A Deep Learning Model to Predict the ncRNA-Protein Interactions Based on Sequences Information Only
Noncoding RNAs (ncRNAs) play significant roles in multiple fundamental biological processes, in particular, ncRNAs interactions provide valuable insights into protein synthesis, controlling gene expression, RNA processing, regulation of localization, etc. The dysregulation of ncRNA interaction may c...
Uložené v:
| Vydané v: | Bioinformatics and biology insights Ročník 19; s. 11779322251391075 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
SAGE Publishing
01.01.2025
|
| Predmet: | |
| ISSN: | 1177-9322, 1177-9322 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Noncoding RNAs (ncRNAs) play significant roles in multiple fundamental biological processes, in particular, ncRNAs interactions provide valuable insights into protein synthesis, controlling gene expression, RNA processing, regulation of localization, etc. The dysregulation of ncRNA interaction may cause severe diseases including cancer. Therefore, developing computational methods for investigating ncRNA-protein interaction has become a problem of interest for researchers. In this study, we proposed a novel deep learning (DL) model named RPI-SDA-XGBoost for predicting the interaction between ncRNA and proteins. We utilized the 3-mer conjoint triad feature (CTF) to encode the protein sequence, and the 4-mer frequency to encode the RNA sequence, resulting in the extraction of a total of 599-dimensional vector features. The DL approach is developed based on stack denoising autoencoder (SDA) to discover high-level hidden characteristics from 2 separate networks representing proteins and ncRNAs. Composition of features were fed into XGBoost based meta-learner for the final prediction. Proposed model, RPI-SDA-XGBoost, outperformed most of the individual baseline models and significantly improved the performance on multiple benchmark data sets. We validate the generalization power of the proposed model on five benchmark data sets, namely, RPI_ 369, RP_I488, RPI_1807, RPI_ 2241, and NPInterv2.0. RPI-SDA-XGBoost achieved similar levels of state-of-the-art accuracy on data sets RPI_488, RPI_1807, and RPI_NPInter v2.0. Proposed model achieved the best precision of 87.9% and 94.6% in the largest two data sets RPI_ 2241, and RPI_NPInter v2.0, respectively. We believe the proposed model provides useful direction for upcoming biological research and suggesting more sophisticated computational approaches are warranted in near future for ncRNA protein interaction predictions. |
|---|---|
| AbstractList | Noncoding RNAs (ncRNAs) play significant roles in multiple fundamental biological processes, in particular, ncRNAs interactions provide valuable insights into protein synthesis, controlling gene expression, RNA processing, regulation of localization, etc. The dysregulation of ncRNA interaction may cause severe diseases including cancer. Therefore, developing computational methods for investigating ncRNA-protein interaction has become a problem of interest for researchers. In this study, we proposed a novel deep learning (DL) model named RPI-SDA-XGBoost for predicting the interaction between ncRNA and proteins. We utilized the 3-mer conjoint triad feature (CTF) to encode the protein sequence, and the 4-mer frequency to encode the RNA sequence, resulting in the extraction of a total of 599-dimensional vector features. The DL approach is developed based on stack denoising autoencoder (SDA) to discover high-level hidden characteristics from 2 separate networks representing proteins and ncRNAs. Composition of features were fed into XGBoost based meta-learner for the final prediction. Proposed model, RPI-SDA-XGBoost, outperformed most of the individual baseline models and significantly improved the performance on multiple benchmark data sets. We validate the generalization power of the proposed model on five benchmark data sets, namely, RPI_ 369, RP_I488, RPI_1807, RPI_ 2241, and NPInterv2.0. RPI-SDA-XGBoost achieved similar levels of state-of-the-art accuracy on data sets RPI_488, RPI_1807, and RPI_NPInter v2.0. Proposed model achieved the best precision of 87.9% and 94.6% in the largest two data sets RPI_ 2241, and RPI_NPInter v2.0, respectively. We believe the proposed model provides useful direction for upcoming biological research and suggesting more sophisticated computational approaches are warranted in near future for ncRNA protein interaction predictions. Noncoding RNAs (ncRNAs) play significant roles in multiple fundamental biological processes, in particular, ncRNAs interactions provide valuable insights into protein synthesis, controlling gene expression, RNA processing, regulation of localization, etc. The dysregulation of ncRNA interaction may cause severe diseases including cancer. Therefore, developing computational methods for investigating ncRNA-protein interaction has become a problem of interest for researchers. In this study, we proposed a novel deep learning (DL) model named RPI-SDA-XGBoost for predicting the interaction between ncRNA and proteins. We utilized the 3-mer conjoint triad feature (CTF) to encode the protein sequence, and the 4-mer frequency to encode the RNA sequence, resulting in the extraction of a total of 599-dimensional vector features. The DL approach is developed based on stack denoising autoencoder (SDA) to discover high-level hidden characteristics from 2 separate networks representing proteins and ncRNAs. Composition of features were fed into XGBoost based meta-learner for the final prediction. Proposed model, RPI-SDA-XGBoost, outperformed most of the individual baseline models and significantly improved the performance on multiple benchmark data sets. We validate the generalization power of the proposed model on five benchmark data sets, namely, RPI_ 369, RP_I488, RPI_1807, RPI_ 2241, and NPInterv2.0. RPI-SDA-XGBoost achieved similar levels of state-of-the-art accuracy on data sets RPI_488, RPI_1807, and RPI_NPInter v2.0. Proposed model achieved the best precision of 87.9% and 94.6% in the largest two data sets RPI_ 2241, and RPI_NPInter v2.0, respectively. We believe the proposed model provides useful direction for upcoming biological research and suggesting more sophisticated computational approaches are warranted in near future for ncRNA protein interaction predictions.Noncoding RNAs (ncRNAs) play significant roles in multiple fundamental biological processes, in particular, ncRNAs interactions provide valuable insights into protein synthesis, controlling gene expression, RNA processing, regulation of localization, etc. The dysregulation of ncRNA interaction may cause severe diseases including cancer. Therefore, developing computational methods for investigating ncRNA-protein interaction has become a problem of interest for researchers. In this study, we proposed a novel deep learning (DL) model named RPI-SDA-XGBoost for predicting the interaction between ncRNA and proteins. We utilized the 3-mer conjoint triad feature (CTF) to encode the protein sequence, and the 4-mer frequency to encode the RNA sequence, resulting in the extraction of a total of 599-dimensional vector features. The DL approach is developed based on stack denoising autoencoder (SDA) to discover high-level hidden characteristics from 2 separate networks representing proteins and ncRNAs. Composition of features were fed into XGBoost based meta-learner for the final prediction. Proposed model, RPI-SDA-XGBoost, outperformed most of the individual baseline models and significantly improved the performance on multiple benchmark data sets. We validate the generalization power of the proposed model on five benchmark data sets, namely, RPI_ 369, RP_I488, RPI_1807, RPI_ 2241, and NPInterv2.0. RPI-SDA-XGBoost achieved similar levels of state-of-the-art accuracy on data sets RPI_488, RPI_1807, and RPI_NPInter v2.0. Proposed model achieved the best precision of 87.9% and 94.6% in the largest two data sets RPI_ 2241, and RPI_NPInter v2.0, respectively. We believe the proposed model provides useful direction for upcoming biological research and suggesting more sophisticated computational approaches are warranted in near future for ncRNA protein interaction predictions. |
| Author | Sewailem, Maha FM Arif, Muhammad Alam, Tanvir |
| Author_xml | – sequence: 1 givenname: Maha FM surname: Sewailem fullname: Sewailem, Maha FM – sequence: 2 givenname: Muhammad surname: Arif fullname: Arif, Muhammad – sequence: 3 givenname: Tanvir orcidid: 0000-0001-7033-3693 surname: Alam fullname: Alam, Tanvir |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/41230504$$D View this record in MEDLINE/PubMed |
| BookMark | eNplkUlvFDEUhC0URBb4AVyQj1wavLt9HBKWkYYkCnC2vLwOHfXYg-055N-nmwkRUi62VfWpnp7rFB2lnACht5R8oFTrj8thOGNMUm4o0fIFOlm0bhGP_nsfo9Na7whRtNfqFToWlHEiiThBYYUvAHZ4A66kMd3i7znChFvG1wXiGBpuvwGncHO56q5LbjAmvE4NigttzKniT65CxDnhH_BnDylAnf0hl61bfHyVpvvX6OXgpgpvHu8z9OvL55_n37rN1df1-WrTBa5E64Ix3vPeMOqjE71wyig3kABqmA0WmfFBMS3oECUjRkg5RKq559JrpRnwM7Q-5Mbs7uyujFtX7m12o_0r5HJrXWljmMBGSQyPMQCTXETXG-gH7eYs5wXzPZ-z3h-ydiXPe9Vmt2MNME0uQd5Xy5mmUhltxIy-e0T3fgvxafC_T54BegBCybUWGJ4QSuzSkX1WJH8AHlCOEA |
| Cites_doi | 10.1093/nar/gkv020 10.1080/15476286.2017.1312243 10.1186/s12864-024-10077-9 10.1038/nature14539 10.1016/j.omtn.2018.03.001 10.3390/ijms20051070 10.1093/bfgp/elae010 10.1186/s12859-021-04069-9 10.1109/TCBB.2021.3116232 10.1023/A:1010933404324 10.1101/gr.135350.111 10.1109/TPAMI.2013.50 10.1023/A:1022859003006 10.3390/ncrna6040047 10.1093/bib/bbac527 10.3390/genes12111689 10.1186/s12859-020-03914-7 10.3390/ijms20040978 10.1093/nar/gkq1108 10.1186/s12864-016-2931-8 10.48550/arXiv.1412.6980 10.3389/fgene.2023.1136672 10.1016/j.ygeno.2011.03.001 10.1186/s12859-023-05232-0 10.1186/1471-2105-12-489 10.1093/nar/gkw973 10.1093/nar/28.1.235 10.48550/ARXIV.1112.6209 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2025. |
| Copyright_xml | – notice: The Author(s) 2025. |
| DBID | AAYXX CITATION NPM 7X8 DOA |
| DOI | 10.1177/11779322251391075 |
| DatabaseName | CrossRef PubMed MEDLINE - Academic DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1177-9322 |
| ExternalDocumentID | oai_doaj_org_article_d5093ddce2534da89e8f7a3b3ab42b83 41230504 10_1177_11779322251391075 |
| Genre | Journal Article |
| GroupedDBID | --- 0R~ 188 2UF 2WC 53G 54M 5VS 8FE 8FG 8FH AAYXX ABDBF ABQXT ABUWG ABVFX ACARO ACGFS ACHEB ACROE ACUHS ADBBV ADOGD ADRAZ AEUYN AEWDL AFCOW AFFHD AFKRA AFKRG AFRWT AJUZI ALMA_UNASSIGNED_HOLDINGS AOIJS ARAPS AUTPY AYAGU AYAKG AZQEC BAWUL BBNVY BCNDV BDDNI BENPR BGLVJ BHPHI BPHCQ BSEHC C1A CCPQU CEFSP CITATION CNMHZ DC. DIK DWQXO E3Z EBD EBS EJD ESX GNUQQ GROUPED_DOAJ GX1 H13 HCIFZ HYE IAO IGS IHR IPNFZ ITC J8X K.F K6V K7- KQ8 LK8 M48 M7P MK~ ML0 M~E O5R O5S O9- OK1 P62 PGMZT PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC RIG ROL RPM SAUOL SCDPB SCNPE SFC TR2 TUS UZ5 AASGM NPM 7X8 |
| ID | FETCH-LOGICAL-c364t-c99bb38921bda484a696af0ce6f9bb2d29bc62741fd5209455fd173b35b7672e3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001610783700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1177-9322 |
| IngestDate | Mon Nov 17 19:33:09 EST 2025 Thu Nov 13 18:02:00 EST 2025 Sun Nov 16 02:00:45 EST 2025 Sat Nov 29 06:48:11 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | extreme gradient boosting (XGBoost) stacked denoising autoencoder (SDA) stacked auto-encoders (SAE) Noncoding RNAs (ncRNAs) conjoint triad feature (CTF) |
| Language | English |
| License | The Author(s) 2025. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c364t-c99bb38921bda484a696af0ce6f9bb2d29bc62741fd5209455fd173b35b7672e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-7033-3693 |
| OpenAccessLink | https://doaj.org/article/d5093ddce2534da89e8f7a3b3ab42b83 |
| PMID | 41230504 |
| PQID | 3271569794 |
| PQPubID | 23479 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_d5093ddce2534da89e8f7a3b3ab42b83 proquest_miscellaneous_3271569794 pubmed_primary_41230504 crossref_primary_10_1177_11779322251391075 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | Bioinformatics and biology insights |
| PublicationTitleAlternate | Bioinform Biol Insights |
| PublicationYear | 2025 |
| Publisher | SAGE Publishing |
| Publisher_xml | – name: SAGE Publishing |
| References | e_1_3_3_17_2 e_1_3_3_16_2 e_1_3_3_19_2 Vincent P (e_1_3_3_24_2) 2010; 11 e_1_3_3_18_2 e_1_3_3_13_2 e_1_3_3_12_2 e_1_3_3_15_2 e_1_3_3_14_2 e_1_3_3_11_2 e_1_3_3_30_2 e_1_3_3_10_2 e_1_3_3_6_2 e_1_3_3_5_2 e_1_3_3_8_2 e_1_3_3_7_2 e_1_3_3_28_2 e_1_3_3_9_2 e_1_3_3_27_2 e_1_3_3_29_2 e_1_3_3_23_2 e_1_3_3_26_2 e_1_3_3_25_2 e_1_3_3_2_2 e_1_3_3_20_2 e_1_3_3_4_2 e_1_3_3_22_2 e_1_3_3_3_2 e_1_3_3_21_2 |
| References_xml | – ident: e_1_3_3_12_2 doi: 10.1093/nar/gkv020 – ident: e_1_3_3_7_2 doi: 10.1080/15476286.2017.1312243 – ident: e_1_3_3_10_2 doi: 10.1186/s12864-024-10077-9 – ident: e_1_3_3_23_2 doi: 10.1038/nature14539 – ident: e_1_3_3_13_2 doi: 10.1016/j.omtn.2018.03.001 – ident: e_1_3_3_8_2 doi: 10.3390/ijms20051070 – ident: e_1_3_3_14_2 doi: 10.1093/bfgp/elae010 – ident: e_1_3_3_17_2 doi: 10.1186/s12859-021-04069-9 – ident: e_1_3_3_18_2 doi: 10.1109/TCBB.2021.3116232 – ident: e_1_3_3_29_2 doi: 10.1023/A:1010933404324 – ident: e_1_3_3_5_2 doi: 10.1101/gr.135350.111 – ident: e_1_3_3_25_2 doi: 10.1109/TPAMI.2013.50 – ident: e_1_3_3_30_2 doi: 10.1023/A:1022859003006 – volume: 11 start-page: 3371 year: 2010 ident: e_1_3_3_24_2 article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion publication-title: J Mach Learn Res – ident: e_1_3_3_3_2 doi: 10.3390/ncrna6040047 – ident: e_1_3_3_21_2 doi: 10.1093/bib/bbac527 – ident: e_1_3_3_16_2 doi: 10.3390/genes12111689 – ident: e_1_3_3_19_2 doi: 10.1186/s12859-020-03914-7 – ident: e_1_3_3_2_2 doi: 10.3390/ijms20040978 – ident: e_1_3_3_15_2 doi: 10.1093/nar/gkq1108 – ident: e_1_3_3_4_2 doi: 10.1186/s12864-016-2931-8 – ident: e_1_3_3_26_2 doi: 10.48550/arXiv.1412.6980 – ident: e_1_3_3_20_2 doi: 10.3389/fgene.2023.1136672 – ident: e_1_3_3_28_2 doi: 10.1016/j.ygeno.2011.03.001 – ident: e_1_3_3_9_2 doi: 10.1186/s12859-023-05232-0 – ident: e_1_3_3_11_2 doi: 10.1186/1471-2105-12-489 – ident: e_1_3_3_6_2 doi: 10.1093/nar/gkw973 – ident: e_1_3_3_22_2 doi: 10.1093/nar/28.1.235 – ident: e_1_3_3_27_2 doi: 10.48550/ARXIV.1112.6209 |
| SSID | ssj0061876 |
| Score | 2.3106654 |
| Snippet | Noncoding RNAs (ncRNAs) play significant roles in multiple fundamental biological processes, in particular, ncRNAs interactions provide valuable insights into... |
| SourceID | doaj proquest pubmed crossref |
| SourceType | Open Website Aggregation Database Index Database |
| StartPage | 11779322251391075 |
| Title | A Deep Learning Model to Predict the ncRNA-Protein Interactions Based on Sequences Information Only |
| URI | https://www.ncbi.nlm.nih.gov/pubmed/41230504 https://www.proquest.com/docview/3271569794 https://doaj.org/article/d5093ddce2534da89e8f7a3b3ab42b83 |
| Volume | 19 |
| WOSCitedRecordID | wos001610783700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1177-9322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061876 issn: 1177-9322 databaseCode: DOA dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1177-9322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061876 issn: 1177-9322 databaseCode: M~E dateStart: 20070101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1177-9322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061876 issn: 1177-9322 databaseCode: P5Z dateStart: 20070101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Australia & New Zealand Database customDbUrl: eissn: 1177-9322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061876 issn: 1177-9322 databaseCode: AYAGU dateStart: 20070101 isFulltext: true titleUrlDefault: https://search.proquest.com/anz providerName: ProQuest – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 1177-9322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061876 issn: 1177-9322 databaseCode: M7P dateStart: 20070101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database (ProQuest) customDbUrl: eissn: 1177-9322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061876 issn: 1177-9322 databaseCode: K7- dateStart: 20070101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1177-9322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061876 issn: 1177-9322 databaseCode: BENPR dateStart: 20070101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1177-9322 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0061876 issn: 1177-9322 databaseCode: PIMPY dateStart: 20070101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEB-0KvhS_PaqHhF8EoK7-dgkj3faoojnUi1cfVnytVIoe-VuW-h_30l2r7SI-OJLHjZhN8xkM7_JTH4D8C4aX7igLWWmZFQwq6gNqqVeCRl86yPXPhebUIuFXi5NfaPUV8oJG-iBB8F9CGjReAg-MslFsNpE3SrLHbdOMKczz2ehzNaZGvbgqsSffIxhJnql1JgUU5AIeNDhkbesUCbr_zvCzJbm4BHsjhCRzIapPYY7sXsCD4aikZdPwc_IpxjPyMiM-pukcmanpF-Rep2iLj1BTEc6f7iY0TqxMJx0JJ_7DVcYNmSOhiuQVUd-bNOoyXgpKfWT793p5TM4Otj_-fEzHUslUM8r0VNvjHOIPVjpghVa2MpUti18rFrsYIEZ53OVnTakvBchZRtKhVKUTlWKRf4cdrpVF18CCdpZ5yIXRUB0FSvTVgjaCocvLzx6bBN4vxVdczYwYjTlSBr-h5wnME_CvR6YyKzzA1RxM6q4-ZeKJ_B2q5oGF3-KaNgurs43DWcK_U-De8oEXgw6u_6UQJtcyELs_Y8pvIKHLBX-zWcvr2GnX5_HN3DfX_Qnm_UU7qqlnsK9-f6iPpzmlYjtV0WnKZW0xraWv7C__vKtPr4CMPnjpg |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Deep+Learning+Model+to+Predict+the+ncRNA-Protein+Interactions+Based+on+Sequences+Information+Only&rft.jtitle=Bioinformatics+and+biology+insights&rft.au=Maha+FM+Sewailem&rft.au=Muhammad+Arif&rft.au=Tanvir+Alam&rft.date=2025-01-01&rft.pub=SAGE+Publishing&rft.eissn=1177-9322&rft.volume=19&rft_id=info:doi/10.1177%2F11779322251391075&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_d5093ddce2534da89e8f7a3b3ab42b83 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1177-9322&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1177-9322&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1177-9322&client=summon |