A Deep Learning Model to Predict the ncRNA-Protein Interactions Based on Sequences Information Only

Noncoding RNAs (ncRNAs) play significant roles in multiple fundamental biological processes, in particular, ncRNAs interactions provide valuable insights into protein synthesis, controlling gene expression, RNA processing, regulation of localization, etc. The dysregulation of ncRNA interaction may c...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Bioinformatics and biology insights Ročník 19; s. 11779322251391075
Hlavní autoři: Sewailem, Maha FM, Arif, Muhammad, Alam, Tanvir
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States SAGE Publishing 01.01.2025
Témata:
ISSN:1177-9322, 1177-9322
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Noncoding RNAs (ncRNAs) play significant roles in multiple fundamental biological processes, in particular, ncRNAs interactions provide valuable insights into protein synthesis, controlling gene expression, RNA processing, regulation of localization, etc. The dysregulation of ncRNA interaction may cause severe diseases including cancer. Therefore, developing computational methods for investigating ncRNA-protein interaction has become a problem of interest for researchers. In this study, we proposed a novel deep learning (DL) model named RPI-SDA-XGBoost for predicting the interaction between ncRNA and proteins. We utilized the 3-mer conjoint triad feature (CTF) to encode the protein sequence, and the 4-mer frequency to encode the RNA sequence, resulting in the extraction of a total of 599-dimensional vector features. The DL approach is developed based on stack denoising autoencoder (SDA) to discover high-level hidden characteristics from 2 separate networks representing proteins and ncRNAs. Composition of features were fed into XGBoost based meta-learner for the final prediction. Proposed model, RPI-SDA-XGBoost, outperformed most of the individual baseline models and significantly improved the performance on multiple benchmark data sets. We validate the generalization power of the proposed model on five benchmark data sets, namely, RPI_ 369, RP_I488, RPI_1807, RPI_ 2241, and NPInterv2.0. RPI-SDA-XGBoost achieved similar levels of state-of-the-art accuracy on data sets RPI_488, RPI_1807, and RPI_NPInter v2.0. Proposed model achieved the best precision of 87.9% and 94.6% in the largest two data sets RPI_ 2241, and RPI_NPInter v2.0, respectively. We believe the proposed model provides useful direction for upcoming biological research and suggesting more sophisticated computational approaches are warranted in near future for ncRNA protein interaction predictions.
AbstractList Noncoding RNAs (ncRNAs) play significant roles in multiple fundamental biological processes, in particular, ncRNAs interactions provide valuable insights into protein synthesis, controlling gene expression, RNA processing, regulation of localization, etc. The dysregulation of ncRNA interaction may cause severe diseases including cancer. Therefore, developing computational methods for investigating ncRNA-protein interaction has become a problem of interest for researchers. In this study, we proposed a novel deep learning (DL) model named RPI-SDA-XGBoost for predicting the interaction between ncRNA and proteins. We utilized the 3-mer conjoint triad feature (CTF) to encode the protein sequence, and the 4-mer frequency to encode the RNA sequence, resulting in the extraction of a total of 599-dimensional vector features. The DL approach is developed based on stack denoising autoencoder (SDA) to discover high-level hidden characteristics from 2 separate networks representing proteins and ncRNAs. Composition of features were fed into XGBoost based meta-learner for the final prediction. Proposed model, RPI-SDA-XGBoost, outperformed most of the individual baseline models and significantly improved the performance on multiple benchmark data sets. We validate the generalization power of the proposed model on five benchmark data sets, namely, RPI_ 369, RP_I488, RPI_1807, RPI_ 2241, and NPInterv2.0. RPI-SDA-XGBoost achieved similar levels of state-of-the-art accuracy on data sets RPI_488, RPI_1807, and RPI_NPInter v2.0. Proposed model achieved the best precision of 87.9% and 94.6% in the largest two data sets RPI_ 2241, and RPI_NPInter v2.0, respectively. We believe the proposed model provides useful direction for upcoming biological research and suggesting more sophisticated computational approaches are warranted in near future for ncRNA protein interaction predictions.Noncoding RNAs (ncRNAs) play significant roles in multiple fundamental biological processes, in particular, ncRNAs interactions provide valuable insights into protein synthesis, controlling gene expression, RNA processing, regulation of localization, etc. The dysregulation of ncRNA interaction may cause severe diseases including cancer. Therefore, developing computational methods for investigating ncRNA-protein interaction has become a problem of interest for researchers. In this study, we proposed a novel deep learning (DL) model named RPI-SDA-XGBoost for predicting the interaction between ncRNA and proteins. We utilized the 3-mer conjoint triad feature (CTF) to encode the protein sequence, and the 4-mer frequency to encode the RNA sequence, resulting in the extraction of a total of 599-dimensional vector features. The DL approach is developed based on stack denoising autoencoder (SDA) to discover high-level hidden characteristics from 2 separate networks representing proteins and ncRNAs. Composition of features were fed into XGBoost based meta-learner for the final prediction. Proposed model, RPI-SDA-XGBoost, outperformed most of the individual baseline models and significantly improved the performance on multiple benchmark data sets. We validate the generalization power of the proposed model on five benchmark data sets, namely, RPI_ 369, RP_I488, RPI_1807, RPI_ 2241, and NPInterv2.0. RPI-SDA-XGBoost achieved similar levels of state-of-the-art accuracy on data sets RPI_488, RPI_1807, and RPI_NPInter v2.0. Proposed model achieved the best precision of 87.9% and 94.6% in the largest two data sets RPI_ 2241, and RPI_NPInter v2.0, respectively. We believe the proposed model provides useful direction for upcoming biological research and suggesting more sophisticated computational approaches are warranted in near future for ncRNA protein interaction predictions.
Noncoding RNAs (ncRNAs) play significant roles in multiple fundamental biological processes, in particular, ncRNAs interactions provide valuable insights into protein synthesis, controlling gene expression, RNA processing, regulation of localization, etc. The dysregulation of ncRNA interaction may cause severe diseases including cancer. Therefore, developing computational methods for investigating ncRNA-protein interaction has become a problem of interest for researchers. In this study, we proposed a novel deep learning (DL) model named RPI-SDA-XGBoost for predicting the interaction between ncRNA and proteins. We utilized the 3-mer conjoint triad feature (CTF) to encode the protein sequence, and the 4-mer frequency to encode the RNA sequence, resulting in the extraction of a total of 599-dimensional vector features. The DL approach is developed based on stack denoising autoencoder (SDA) to discover high-level hidden characteristics from 2 separate networks representing proteins and ncRNAs. Composition of features were fed into XGBoost based meta-learner for the final prediction. Proposed model, RPI-SDA-XGBoost, outperformed most of the individual baseline models and significantly improved the performance on multiple benchmark data sets. We validate the generalization power of the proposed model on five benchmark data sets, namely, RPI_ 369, RP_I488, RPI_1807, RPI_ 2241, and NPInterv2.0. RPI-SDA-XGBoost achieved similar levels of state-of-the-art accuracy on data sets RPI_488, RPI_1807, and RPI_NPInter v2.0. Proposed model achieved the best precision of 87.9% and 94.6% in the largest two data sets RPI_ 2241, and RPI_NPInter v2.0, respectively. We believe the proposed model provides useful direction for upcoming biological research and suggesting more sophisticated computational approaches are warranted in near future for ncRNA protein interaction predictions.
Author Sewailem, Maha FM
Arif, Muhammad
Alam, Tanvir
Author_xml – sequence: 1
  givenname: Maha FM
  surname: Sewailem
  fullname: Sewailem, Maha FM
– sequence: 2
  givenname: Muhammad
  surname: Arif
  fullname: Arif, Muhammad
– sequence: 3
  givenname: Tanvir
  orcidid: 0000-0001-7033-3693
  surname: Alam
  fullname: Alam, Tanvir
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41230504$$D View this record in MEDLINE/PubMed
BookMark eNplkUlvFDEUhC0URBb4AVyQj1wavLt9HBKWkYYkCnC2vLwOHfXYg-055N-nmwkRUi62VfWpnp7rFB2lnACht5R8oFTrj8thOGNMUm4o0fIFOlm0bhGP_nsfo9Na7whRtNfqFToWlHEiiThBYYUvAHZ4A66kMd3i7znChFvG1wXiGBpuvwGncHO56q5LbjAmvE4NigttzKniT65CxDnhH_BnDylAnf0hl61bfHyVpvvX6OXgpgpvHu8z9OvL55_n37rN1df1-WrTBa5E64Ix3vPeMOqjE71wyig3kABqmA0WmfFBMS3oECUjRkg5RKq559JrpRnwM7Q-5Mbs7uyujFtX7m12o_0r5HJrXWljmMBGSQyPMQCTXETXG-gH7eYs5wXzPZ-z3h-ydiXPe9Vmt2MNME0uQd5Xy5mmUhltxIy-e0T3fgvxafC_T54BegBCybUWGJ4QSuzSkX1WJH8AHlCOEA
Cites_doi 10.1093/nar/gkv020
10.1080/15476286.2017.1312243
10.1186/s12864-024-10077-9
10.1038/nature14539
10.1016/j.omtn.2018.03.001
10.3390/ijms20051070
10.1093/bfgp/elae010
10.1186/s12859-021-04069-9
10.1109/TCBB.2021.3116232
10.1023/A:1010933404324
10.1101/gr.135350.111
10.1109/TPAMI.2013.50
10.1023/A:1022859003006
10.3390/ncrna6040047
10.1093/bib/bbac527
10.3390/genes12111689
10.1186/s12859-020-03914-7
10.3390/ijms20040978
10.1093/nar/gkq1108
10.1186/s12864-016-2931-8
10.48550/arXiv.1412.6980
10.3389/fgene.2023.1136672
10.1016/j.ygeno.2011.03.001
10.1186/s12859-023-05232-0
10.1186/1471-2105-12-489
10.1093/nar/gkw973
10.1093/nar/28.1.235
10.48550/ARXIV.1112.6209
ContentType Journal Article
Copyright The Author(s) 2025.
Copyright_xml – notice: The Author(s) 2025.
DBID AAYXX
CITATION
NPM
7X8
DOA
DOI 10.1177/11779322251391075
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Open Access Full Text
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1177-9322
ExternalDocumentID oai_doaj_org_article_d5093ddce2534da89e8f7a3b3ab42b83
41230504
10_1177_11779322251391075
Genre Journal Article
GroupedDBID ---
0R~
188
2UF
2WC
53G
54M
5VS
8FE
8FG
8FH
AAYXX
ABDBF
ABQXT
ABUWG
ABVFX
ACARO
ACGFS
ACHEB
ACROE
ACUHS
ADBBV
ADOGD
ADRAZ
AEUYN
AEWDL
AFCOW
AFFHD
AFKRA
AFKRG
AFRWT
AJUZI
ALMA_UNASSIGNED_HOLDINGS
AOIJS
ARAPS
AUTPY
AYAGU
AYAKG
AZQEC
BAWUL
BBNVY
BCNDV
BDDNI
BENPR
BGLVJ
BHPHI
BPHCQ
BSEHC
C1A
CCPQU
CEFSP
CITATION
CNMHZ
DC.
DIK
DWQXO
E3Z
EBD
EBS
EJD
ESX
GNUQQ
GROUPED_DOAJ
GX1
H13
HCIFZ
HYE
IAO
IGS
IHR
IPNFZ
ITC
J8X
K.F
K6V
K7-
KQ8
LK8
M48
M7P
MK~
ML0
M~E
O5R
O5S
O9-
OK1
P62
PGMZT
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
RIG
ROL
RPM
SAUOL
SCDPB
SCNPE
SFC
TR2
TUS
UZ5
AASGM
NPM
7X8
ID FETCH-LOGICAL-c364t-c99bb38921bda484a696af0ce6f9bb2d29bc62741fd5209455fd173b35b7672e3
IEDL.DBID DOA
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001610783700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1177-9322
IngestDate Mon Nov 17 19:33:09 EST 2025
Thu Nov 13 18:02:00 EST 2025
Sun Nov 16 02:00:45 EST 2025
Sat Nov 29 06:48:11 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords extreme gradient boosting (XGBoost)
stacked denoising autoencoder (SDA)
stacked auto-encoders (SAE)
Noncoding RNAs (ncRNAs)
conjoint triad feature (CTF)
Language English
License The Author(s) 2025.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-c99bb38921bda484a696af0ce6f9bb2d29bc62741fd5209455fd173b35b7672e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7033-3693
OpenAccessLink https://doaj.org/article/d5093ddce2534da89e8f7a3b3ab42b83
PMID 41230504
PQID 3271569794
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_d5093ddce2534da89e8f7a3b3ab42b83
proquest_miscellaneous_3271569794
pubmed_primary_41230504
crossref_primary_10_1177_11779322251391075
PublicationCentury 2000
PublicationDate 2025-01-01
PublicationDateYYYYMMDD 2025-01-01
PublicationDate_xml – month: 01
  year: 2025
  text: 2025-01-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Bioinformatics and biology insights
PublicationTitleAlternate Bioinform Biol Insights
PublicationYear 2025
Publisher SAGE Publishing
Publisher_xml – name: SAGE Publishing
References e_1_3_3_17_2
e_1_3_3_16_2
e_1_3_3_19_2
Vincent P (e_1_3_3_24_2) 2010; 11
e_1_3_3_18_2
e_1_3_3_13_2
e_1_3_3_12_2
e_1_3_3_15_2
e_1_3_3_14_2
e_1_3_3_11_2
e_1_3_3_30_2
e_1_3_3_10_2
e_1_3_3_6_2
e_1_3_3_5_2
e_1_3_3_8_2
e_1_3_3_7_2
e_1_3_3_28_2
e_1_3_3_9_2
e_1_3_3_27_2
e_1_3_3_29_2
e_1_3_3_23_2
e_1_3_3_26_2
e_1_3_3_25_2
e_1_3_3_2_2
e_1_3_3_20_2
e_1_3_3_4_2
e_1_3_3_22_2
e_1_3_3_3_2
e_1_3_3_21_2
References_xml – ident: e_1_3_3_12_2
  doi: 10.1093/nar/gkv020
– ident: e_1_3_3_7_2
  doi: 10.1080/15476286.2017.1312243
– ident: e_1_3_3_10_2
  doi: 10.1186/s12864-024-10077-9
– ident: e_1_3_3_23_2
  doi: 10.1038/nature14539
– ident: e_1_3_3_13_2
  doi: 10.1016/j.omtn.2018.03.001
– ident: e_1_3_3_8_2
  doi: 10.3390/ijms20051070
– ident: e_1_3_3_14_2
  doi: 10.1093/bfgp/elae010
– ident: e_1_3_3_17_2
  doi: 10.1186/s12859-021-04069-9
– ident: e_1_3_3_18_2
  doi: 10.1109/TCBB.2021.3116232
– ident: e_1_3_3_29_2
  doi: 10.1023/A:1010933404324
– ident: e_1_3_3_5_2
  doi: 10.1101/gr.135350.111
– ident: e_1_3_3_25_2
  doi: 10.1109/TPAMI.2013.50
– ident: e_1_3_3_30_2
  doi: 10.1023/A:1022859003006
– volume: 11
  start-page: 3371
  year: 2010
  ident: e_1_3_3_24_2
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J Mach Learn Res
– ident: e_1_3_3_3_2
  doi: 10.3390/ncrna6040047
– ident: e_1_3_3_21_2
  doi: 10.1093/bib/bbac527
– ident: e_1_3_3_16_2
  doi: 10.3390/genes12111689
– ident: e_1_3_3_19_2
  doi: 10.1186/s12859-020-03914-7
– ident: e_1_3_3_2_2
  doi: 10.3390/ijms20040978
– ident: e_1_3_3_15_2
  doi: 10.1093/nar/gkq1108
– ident: e_1_3_3_4_2
  doi: 10.1186/s12864-016-2931-8
– ident: e_1_3_3_26_2
  doi: 10.48550/arXiv.1412.6980
– ident: e_1_3_3_20_2
  doi: 10.3389/fgene.2023.1136672
– ident: e_1_3_3_28_2
  doi: 10.1016/j.ygeno.2011.03.001
– ident: e_1_3_3_9_2
  doi: 10.1186/s12859-023-05232-0
– ident: e_1_3_3_11_2
  doi: 10.1186/1471-2105-12-489
– ident: e_1_3_3_6_2
  doi: 10.1093/nar/gkw973
– ident: e_1_3_3_22_2
  doi: 10.1093/nar/28.1.235
– ident: e_1_3_3_27_2
  doi: 10.48550/ARXIV.1112.6209
SSID ssj0061876
Score 2.3105707
Snippet Noncoding RNAs (ncRNAs) play significant roles in multiple fundamental biological processes, in particular, ncRNAs interactions provide valuable insights into...
SourceID doaj
proquest
pubmed
crossref
SourceType Open Website
Aggregation Database
Index Database
StartPage 11779322251391075
Title A Deep Learning Model to Predict the ncRNA-Protein Interactions Based on Sequences Information Only
URI https://www.ncbi.nlm.nih.gov/pubmed/41230504
https://www.proquest.com/docview/3271569794
https://doaj.org/article/d5093ddce2534da89e8f7a3b3ab42b83
Volume 19
WOSCitedRecordID wos001610783700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Open Access Full Text
  customDbUrl:
  eissn: 1177-9322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061876
  issn: 1177-9322
  databaseCode: DOA
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1177-9322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061876
  issn: 1177-9322
  databaseCode: M~E
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1177-9322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061876
  issn: 1177-9322
  databaseCode: P5Z
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Australia & New Zealand Database
  customDbUrl:
  eissn: 1177-9322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061876
  issn: 1177-9322
  databaseCode: AYAGU
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/anz
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 1177-9322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061876
  issn: 1177-9322
  databaseCode: M7P
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 1177-9322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061876
  issn: 1177-9322
  databaseCode: K7-
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central (subscription)
  customDbUrl:
  eissn: 1177-9322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061876
  issn: 1177-9322
  databaseCode: BENPR
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 1177-9322
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061876
  issn: 1177-9322
  databaseCode: PIMPY
  dateStart: 20070101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEB-0KvRFatX2tD0i9EkI7mbzsXm86wcV9bq0CqcvS762FMpeudsW-t87ye4VRcQXX_KQBBJmkvwmmclvAA4kVgsbDA0i8xRN6kAtnsUUwV26zGhuQ-KZ_axms3I-19Uvqb5iTFhPD9wL7oNHRCu8d4GJgntT6lA2yhS2MJYzWyaez0zp9WWqP4Nljpt88GFGeqVY6OhTEGjw4IVH_IZCiaz_7xZmQpqTLXg-mIhk0k_tBTwK7TY865NG3r8ENyFHIdyQgRn1ksR0ZtekW5BqGb0uHUGbjrTufDahVWRhuGpJevfrvzCsyBSBy5NFSy7WYdRk-JQU28lZe33_Cr6dHH89PKVDqgTqCsk76rS2Fm0PlltveMmN1NI0mQuywQbmmbYuZdlpfIx74UI0PlcoRWGVVCwUr2GjXbRhF4gqTREk9jYs55aV1iGgNY13BreuzdwI3q9FV9_0jBh1PpCG_yHnEUyjcB86RjLrVIEqrgcV1_9S8QjerVVT4-KPHg3ThsXtqi6YwvunxomNYKfX2cNQHDE5Exl_8z-m8BY2WUz8m95e9mCjW96GfXjq7rqr1XIMj9W8HMOT6fGsOh-nlYjlJ0XHMZS0wrISP7C9-vil-v4TimTkaw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning+Model+to+Predict+the+ncRNA-Protein+Interactions+Based+on+Sequences+Information+Only&rft.jtitle=Bioinformatics+and+biology+insights&rft.au=Maha+FM+Sewailem&rft.au=Muhammad+Arif&rft.au=Tanvir+Alam&rft.date=2025-01-01&rft.pub=SAGE+Publishing&rft.eissn=1177-9322&rft.volume=19&rft_id=info:doi/10.1177%2F11779322251391075&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d5093ddce2534da89e8f7a3b3ab42b83
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1177-9322&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1177-9322&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1177-9322&client=summon