: Trans. Evol. Comput.
  doi: 10.1109/4235.797969
– ident: ref_41
– volume: 18
  start-page: 114
  year: 2014
  ident: ref_8
  article-title: Adaptive operator selection with bandits for a multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2239648
– ident: ref_14
  doi: 10.1145/2739480.2754725
– ident: ref_38
– ident: ref_71
  doi: 10.1145/2739482.2768462
– ident: ref_17
– volume: 64
  start-page: 1695
  year: 2013
  ident: ref_1
  article-title: Hyper-heuristics: A survey of the state of the art
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/jors.2013.71
– volume: 28
  start-page: 26
  year: 1998
  ident: ref_22
  article-title: Multiobjective Optimization and Multiple Constraint Handling with Evolutionary Algorithms. I. A Unified Formulation
  publication-title: IEEE Trans. Syst. Man Cybern. Part A
  doi: 10.1109/3468.650319
– volume: 344
  start-page: 243
  year: 2005
  ident: ref_52
  article-title: Ant colony optimization theory: A survey
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/j.tcs.2005.05.020
– ident: ref_28
– ident: ref_16
  doi: 10.1109/BRACIS.2015.11
– volume: 1
  start-page: 3
  year: 2011
  ident: ref_77
  article-title: A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2011.02.002
– volume: 10
  start-page: 477
  year: 2006
  ident: ref_18
  article-title: A review of multiobjective test problems and a scalable test problem toolkit
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.861417
– volume: 6
  start-page: 182
  year: 2002
  ident: ref_20
  article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.996017
– volume: 21
  start-page: 279
  year: 2014
  ident: ref_48
  article-title: A Multicriteria Dial-a-Ride Problem with an Ecological Measure and Heterogeneous Vehicles
  publication-title: J. Multi-Criteria Decis. Anal.
  doi: 10.1002/mcda.1518
– ident: ref_60
  doi: 10.1109/ICEAA.2017.8065394
– ident: ref_30
  doi: 10.1007/978-90-481-9097-3_11
– ident: ref_47
– volume: 16
  start-page: 106
  year: 1984
  ident: ref_35
  article-title: An application of multiple criteria decision-making principles for planning machining operations
  publication-title: IIE Trans.
  doi: 10.1080/07408178408974675
– ident: ref_7
  doi: 10.1007/3-540-44629-X_11
– volume: 6
  start-page: 419
  year: 2000
  ident: ref_37
  article-title: Use of substitute scalarizing functions to guide a local search based heuristic: The case of moTSP
  publication-title: J. Heuristics
  doi: 10.1023/A:1009690717521
– ident: ref_43
  doi: 10.1109/CEC.2017.7969423
– volume: 43
  start-page: 833
  year: 2001
  ident: ref_78
  article-title: Search-based software engineering
  publication-title: Inf. Softw. Technol.
  doi: 10.1016/S0950-5849(01)00189-6
– volume: Volume 3242
  start-page: 832
  year: 2004
  ident: ref_25
  article-title: Indicator-Based Selection in Multiobjective Search
  publication-title: Parallel Problem Solving from Nature—PPSN VIII
  doi: 10.1007/978-3-540-30217-9_84
– volume: 150
  start-page: 211
  year: 1993
  ident: ref_39
  article-title: Multicriteria Optimization in Engineering: A Tutorial and Survey
  publication-title: Struct. Optim. Status Promise
– volume: 17
  start-page: 251
  year: 2002
  ident: ref_67
  article-title: Evolutionary Algorithms for Multi-Objective Optimization: Performance Assessments and Comparisons
  publication-title: Artif. Intell. Rev.
  doi: 10.1023/A:1015516501242
– ident: ref_26
  doi: 10.1145/2463372.2463541
– ident: ref_21
– ident: ref_73
– volume: Volume 146
  start-page: 449
  year: 2010
  ident: ref_4
  article-title: A classification of hyper-heuristic approaches
  publication-title: Handbook of Metaheuristics
  doi: 10.1007/978-1-4419-1665-5_15
– volume: 19
  start-page: 167
  year: 2015
  ident: ref_45
  article-title: Parameter control in evolutionary algorithms: Trends and challenges
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2014.2308294
– volume: 11
  start-page: 712
  year: 2007
  ident: ref_76
  article-title: MOEA/D: A Multiobjective Evolutionary Algorithm Based on Decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– volume: 61
  start-page: 100818
  year: 2021
  ident: ref_44
  article-title: Micro-Genetic algorithm with fuzzy selection of operators for multi-Objective optimization: FAME
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2020.100818
– volume: 29
  start-page: 50
  year: 2005
  ident: ref_72
  article-title: Multi-objective robust optimization using a sensitivity region concept
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-004-0450-8
– ident: ref_50
– ident: ref_29
– ident: ref_54
– ident: ref_46
– ident: ref_12
– volume: 95
  start-page: 106520
  year: 2020
  ident: ref_13
  article-title: Hyper-heuristics using multi-armed bandit models for multi-objective optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106520
– volume: 267
  start-page: 119
  year: 2014
  ident: ref_15
  article-title: A Multi-objective Optimization Approach for the Integration and Test Order Problem
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2013.12.040
– volume: 41
  start-page: 4475
  year: 2014
  ident: ref_6
  article-title: A multi-objective hyper-heuristic based on choice function
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2013.12.050
– ident: ref_74
  doi: 10.1145/1143997.1144112
– ident: ref_55
  doi: 10.1109/MCDM.2009.4938830
– volume: 13
  start-page: 103
  year: 2009
  ident: ref_66
  article-title: A Competitive-Cooperative Coevolutionary Paradigm for Dynamic Multiobjective Optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.920671
– ident: ref_11
  doi: 10.1007/978-3-319-15934-8_28
– volume: 104
  start-page: 708
  year: 2007
  ident: ref_23
  article-title: Improved evolutionary optimization from genetically adaptive multimethod search
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.0610471104
– ident: ref_57
  doi: 10.1145/2463372.2463375
– volume: 47
  start-page: 235
  year: 2002
  ident: ref_9
  article-title: Finite-time Analysis of the Multiarmed Bandit Problem
  publication-title: Mach. Learn.
  doi: 10.1023/A:1013689704352
SSID ssj0000913810
Score 2.313941
Snippet As exact algorithms are unfeasible to solve real optimization problems, due to their computational complexity, meta-heuristics are usually used to solve them....
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 9153
SubjectTerms artificial intelligence
Distance learning
evolutionary algorithms
Genetic algorithms
Heuristic
Mathematical functions
meta-heuristics
multi-objective optimization
Mutation
online algorithm selection
Optimization
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JT-MwFH5iO8CBYRtRhhn5wAGQLJLYcZwTGhCop1KxSNyieEMgpi1N4ffz7LiFEYgL1-QdLL3ts_38fQB7PDOcay6oVllBuXAplVY66oNFJamRSqggNlH0evL2tuzHA7cmjlVOa2Io1Gao_Rn5UZZLRAPYbLPj0RP1qlH-djVKaMzDomcqwzhfPDnr9S9npyye9VKmSfswj-H-3t8LY3ojKsrZf60oMPZ_KMihy5z_-O761mA14kvytw2IdZizgw1Yecc6uAHrMZ8bsh9Jpw824e70jQacTJlKyNCRqyCUg94jXdyyjmnXPkdyZ4J4l1wi0KRhIoeEt7z0Qj20NZRcYDX6F595kn4rXNNswc352fVpl0YRBqqZ4BOqDSvrutaJE4gkGK-ZloghtEKsYZzNmVHWWpe40rnSpsagtautrbECF0oa9hMWBsOB3QbiqQ1NnovCasYTi13CCKURQiTWc9DUHTic-qPSkaHcC2U8VrhT8c6r3jmvA3sz41FLzPG52Yl37MzEs2mHD8PxXRWTs3KlZKlQRgtpuMmxQ1uni4xxKXSuirwDu1OfVzHFm-rN4Ttf__4Fy5kfhAkTgLuwMBk_29-wpF8m9834T4zYVz1O-HQ
  priority: 102
  providerName: ProQuest
Title Comparative Analysis of Selection Hyper-Heuristics for Real-World Multi-Objective Optimization Problems
URI https://www.proquest.com/docview/2580952732
https://doaj.org/article/f98316bdc68d4d5299efc723486c5b75
Volume 11
WOSCitedRecordID wos000707028700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NTxsxEB1V0AMcEKFUhC_5kENbyWJ37fV6jyQiCgfCirZSelqtvyqqkqAk8PsZex1IVSQuHHc1klfj8Zs32vEbgB7PDOeaC6pVVlAuXEqllY76YFFJaqQSKgybKMZjOZmU1dqoL98T1soDt447c6VkqVBGC2m4yRE9rdNFxrgUOldFUC9NinKtmAoYXKZeuqq9kMewrvf_g_FYIxvK2T8pKCj1_wfEIbsMd2En0kJy3n5OBz7Y6R5sr4kF7kEnHsMF-RK1or9-gt-DF_VushIYITNHvof5Nuh0MsJKc05H9iFqMhOkqeQG-SENjTQkXMGl1-pPC33kGkHkLt7OJFU7b2axDz-HFz8GIxpnJ1DNBF9SbVjZNI1OnEACwHjDtMTUrxVSBONszoyy1rrElc6VNjUGrV1jbYPAWShp2GfYmM6m9gCIVyQ0eS4KqxlPLIK7EUpj5k-sl45puvBt5c5aR2FxP9_ib40Fhvd9veb7LvSeje9bPY3Xzfp-X55NvAh2eIGhUcfQqN8KjS4cr3a1jidzUWe5RFaJpC07fI81jmAr810uob3vGDaW8wd7Ah_14_J2MT-Fzf7FuLo5DcGJT9XlVfXrCaBL7FA
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRJwAFpAbGnBhyIBkkUSO45zQIgWql213a6gSOUU4q8KBLvtZgviT_EbGTvOtgjErQeuyShS4pd54495D2CTZ4ZzzQXVKisoFy6l0kpHPVhUkhqphApmE8VoJI-OyvES_Ox6Yfyxyi4nhkRtptqvkT_PconVAJJt9vLklHrXKL-72llotLDYtT--45SteTF8jeP7OMt23hxuD2h0FaCaCT6n2rCyrmudOIHUyHjNtERS1ArJ0zibM6OstS5xpXOlTY3BaFdbW2NKKZQ0DJ97BZY5gj3pwfJ4uD_-sFjV8SqbMk3aRkDGysTvQ2M6wSosZ79RX3AI-IMAAqvt3PrfvsdtuBnrZ_KqBfwKLNnJKty4oKq4CisxXzXkSRTVfnoHjrfPZc5Jp8RCpo68C0ZAiE4ywCn5jA7sWRSvJljPk7dYSNNw4oiEXmV6oD63HEEOMNt-jW2sZNwa8zR34f2lvP496E2mE3sfiJduNHkuCqsZTyyyoBFKY4mUWK-xU_fhWTf-lY4K7N4I5EuFMzEPluoCWPqwuQg-aYVH_h625YG0CPFq4eHCdHZcxeRTuVKyVCijhTTc5FiBWKeLjHEpdK6KvA_rHcaqmMKa6hxga_--_QiuDQ7396q94Wj3AVzP_KGfcNpxHXrz2ZndgKv62_xTM3sY_xYCHy8bkL8ALPpbew
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLULlALRQsbSAD0UCJKtJ7DjOASH6sdqqaLsqIPUW4q8KBLtlswX1r_HrGDvOtgjErQeuyShSkud5M_bMG4AtnhnONRdUq6ygXLiUSisd9WBRSWqkEioMmyhGI3lyUo6X4GfXC-PLKjufGBy1mWq_R76d5RKjASTbbNvFsojx3uD12TfqJ0j5k9ZunEYLkUN78QPTt-bVwR7-62dZNth_vzukccIA1UzwOdWGlXVd68QJpEnGa6YlEqRWSKTG2ZwZZa11iSudK21qDFq72toa3UuhpGH43BuwXDBMenqwvLM_Gh8vdni84qZMk7YpkLEy8WfS6FowIsvZbzQYpgX8QQaB4QZ3_-dvcw_uxLiavGkXwios2cka3L6itrgGq9GPNeR5FNt-cR9Ody_lz0mn0EKmjrwLA4IQtWSIqfqMDu15FLUmGOeTYwywaahEIqGHmR6pzy13kCP0wl9jeysZtwN7mgfw4Vpefx16k-nEPgTiJR1NnovCasYTi-xohNIYOiXWa-_UfXjZYaHSUZndDwj5UmGG5oFTXQFOH7YWxmetIMnfzXY8qBYmXkU8XJjOTqvolCpXSpYKZbSQhpscIxPrdJExLoXOVZH3YbPDWxVdW1Ndgu3Rv28_hVuIwurtwehwA1YyXwsUiiA3oTefndvHcFN_n39qZk_iwiHw8brx-AsKRGQV
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparative+Analysis+of+Selection+Hyper-Heuristics+for+Real-World+Multi-Objective+Optimization+Problems&rft.jtitle=Applied+sciences&rft.au=Vinicius+Renan+de+Carvalho&rft.au=Ender+%C3%96zcan&rft.au=Jaime+Sim%C3%A3o+Sichman&rft.date=2021-10-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=11&rft.issue=19&rft.spage=9153&rft_id=info:doi/10.3390%2Fapp11199153&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_f98316bdc68d4d5299efc723486c5b75
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon