Research Front Detection and Topic Evolution Based on Topological Structure and the PageRank Algorithm
Research front detection and topic evolution has for a long time been an important direction for research in the informetrics field. However, most previous studies either simply use a citation count for scientific document clustering or assume that each scientific document has the same importance in...
Uloženo v:
| Vydáno v: | Symmetry (Basel) Ročník 11; číslo 3; s. 310 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.03.2019
|
| Témata: | |
| ISSN: | 2073-8994, 2073-8994 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Research front detection and topic evolution has for a long time been an important direction for research in the informetrics field. However, most previous studies either simply use a citation count for scientific document clustering or assume that each scientific document has the same importance in detecting the clustering theme in a cluster. In this study, utilizing the topological structure and the PageRank algorithm, we propose a new research front detection and topic evolution approach based on graph theory. This approach is made up of three stages: (1) Setting a time window with appropriate length according to the accuracy of scientific documents clustering results and the time delay of a scientific document to be cited, dividing scientific documents into several time windows according to their years of publication, calculating similarities between them according to their topological structure, and clustering them in each time window based on the fast greedy algorithm; (2) combining the PageRank algorithm and keywords’ frequency to detect the clustering theme, which assumes that the more important a scientific document in the cluster is, the greater the possibility that it is cited by the other documents in the same cluster; and (3) reconstructing the cluster graph where nodes represent clusters and edges’ strengths represent the similarities between different clusters, then detecting research front and identifying topic evolution based on the reconstructed cluster graph. To evaluate the performance of our proposed approach, the scientific documents related to data mining and covered by Science Citation Index Expanded (SCI-EXPANDED) or Social Science Citation Index (SSCI) in Web of Science are collected as a case study. The experiment’s results show that the proposed approach can obtain reasonable clustering results, and it is effective for research front detection and topic evolution. |
|---|---|
| AbstractList | Research front detection and topic evolution has for a long time been an important direction for research in the informetrics field. However, most previous studies either simply use a citation count for scientific document clustering or assume that each scientific document has the same importance in detecting the clustering theme in a cluster. In this study, utilizing the topological structure and the PageRank algorithm, we propose a new research front detection and topic evolution approach based on graph theory. This approach is made up of three stages: (1) Setting a time window with appropriate length according to the accuracy of scientific documents clustering results and the time delay of a scientific document to be cited, dividing scientific documents into several time windows according to their years of publication, calculating similarities between them according to their topological structure, and clustering them in each time window based on the fast greedy algorithm; (2) combining the PageRank algorithm and keywords’ frequency to detect the clustering theme, which assumes that the more important a scientific document in the cluster is, the greater the possibility that it is cited by the other documents in the same cluster; and (3) reconstructing the cluster graph where nodes represent clusters and edges’ strengths represent the similarities between different clusters, then detecting research front and identifying topic evolution based on the reconstructed cluster graph. To evaluate the performance of our proposed approach, the scientific documents related to data mining and covered by Science Citation Index Expanded (SCI-EXPANDED) or Social Science Citation Index (SSCI) in Web of Science are collected as a case study. The experiment’s results show that the proposed approach can obtain reasonable clustering results, and it is effective for research front detection and topic evolution. |
| Author | Zhang, Shuai Yang, Shuiqing Zhang, Wenyu Xu, Yangbing Shen, Yue |
| Author_xml | – sequence: 1 givenname: Yangbing surname: Xu fullname: Xu, Yangbing – sequence: 2 givenname: Shuai orcidid: 0000-0002-6405-584X surname: Zhang fullname: Zhang, Shuai – sequence: 3 givenname: Wenyu surname: Zhang fullname: Zhang, Wenyu – sequence: 4 givenname: Shuiqing surname: Yang fullname: Yang, Shuiqing – sequence: 5 givenname: Yue orcidid: 0000-0001-9857-443X surname: Shen fullname: Shen, Yue |
| BookMark | eNptkNFPwjAQxhuDiYg8-Q808dFM23Xd2kdEUBMSDeLz0l07GI4V286E_94BPhDjvdyXu993l3yXqNfYxiB0TckdY5Lc-92GUsIIo-QM9WOSsUhImfRO9AUaer8mXXHCk5T0UTk33igHKzx1tgn40QQDobINVo3GC7utAE--bd0eZg_KG4070S1sbZcVqBq_B9dCaJ05WMLK4De1NHPVfOJRvbSuCqvNFTovVe3N8LcP0Md0shg_R7PXp5fxaBYBS5MQgczilHJuqFAFJAUUrNSCCaY5SQutCYNEg9IFMaUspMwySkUJkBoCTPCUDdDN8e7W2a_W-JCvbeua7mUec07ijAkpOur2SIGz3jtT5ltXbZTb5ZTk-yzzkyw7mv6hoQpqn0dwqqr_9fwAVjp6AQ |
| CitedBy_id | crossref_primary_10_1007_s11192_022_04272_2 crossref_primary_10_1007_s11192_022_04273_1 crossref_primary_10_1016_j_jksuci_2021_10_009 crossref_primary_10_20965_jaciii_2022_p0299 crossref_primary_10_1007_s40031_022_00764_0 crossref_primary_10_3103_S0147688220040036 crossref_primary_10_1007_s11192_022_04415_5 crossref_primary_10_3390_sym13030415 |
| Cites_doi | 10.1371/journal.pone.0018029 10.2495/DATA080101 10.1023/A:1020458612014 10.1002/asi.4630310408 10.1016/j.joi.2006.06.001 10.1016/j.jengtecman.2013.07.002 10.1002/asi.10227 10.1371/journal.pone.0187164 10.1109/DMO.2011.5976511 10.1016/S0169-7552(98)00110-X 10.1097/MD.0000000000007349 10.1109/ICEEOT.2016.7754750 10.1016/j.joi.2017.10.003 10.1016/j.joi.2015.07.002 10.1002/asi.20317 10.1002/asi.21419 10.1073/pnas.122653799 10.1007/978-3-642-33718-5_31 10.3390/sym10040114 10.1016/j.joi.2013.01.003 10.1007/s11192-011-0591-7 10.1016/j.asoc.2017.09.028 10.1007/s11192-017-2262-9 10.1007/s11192-014-1327-2 10.1016/0377-0427(87)90125-7 10.1103/PhysRevE.70.066111 10.1103/PhysRevE.69.066133 10.1007/s11192-007-2002-7 |
| ContentType | Journal Article |
| Copyright | 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SC 7SR 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU DWQXO H8D HCIFZ JG9 JQ2 L6V L7M L~C L~D M7S PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS |
| DOI | 10.3390/sym11030310 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Aerospace Database SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database ProQuest Databases ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection |
| DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Aerospace Database Engineered Materials Abstracts ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional ProQuest One Academic UKI Edition Materials Science & Engineering Collection Solid State and Superconductivity Abstracts ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) |
| EISSN | 2073-8994 |
| ExternalDocumentID | 10_3390_sym11030310 |
| GroupedDBID | 5VS 8FE 8FG AADQD AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AFFHD AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV BENPR BGLVJ CCPQU CITATION E3Z ESX GX1 HCIFZ IAO J9A KQ8 L6V M7S MODMG M~E OK1 PHGZM PHGZT PIMPY PQGLB PROAC PTHSS TR2 TUS 7SC 7SR 7U5 8BQ 8FD ABUWG AZQEC DWQXO H8D JG9 JQ2 L7M L~C L~D PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c364t-c9726155e18abc4bcb3fd8383d506bdd03c4dcadb0ef9b9977118fcc6e0c38563 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 9 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000464404500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2073-8994 |
| IngestDate | Fri Jul 25 12:12:32 EDT 2025 Sat Nov 29 07:20:28 EST 2025 Tue Nov 18 21:57:46 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c364t-c9726155e18abc4bcb3fd8383d506bdd03c4dcadb0ef9b9977118fcc6e0c38563 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-9857-443X 0000-0002-6405-584X |
| OpenAccessLink | https://www.proquest.com/docview/2550273898?pq-origsite=%requestingapplication% |
| PQID | 2550273898 |
| PQPubID | 2032326 |
| ParticipantIDs | proquest_journals_2550273898 crossref_primary_10_3390_sym11030310 crossref_citationtrail_10_3390_sym11030310 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-03-01 |
| PublicationDateYYYYMMDD | 2019-03-01 |
| PublicationDate_xml | – month: 03 year: 2019 text: 2019-03-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Symmetry (Basel) |
| PublicationYear | 2019 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Liu (ref_3) 2013; 7 Blei (ref_12) 2003; 3 Girvan (ref_19) 2002; 99 Kim (ref_14) 2018; 66 Chen (ref_22) 2007; 1 Boyack (ref_6) 2010; 61 ref_13 ref_11 ref_30 Wu (ref_2) 2017; 96 Thijs (ref_7) 2012; 91 Brin (ref_18) 1998; 30 Bichteler (ref_10) 1980; 31 Nykl (ref_23) 2015; 9 Chen (ref_1) 2006; 57 ref_15 Fujita (ref_4) 2014; 32 Morris (ref_16) 2003; 54 Janssens (ref_29) 2008; 75 Clauset (ref_17) 2004; 70 Egghe (ref_25) 2002; 55 ref_21 Yu (ref_24) 2017; 111 Chen (ref_5) 2017; 11 ref_26 ref_9 Dehdarirad (ref_27) 2014; 101 ref_8 Rousseeuw (ref_28) 1987; 20 Newman (ref_20) 2004; 69 |
| References_xml | – ident: ref_26 doi: 10.1371/journal.pone.0018029 – ident: ref_21 doi: 10.2495/DATA080101 – volume: 55 start-page: 349 year: 2002 ident: ref_25 article-title: Co-citation, bibliographic coupling and a characterization of lattice citation networks publication-title: Scientometrics doi: 10.1023/A:1020458612014 – volume: 31 start-page: 278 year: 1980 ident: ref_10 article-title: The combined use of bibliographic coupling and cocitation for document retrieval publication-title: J. Am. Soc. Inf. Sci. doi: 10.1002/asi.4630310408 – volume: 1 start-page: 8 year: 2007 ident: ref_22 article-title: Finding scientific gems with google’s PageRank algorithm publication-title: J. Informetr. doi: 10.1016/j.joi.2006.06.001 – volume: 32 start-page: 129 year: 2014 ident: ref_4 article-title: Detecting research fronts using different types of weighted citation networks publication-title: J. Eng. Technol. Manag. doi: 10.1016/j.jengtecman.2013.07.002 – volume: 54 start-page: 413 year: 2003 ident: ref_16 article-title: Time line visualization of research fronts publication-title: J. Am. Soc. Inf. Sci. Technol. doi: 10.1002/asi.10227 – ident: ref_8 doi: 10.1371/journal.pone.0187164 – ident: ref_11 doi: 10.1109/DMO.2011.5976511 – volume: 30 start-page: 107 year: 1998 ident: ref_18 article-title: The anatomy of a large-scale hypertextual web search engine publication-title: Comput. Netw. ISDN Syst. doi: 10.1016/S0169-7552(98)00110-X – volume: 96 start-page: e7349 year: 2017 ident: ref_2 article-title: Evaluation of research topic evolution in psychiatry using co-word analysis publication-title: Medicine doi: 10.1097/MD.0000000000007349 – ident: ref_30 doi: 10.1109/ICEEOT.2016.7754750 – volume: 11 start-page: 1175 year: 2017 ident: ref_5 article-title: Understanding the topic evolution in a scientific domain: An exploratory study for the field of information retrieval publication-title: J. Informetr. doi: 10.1016/j.joi.2017.10.003 – volume: 9 start-page: 777 year: 2015 ident: ref_23 article-title: Author ranking based on personalized PageRank publication-title: J. Informetr. doi: 10.1016/j.joi.2015.07.002 – volume: 57 start-page: 359 year: 2006 ident: ref_1 article-title: Citespace II: Detecting and visualizing emerging trends and transient patterns in scientific literature publication-title: J. Am. Soc. Inf. Sci. Technol. doi: 10.1002/asi.20317 – volume: 61 start-page: 2389 year: 2010 ident: ref_6 article-title: Co-citation analysis, bibliographic coupling, and direct citation: Which citation approach represents the research front most accurately? publication-title: J. Assoc. Inf. Sci. Technol. doi: 10.1002/asi.21419 – volume: 99 start-page: 7821 year: 2002 ident: ref_19 article-title: Community structure in social and biological networks publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.122653799 – ident: ref_9 doi: 10.1007/978-3-642-33718-5_31 – ident: ref_13 doi: 10.3390/sym10040114 – volume: 7 start-page: 425 year: 2013 ident: ref_3 article-title: Collective dynamics in knowledge networks: Emerging trends analysis publication-title: J. Informetrics doi: 10.1016/j.joi.2013.01.003 – volume: 3 start-page: 993 year: 2003 ident: ref_12 article-title: Latent dirichlet allocation publication-title: J. Mach. Learn. Res. – volume: 91 start-page: 399 year: 2012 ident: ref_7 article-title: Using ‘core documents’ for detecting and labelling new emerging topics publication-title: Scientometrics doi: 10.1007/s11192-011-0591-7 – volume: 66 start-page: 506 year: 2018 ident: ref_14 article-title: Crowdsourcing based scientific issue tracking with topic analysis publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2017.09.028 – volume: 111 start-page: 521 year: 2017 ident: ref_24 article-title: A multiple-link, mutually reinforced journal-ranking model to measure the prestige of journals publication-title: Scientometrics doi: 10.1007/s11192-017-2262-9 – volume: 101 start-page: 273 year: 2014 ident: ref_27 article-title: Research trends in gender differences in higher education and science: A co-word analysis publication-title: Scientometrics doi: 10.1007/s11192-014-1327-2 – volume: 20 start-page: 53 year: 1987 ident: ref_28 article-title: Silhouettes: A graphical aid to the interpretation and validation of cluster analysis publication-title: J. Comput. Appl. Math. doi: 10.1016/0377-0427(87)90125-7 – ident: ref_15 – volume: 70 start-page: 066111 year: 2004 ident: ref_17 article-title: Finding community structure in very large networks publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.70.066111 – volume: 69 start-page: 066133 year: 2004 ident: ref_20 article-title: Fast algorithm for detecting community structure in networks publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.69.066133 – volume: 75 start-page: 607 year: 2008 ident: ref_29 article-title: A hybrid mapping of information science publication-title: Scientometrics doi: 10.1007/s11192-007-2002-7 |
| SSID | ssj0000505460 |
| Score | 2.1894326 |
| Snippet | Research front detection and topic evolution has for a long time been an important direction for research in the informetrics field. However, most previous... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 310 |
| SubjectTerms | Algorithms Bibliographic coupling Citation analysis Citations Clustering Cocitation Data mining Evolutionary algorithms Graph theory Greedy algorithms Keywords Probability distribution Search algorithms Similarity Time lag Topology Visualization Windows (intervals) |
| Title | Research Front Detection and Topic Evolution Based on Topological Structure and the PageRank Algorithm |
| URI | https://www.proquest.com/docview/2550273898 |
| Volume | 11 |
| WOSCitedRecordID | wos000464404500002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: M7S dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: BENPR dateStart: 20090301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2073-8994 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000505460 issn: 2073-8994 databaseCode: PIMPY dateStart: 20090301 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3LS8MwGA_qPHjxLT5HDjuoENaZtEtO4nRDD47iJsxTyasqajdtFbz4t5uk6VQQL15KadMS8iXfK19-PwAaUao0Z1qjCEcUESZSxAMqUEsSTYw9MFafOLKJdr9PRyMW-4Rb7ssqK53oFLUaS5sjbxrX10GvMHo8eUaWNcrurnoKjVlQsygJLVe6N5jmWCxLG4mC8lgeNtF9M39_alliLWxPzH43RD_1sDMuvaX_dmsZLHq3Ep6U82AFzOhsFaz4hZvDfY8ufbAG0qrWDvYsdgE804WrxsogzxQcjif3Enbf_ISEHWPkFDQ3w5JMwYoUDhzm7OuLdp8YDxLGRitd8ewBnjzemt4Vd0_r4LrXHZ6eI0-2gCSOSIEkax_ZPUrdolxIIqTAqaImflVhEAmlAiyJklyJQKdMMOM2mtAklTLSgcQ0jPAGmMvGmd4EMKRc2p-ElKaEqUAIfMRZm3OVhm2m1RY4rEY-kR6J3BJiPCYmIrFiSr6JaQs0po0nJQDH7812K_kkfhXmyZdwtv9-vQMWjCPEytqyXTBnhlHvgXn5VtznL3VQ63T78VXdTS57_eiaZ_HFZXzzCdiF3WY |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7xqEQvPFpQeftApRYp2mzsZO0DQrxWIGCFylbiFvwKRYXsQhYQf4rfyNhJeEiIGwdukWJbiv1l5rM9Mx_ASpIZK4W1QUITHjChskCGXAVNzSxDf4Ben3mxiVanw09OxNEQPNS5MC6ssraJ3lCbnnZn5A2kvr70iuDr_avAqUa529VaQqOExb69v8MtW7G2t43r-zOK2jvdrd2gUhUINE3YINCiFbnLONvkUmmmtKKZ4bhRM3GYKGNCqpnR0qjQZkIJ5EfIwTOtExtqyuOE4rjDMIo0IhI-VPD46UzHqcKxJCzTACkVYaO4v2w6IS_qMnRfOr7Xdt87s_bEZ5uGSRivaDPZKHE-BUM2_wZTlWEqyK-qevbv75DVsYSk7WozkG078NFmOZG5Id1e_1yTndvqhyOb6MQNwYduKRbhIEuOfU3dm2vruyBDJkdodf_I_D_ZuDjD2Rj8u5yGvx_yvTMwkvdy-wNIzKV2g8ScZ0yYUCkaSdGS0mRxS1gzC6v1Sqe6qrTuBD8uUtxxOVikL2AxCytPjftlgZG3my3UeEgrK1Okz2CYe__1Moztdg8P0oO9zv48fEXSJ8o4ugUYwSm1i_BF3w7Oi-slD2gCpx8NnUe7ezfq |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1dTxQxFL3BxRheBPwIKGgfMFGTyc5OO7PtAzHgsnEDbia6Jvg09lOJMLsyK4S_xq_zdqYDmBjfeOBtkuk0mfb03tP23nsAtjJnrBTWRhnNeMSEcpGMuYp6mlmG_gC9PqvFJvrjMT88FPkCXLa5MD6ssrWJtaE2U-3PyLtIfevSK4J3XQiLyAfDd7NfkVeQ8jetrZxGA5F9e3GO27dqezTAuX6VJMO9yfsPUVAYiDTN2DzSop_4iznb41JpprSiznDctJk0zpQxMdXMaGlUbJ1QArkS8nGndWZjTXmaUez3HiwiJWdJBxbz0cf869UJj9eIY1ncJAVSKuJudXHS87Je1Ofr3nSDf3uB2rUNl-_yoKzAw0CoyU6zAlZhwZaPYDWYrIq8DnW13zwG10YZkqGv2kAGdl7HoZVEloZMprMjTfbOwlIku-jeDcGHSSMj4cFMPtfVdn-f2voT5M4kR3v8SZY_yc7xdxyN-Y-TJ_DlVv73KXTKaWnXgKRcat9JyrljwsRK0USKvpTGpX1hzTq8bWe90KEGu5cCOS5wL-YhUtyAyDpsXTWeNaVH_t1so8VGEexPVVwD49n_X7-EB4iY4mA03n8OS8gGRRNgtwEdHFG7Cff12fyoOn0R0E3g221j5w8n00Ig |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+Front+Detection+and+Topic+Evolution+Based+on+Topological+Structure+and+the+PageRank+Algorithm&rft.jtitle=Symmetry+%28Basel%29&rft.au=Xu%2C+Yangbing&rft.au=Zhang%2C+Wenyu&rft.au=Yang%2C+Shuiqing&rft.au=Shen%2C+Yue&rft.date=2019-03-01&rft.pub=MDPI+AG&rft.eissn=2073-8994&rft.volume=11&rft.issue=3&rft.spage=310&rft_id=info:doi/10.3390%2Fsym11030310&rft.externalDBID=HAS_PDF_LINK |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2073-8994&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2073-8994&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2073-8994&client=summon |