Nationwide operational mapping of grassland first mowing dates combining machine learning and Sentinel-2 time series

Grassland dynamics are modulated by management intensity and impact overall ecosystem functioning. In mowed grasslands, the first mowing date is a key indicator of management intensification. The aim of this work was to assess several supervised regression models for mapping grassland first mowing d...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Remote sensing of environment Ročník 315; s. 114476
Hlavní autori: Rivas, Henry, Touchais, Hélène, Thierion, Vincent, Millet, Jerome, Curtet, Laurence, Fauvel, Mathieu
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 15.12.2024
Elsevier
Predmet:
ISSN:0034-4257, 1879-0704
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Grassland dynamics are modulated by management intensity and impact overall ecosystem functioning. In mowed grasslands, the first mowing date is a key indicator of management intensification. The aim of this work was to assess several supervised regression models for mapping grassland first mowing date at national-level using Sentinel-2 time series. Three deep-learning architectures, two conventional machine learning models and two threshold-based methods (fixed and relative) were compared. Algorithms were trained/calibrated and tested from field observations, using a spatial cross-validation approach. Our findings showed that time aware deep-learning models – Lightweight Temporal Attention Encoder (LTAE) and 1D Convolutional Neural Network (1D-CNN) – yielded higher performances compared to Multilayer Perceptron, Random Forest and Ridge Regression models. Threshold-based methods under-performed compared to all other models. Best model (LTAE) mean absolute error was within six days with a coefficient of determination of 0.52. Additionally, errors were accentuated at extreme (late/early) mowing dates, which were underrepresented in the data set. Oversampling techniques did not improve predicting extreme mowing dates. Finally, the best prediction accuracy was obtained when the number of clear dates surrounding the mowing event was greater than 2. Our outputs evidenced time aware deep-learning models’ potential for large-scale grassland first mowing event monitoring. A national-level map was produced to support bird-life monitoring or public policies for biodiversity and agro-ecological transition in France. [Display omitted] •Estimation of grassland first mowing date using regression algorithm.•Time aware deep-learning architectures were the most accurate models.•Threshold-based methods under-performed compared to all supervised models.•LTAE performed reliably across all unknown sites, demonstrating transferability.•Oversampling techniques did not improve predictions accuracy of extreme mowing dates.
AbstractList Grasslands cover approximately 40% of the Earth's land area, encompassing nearly 70% of the global agricultural land area, and are distributed on all continents and across all latitudes (Suttie et al., 2005; White et al., 2000). Grassland dynamics influence global ecosystem functioning, and their impact is widely modulated by management practices intensity on these landscapes (Zhao et al., 2020). Management practices are primarily driven by grassland landscape maintenance, as well as by ecosystem service of provisioning offered by the grasslands. Grasslands are subject to management practices such as mowing or grazing or a combination of both. Therefore, monitoring grassland management practices is essential for assessing management intensity level, which in turn plays a critical role in studies related to biodiversity (XXXX), water (XXXXX) and carbon (XXXXX) cycling and others topics (XXXX). In France, the National Observatory of Mowed Grassland Ecosystems conducts birdlife monitoring in mowed grasslands, with a particular focus on the rise in breeding failures attributed to increasingly early mowing. Early mowing intercepts birds' reproductive period and interrupts their breeding process (Broyer et al., 2012). Usually, responsible agencies conduct occasional observation campaigns to support ecosystem-related public policies, but ground observations are not spatially exhaustive and are time-consuming. As an alternative source, synoptic remote sensing data enables regular and global-scale monitoring, enabling tracking of vegetation dynamics. Currently, Sentinel-2 mission provides cost-free high resolution data at 10m spatial resolution with a 5-day temporal frequency (10 days before 2017), allowing intra-plot level observations. Grassland mowing events timing and intensity have already been mapped using remote sensing-based time series, mainly from features sensitive to vegetation status, such as Normalized Difference Vegetation Index (NDVI), Enhanced Vegetation Index (EVI), Leaf Area Index (LAI) and more. There have been several methods used to detect mowing events from satellite time series. These methods were mainly based on temporal changes in time series using threshold-based methods and anomalies detection approach. More recently, deep learning-based architectures were also used to detect mowing events timing. Estel et al. (2018) assessed grassland use intensity spatial patterns across Europe. To extract annual mowing frequency, a temporal change analysis based on spline-adjusted MODIS NDVI time series was used. Their approach involved identifying mowing events as instances where a local minima exhibited a change, relative to its preceding peak, exceeding 10% of growing season amplitude. The results showed an overall accuracy of 80%, which decreases as the frequency of events increases. In northern Switzerland, Kolecka et al. (2018) also estimated mowing frequency employing similar temporal change analysis, but based on raw Sentinel-2 NDVI time series. Here, a drop in NDVI greater than 0.2, between two consecutive cloud-free acquisition dates, was counted as a mowing event. Their method accurately identified 77% of observed events and highlighted that false detection can occur due to residual cloud presence, while sparse time series led to the omission of mowing events. Regarding Griffiths et al. (2020), mowing events frequency and timing were mapped in Germany using 10-day composite Harmonized Landsat-Sentinel NDVI time series. Discrepancies between a hypothetical bell-shaped curve and the current polynomial-fitted curve were evaluated. An event was counted when the difference exceeded 0.2 NDVI. Findings revealed consistent spatial patterns in mowing frequency (indicating extensive and intensive management). However, estimated dates exhibited significant discrepancies compared to observed dates (MAE > 50 days), which could be due to lower temporal resolution of Sentinel-2 before 2017 and the absence of reliable ground data for calibration and validation. Stumpf et al. (2020) mapped grassland management (grazing or mowing) and its intensity based on biomass productivity and management frequency, respectively. The latter were extracted from n-day composite Landsat ETM + and Landsat OLI NDVI time series. As in previous cases, a management event was counted when NDVI loss is higher than a threshold, which was based on the probability density function of all NDVI changes across the time series and was specified for p = 0.01. Their approach yielded management patterns consistent with several management-related indicators (species richness, nutrient supply, slope, etc). Recently, Watzig et al. (2023) estimated mowing events in Austria, using Sentinel-2 NDVI time series and implementing discrepancy analysis between a idealized unmowed trajectory and actual NDVI values. An event was recorded if the difference exceeded-0.061. Commission errors due to residual clouds were reduced via a subsequent binary classification of each estimated event using a gradient boosting algorithm trained over cloudy plots. Findings indicated an overall accuracy of 80% in correct event detection, with estimated dates closely aligning with observed dates (MAE < 5 days). Vroey et al. (2022) developed a algorithm for detecting mowing events across Europe. Here, raw Sentinel-2 NDVI and Sentinel-1 VH-coherence time series were used separately.
Grassland dynamics are modulated by management intensity and impact overall ecosystem functioning. In mowed grasslands, the first mowing date is a key indicator of management intensification. The aim of this work was to assess several supervised regression models for mapping grassland first mowing date at national-level using Sentinel-2 time series. Three deep-learning architectures, two conventional machine learning models and two threshold-based methods (fixed and relative) were compared. Algorithms were trained/calibrated and tested from field observations, using a spatial cross-validation approach. Our findings showed that time aware deep-learning models – Lightweight Temporal Attention Encoder (LTAE) and 1D Convolutional Neural Network (1D-CNN) – yielded higher performances compared to Multilayer Perceptron, Random Forest and Ridge Regression models. Threshold-based methods under-performed compared to all other models. Best model (LTAE) mean absolute error was within six days with a coefficient of determination of 0.52. Additionally, errors were accentuated at extreme (late/early) mowing dates, which were underrepresented in the data set. Oversampling techniques did not improve predicting extreme mowing dates. Finally, the best prediction accuracy was obtained when the number of clear dates surrounding the mowing event was greater than 2. Our outputs evidenced time aware deep-learning models’ potential for large-scale grassland first mowing event monitoring. A national-level map was produced to support bird-life monitoring or public policies for biodiversity and agro-ecological transition in France.
Grassland dynamics are modulated by management intensity and impact overall ecosystem functioning. In mowed grasslands, the first mowing date is a key indicator of management intensification. The aim of this work was to assess several supervised regression models for mapping grassland first mowing date at national-level using Sentinel-2 time series. Three deep-learning architectures, two conventional machine learning models and two threshold-based methods (fixed and relative) were compared. Algorithms were trained/calibrated and tested from field observations, using a spatial cross-validation approach. Our findings showed that time aware deep-learning models – Lightweight Temporal Attention Encoder (LTAE) and 1D Convolutional Neural Network (1D-CNN) – yielded higher performances compared to Multilayer Perceptron, Random Forest and Ridge Regression models. Threshold-based methods under-performed compared to all other models. Best model (LTAE) mean absolute error was within six days with a coefficient of determination of 0.52. Additionally, errors were accentuated at extreme (late/early) mowing dates, which were underrepresented in the data set. Oversampling techniques did not improve predicting extreme mowing dates. Finally, the best prediction accuracy was obtained when the number of clear dates surrounding the mowing event was greater than 2. Our outputs evidenced time aware deep-learning models’ potential for large-scale grassland first mowing event monitoring. A national-level map was produced to support bird-life monitoring or public policies for biodiversity and agro-ecological transition in France. [Display omitted] •Estimation of grassland first mowing date using regression algorithm.•Time aware deep-learning architectures were the most accurate models.•Threshold-based methods under-performed compared to all supervised models.•LTAE performed reliably across all unknown sites, demonstrating transferability.•Oversampling techniques did not improve predictions accuracy of extreme mowing dates.
ArticleNumber 114476
Author Curtet, Laurence
Rivas, Henry
Touchais, Hélène
Millet, Jerome
Fauvel, Mathieu
Thierion, Vincent
Author_xml – sequence: 1
  givenname: Henry
  surname: Rivas
  fullname: Rivas, Henry
  organization: Centre d’Etudes Spatiales de la Biosphère (CESBIO), Université de Toulouse, CNES/CNRS/INRAE/IRD/UT3-Paul Sabatier, 31401, Toulouse, France
– sequence: 2
  givenname: Hélène
  orcidid: 0000-0003-1324-8542
  surname: Touchais
  fullname: Touchais, Hélène
  organization: Centre d’Etudes Spatiales de la Biosphère (CESBIO), Université de Toulouse, CNES/CNRS/INRAE/IRD/UT3-Paul Sabatier, 31401, Toulouse, France
– sequence: 3
  givenname: Vincent
  orcidid: 0000-0001-7965-9833
  surname: Thierion
  fullname: Thierion, Vincent
  organization: Centre d’Etudes Spatiales de la Biosphère (CESBIO), Université de Toulouse, CNES/CNRS/INRAE/IRD/UT3-Paul Sabatier, 31401, Toulouse, France
– sequence: 4
  givenname: Jerome
  orcidid: 0000-0001-5724-2180
  surname: Millet
  fullname: Millet, Jerome
  organization: Office Français de la Biodiversité (OFB), Direction de la Recherche et de l’Appui Scientifique, 79360, Villiers-en-Bois, France
– sequence: 5
  givenname: Laurence
  orcidid: 0000-0002-8792-5983
  surname: Curtet
  fullname: Curtet, Laurence
  organization: Office Français de la Biodiversité (OFB), Direction de la Recherche et de l’Appui Scientifique, 01330, Montfort, Birieux, France
– sequence: 6
  givenname: Mathieu
  orcidid: 0000-0002-3304-6932
  surname: Fauvel
  fullname: Fauvel, Mathieu
  email: mathieu.fauvel@inrae.fr
  organization: Centre d’Etudes Spatiales de la Biosphère (CESBIO), Université de Toulouse, CNES/CNRS/INRAE/IRD/UT3-Paul Sabatier, 31401, Toulouse, France
BackLink https://hal.inrae.fr/hal-04775044$$DView record in HAL
BookMark eNp9kUFv1DAQhS1UJLaFH8DNRzhkayfjeCNOVUUp0goOwNmadSatV4kdbLdV_z3OBi4cerLm-X0j-71zduaDJ8beS7GVQraXx21MtK1FDVspAXT7im3kTneV0ALO2EaIBiqolX7DzlM6CiHVTssNy98wu-CfXE88zBRPE458wnl2_o6Hgd9FTGlE3_PBxZT5FJ6Wmx4zJW7DdHB-mSe0984THwnjSViIH-RzEceq5tlNxBNFR-ktez3gmOjd3_OC_br5_PP6ttp___L1-mpf2aaFXNlOdj3W9gCi7xFbCV2jtbKobNEkQQO7AwydaluSu7pXCjuN9QG6dlBDB80F-7juvcfRzNFNGJ9NQGdur_Zm0QSUfQLgURbvh9U7x_D7gVI2k0uWxvJxCg_JNFLBklktilWvVhtDSpEGY10-BZcjutFIYZZOzNGUTszSiVk7KaT8j_z3qpeYTytDJalHR9Ek68hb6l0km00f3Av0H6W4p1s
CitedBy_id crossref_primary_10_3390_rs17183190
crossref_primary_10_1016_j_compag_2025_110613
Cites_doi 10.1016/j.rse.2018.11.014
10.1007/978-0-387-21606-5
10.1007/s10336-011-0799-6
10.1016/j.rse.2019.03.017
10.1016/j.rse.2018.11.032
10.1016/j.rse.2021.112751
10.1109/TGRS.2023.3234527
10.1080/01431169608948714
10.1007/s10980-020-00980-3
10.1038/s41598-022-04932-6
10.3390/rs14071647
10.3390/rs9060629
10.1016/j.rse.2023.113577
10.3390/su13020471
10.3390/rs10081221
10.5194/bg-21-473-2024
10.1016/j.rse.2021.112795
10.1016/j.isprsjprs.2016.01.011
10.1109/ACCESS.2019.2939152
10.1016/j.rse.2023.113680
10.1155/2013/329187
10.1109/JSTARS.2024.3358066
10.3390/rs11050523
10.1016/j.isprsjprs.2017.07.014
10.3390/rs12121949
10.1016/j.rse.2019.111536
10.1613/jair.953
10.1002/ece3.6957
10.1088/1748-9326/aacc7a
10.3390/electronics10233004
10.1016/0273-1177(89)90481-X
10.1109/LGRS.2017.2681128
10.3390/rs13224668
10.1016/j.ecolind.2020.106201
10.1038/s41592-019-0686-2
10.4000/cybergeo.23155
10.1002/ecs2.2582
10.3390/rs9010095
10.3390/rs15030827
10.1016/j.isprsjprs.2020.12.010
10.1038/nature14539
10.1111/icad.12186
10.3390/rs12050832
ContentType Journal Article
Copyright 2024 The Authors
Attribution - NonCommercial
Copyright_xml – notice: 2024 The Authors
– notice: Attribution - NonCommercial
DBID 6I.
AAFTH
AAYXX
CITATION
7S9
L.6
1XC
VOOES
DOI 10.1016/j.rse.2024.114476
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
AGRICOLA
AGRICOLA - Academic
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Geography
Geology
Environmental Sciences
Statistics
EISSN 1879-0704
ExternalDocumentID oai:HAL:hal-04775044v1
10_1016_j_rse_2024_114476
S0034425724005029
GeographicLocations France
GeographicLocations_xml – name: France
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5VS
6I.
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABFYP
ABJNI
ABLST
ABMAC
ABPPZ
ABQEM
ABQYD
ACDAQ
ACGFS
ACIWK
ACLVX
ACPRK
ACRLP
ACSBN
ADBBV
ADEZE
ADVLN
AEBSH
AEKER
AENEX
AFJKZ
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AKIFW
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ATOGT
AXJTR
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
IMUCA
J1W
KCYFY
KOM
LY3
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSE
SSJ
SSZ
T5K
TN5
TWZ
WH7
ZCA
ZMT
~02
~G-
~KM
29P
41~
6TJ
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABEFU
ABUFD
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
ADXHL
AEGFY
AEIPS
AEUPX
AFFNX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FA8
FEDTE
FGOYB
G-2
HMA
HMC
HVGLF
HZ~
H~9
OHT
R2-
SEN
SEP
VOH
WUQ
XOL
~HD
7S9
L.6
1XC
VOOES
ID FETCH-LOGICAL-c364t-c919da2cb40ddaa61493775ca5ccb41e4348b4f9566e182d55a97a2b496f5f943
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001348420400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0034-4257
IngestDate Sat Oct 25 06:38:23 EDT 2025
Wed Oct 01 13:12:49 EDT 2025
Sat Nov 29 06:00:38 EST 2025
Tue Nov 18 22:14:21 EST 2025
Sat Dec 28 15:52:31 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Mowing dates mapping
Satellite image time series
Regression
Deep-learning models
Grassland management intensification
Language English
License This is an open access article under the CC BY-NC license.
Attribution - NonCommercial: http://creativecommons.org/licenses/by-nc
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c364t-c919da2cb40ddaa61493775ca5ccb41e4348b4f9566e182d55a97a2b496f5f943
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1324-8542
0000-0001-5724-2180
0000-0001-7965-9833
0000-0002-3304-6932
0000-0002-8792-5983
OpenAccessLink https://hal.inrae.fr/hal-04775044
PQID 3154158720
PQPubID 24069
ParticipantIDs hal_primary_oai_HAL_hal_04775044v1
proquest_miscellaneous_3154158720
crossref_citationtrail_10_1016_j_rse_2024_114476
crossref_primary_10_1016_j_rse_2024_114476
elsevier_sciencedirect_doi_10_1016_j_rse_2024_114476
PublicationCentury 2000
PublicationDate 2024-12-15
PublicationDateYYYYMMDD 2024-12-15
PublicationDate_xml – month: 12
  year: 2024
  text: 2024-12-15
  day: 15
PublicationDecade 2020
PublicationTitle Remote sensing of environment
PublicationYear 2024
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Ivanda, Šerić, Bugarić, Braović (b25) 2021; 10
Virtanen, Gommers, Oliphant, Haberland, Reddy, Cournapeau, Burovski, Peterson, Weckesser, Bright, van der Walt, Brett, Wilson, Millman, Mayorov, Nelson, Jones, Kern, Larson, Carey, Polat, Feng, Moore, VanderPlas, Laxalde, Perktold, Cimrman, Henriksen, Quintero, Harris, Archibald, Ribeiro, Pedregosa, van Mulbregt, SciPy 1.0 Contributors (b58) 2020; 17
Kussul, Lavreniuk, Skakun, Shelestov (b34) 2017; 14
Mohammed, Rawashdeh, Abdullah (b44) 2020
Liao, Wang, Xie, Baz, Huang, Shang, He (b38) 2020; 12
Buri, Humbert, Stańska, Hajdamowicz, Tran, Entling, Arlettaz (b7) 2016
Inglada, Vincent, Arias, Tardy, Morin, Rodes (b24) 2017; 9
Rouse, Haas, Schell, Deering (b52) 1974; 351
Escadafal (b11) 1989; 9
Estel, Mader, Levers, Verburg, Baumann, Kuemmerle (b12) 2018
Kattenborn, Leitloff, Schiefer, Hinz (b28) 2021; 173
Pontius, Jr. (b48) 2022
Hao, Liu, Yang, Yin, Zhang, Li (b18) 2023; 15
Zhao, Liu, Wu (b68) 2020; 35
Zhong, Hu, Zhou (b69) 2019; 221
Broyer, Curtet, Boissenin (b6) 2012; 153
Kooistra, Berger, Brede, Graf, Aasen, Roujean, Machwitz, Schlerf, Atzberger, Prikaziuk, Ganeva, Tomelleri, Croft, Reyes Muñoz, Garcia Millan, Darvishzadeh, Koren, Herrmann, Rozenstein, Belda, Rautiainen, Rune Karlsen, Figueira Silva, Cerasoli, Pierre, Tanır Kayıkçı, Halabuk, Tunc Gormus, Fluit, Cai, Kycko, Udelhoven, Verrelst (b33) 2024; 21
Suttie, Reynolds, Batello (b55) 2005
Vinayak, Lee, Gedem (b57) 2021; 13
Stumpf, Schneider, Keller, Mayr, Rentschler, Meuli, Schaepman, Liebisch (b54) 2020
Zhang, Luo, Li (b65) 2024; 9
Yang, Tilman, Furey, Lehman (b63) 2019
White, Murray, Rohweder, Prince, Thompson (b62) 2000
Holtgrave, Lobert, Erasmi, Röder, Kleinschmit (b21) 2023
Komisarenko, Voormansik, Elshawi, Sakr (b32) 2022
Garnot, Landrieu (b15) 2020
Zhang, Pan, Li, Gardiner, Sargent, Hare, Atkinson (b66) 2018; 140
Chawla, Bowyer, Hall, Kegelmeyer (b9) 2002
Kingma, D., Ba, J., 2015. Adam: A Method for Stochastic Optimization. In: International Conference on Learning Representations. ICLR, San Diego, CA, USA.
Joly, Brossard, Cardot, Cavailhes, Hilal, Wavresky (b27) 2010
Reinermann, Gessner, Asam, Ullmann, Schucknecht, Kuenzer (b51) 2022; 14
Huang, Zhan, Yan, Wu, Deng (b22) 2013
Reinermann, Asam, Kuenzer (b50) 2020
Garioud, Giordano, Valero, Mallet (b14) 2019
Pelletier, Webb, Petitjean (b47) 2019; 11
Team (b56) 2023
Lemaître, Nogueira, Aridas (b36) 2017; 18
Klein, Theux, Arlettaz, Jacot, Pradervand (b30) 2020
Breiman (b5) 2001
Lobert, Holtgrave, Schwieder, Pause, Vogt, Gocht, Erasmi (b40) 2021
Zhang, Lipton, Li, Smola (b64) 2023
Dumeur, Valero, Inglada (b10) 2024; 17
Inglada, Vincent, Arias, Tardy (b23) 2016
LeCun, Bengio, Hinton (b35) 2015
Rahman, Prasetiyowati, Sibaroni (b49) 2023
Lonjou, Desjardins, Hagolle, Petrucci, Tremas, Dejus, Makarau, Auer (b41) 2016; vol. 10001
Belgiu, Drăguţ (b1) 2016; 114
Lin, Zhong, Wang, Xu, Xu, Ying, Rodríguez, Ting, Li (b39) 2020
Vroey, Vendictis, Zavagli, Bontemps, Heymans, Radoux, Koetz, Defourny (b59) 2022
Wang, Li, Tang, Wang, Guga, Bai, Baoyin (b60) 2019
Guidici, Clark (b17) 2017; 9
Kolecka, Ginzler, Pazúr, Price, Verburg (b31) 2018
Li, Chen, Zhang (b37) 2019; 7
Schwieder, Wesemeyer, Frantz, Pfoch, Erasmi, Pickert, Nendel, Hostert (b53) 2022
Ofori-Ampofo, Pelletier, Lang (b45) 2021; 13
Fauvel, Lopes, Dubo, Rivers-Moore, Frison, Gross, Ouin (b13) 2020; 237
Bellet, Fauvel, Inglada (b2) 2023
Bengtsson, Bullock, Egoh, Everson, Everson, O’Connor, O’Farrell, Smith, Lindborg (b4) 2019
Cantelaube, Carles (b8) 2014
Griffiths, Nendel, Pickert, Hostert (b16) 2020
He, Bai, Garcia, Li (b20) 2008
Hastie, Tibshirani, Friedman (b19) 2001
Bellet, Fauvel, Inglada, Michel (b3) 2023
McFeeters (b42) 1996
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (b46) 2011; 12
Zhang, Sargent, Pan, Li, Gardiner, Hare, Atkinson (b67) 2019; 221
Jafarigol, Trafalis (b26) 2023
Metera, Sakowski, Sloniewski, Romanowicz (b43) 2010; 28
Watzig, Schaumberger, Klingler, Dujakovic, Atzberger, Vuolo (b61) 2023
Guidici (10.1016/j.rse.2024.114476_b17) 2017; 9
McFeeters (10.1016/j.rse.2024.114476_b42) 1996
Zhong (10.1016/j.rse.2024.114476_b69) 2019; 221
Belgiu (10.1016/j.rse.2024.114476_b1) 2016; 114
Hao (10.1016/j.rse.2024.114476_b18) 2023; 15
Bellet (10.1016/j.rse.2024.114476_b3) 2023
Lonjou (10.1016/j.rse.2024.114476_b41) 2016; vol. 10001
He (10.1016/j.rse.2024.114476_b20) 2008
Stumpf (10.1016/j.rse.2024.114476_b54) 2020
Dumeur (10.1016/j.rse.2024.114476_b10) 2024; 17
Li (10.1016/j.rse.2024.114476_b37) 2019; 7
Virtanen (10.1016/j.rse.2024.114476_b58) 2020; 17
Griffiths (10.1016/j.rse.2024.114476_b16) 2020
Metera (10.1016/j.rse.2024.114476_b43) 2010; 28
Ivanda (10.1016/j.rse.2024.114476_b25) 2021; 10
Buri (10.1016/j.rse.2024.114476_b7) 2016
10.1016/j.rse.2024.114476_b29
Zhang (10.1016/j.rse.2024.114476_b67) 2019; 221
Komisarenko (10.1016/j.rse.2024.114476_b32) 2022
Mohammed (10.1016/j.rse.2024.114476_b44) 2020
Garnot (10.1016/j.rse.2024.114476_b15) 2020
Klein (10.1016/j.rse.2024.114476_b30) 2020
Pedregosa (10.1016/j.rse.2024.114476_b46) 2011; 12
Fauvel (10.1016/j.rse.2024.114476_b13) 2020; 237
Garioud (10.1016/j.rse.2024.114476_b14) 2019
Reinermann (10.1016/j.rse.2024.114476_b50) 2020
Pelletier (10.1016/j.rse.2024.114476_b47) 2019; 11
Yang (10.1016/j.rse.2024.114476_b63) 2019
Rahman (10.1016/j.rse.2024.114476_b49) 2023
Breiman (10.1016/j.rse.2024.114476_b5) 2001
Kolecka (10.1016/j.rse.2024.114476_b31) 2018
Cantelaube (10.1016/j.rse.2024.114476_b8) 2014
Escadafal (10.1016/j.rse.2024.114476_b11) 1989; 9
Rouse (10.1016/j.rse.2024.114476_b52) 1974; 351
Joly (10.1016/j.rse.2024.114476_b27) 2010
Lemaître (10.1016/j.rse.2024.114476_b36) 2017; 18
Inglada (10.1016/j.rse.2024.114476_b23) 2016
Vroey (10.1016/j.rse.2024.114476_b59) 2022
Team (10.1016/j.rse.2024.114476_b56) 2023
Zhang (10.1016/j.rse.2024.114476_b66) 2018; 140
Kattenborn (10.1016/j.rse.2024.114476_b28) 2021; 173
Estel (10.1016/j.rse.2024.114476_b12) 2018
Hastie (10.1016/j.rse.2024.114476_b19) 2001
Chawla (10.1016/j.rse.2024.114476_b9) 2002
LeCun (10.1016/j.rse.2024.114476_b35) 2015
Lin (10.1016/j.rse.2024.114476_b39) 2020
Vinayak (10.1016/j.rse.2024.114476_b57) 2021; 13
Wang (10.1016/j.rse.2024.114476_b60) 2019
Zhang (10.1016/j.rse.2024.114476_b65) 2024; 9
Pontius, Jr. (10.1016/j.rse.2024.114476_b48) 2022
Inglada (10.1016/j.rse.2024.114476_b24) 2017; 9
Holtgrave (10.1016/j.rse.2024.114476_b21) 2023
Kussul (10.1016/j.rse.2024.114476_b34) 2017; 14
Huang (10.1016/j.rse.2024.114476_b22) 2013
Schwieder (10.1016/j.rse.2024.114476_b53) 2022
Liao (10.1016/j.rse.2024.114476_b38) 2020; 12
Lobert (10.1016/j.rse.2024.114476_b40) 2021
White (10.1016/j.rse.2024.114476_b62) 2000
Suttie (10.1016/j.rse.2024.114476_b55) 2005
Watzig (10.1016/j.rse.2024.114476_b61) 2023
Bellet (10.1016/j.rse.2024.114476_b2) 2023
Broyer (10.1016/j.rse.2024.114476_b6) 2012; 153
Jafarigol (10.1016/j.rse.2024.114476_b26) 2023
Zhao (10.1016/j.rse.2024.114476_b68) 2020; 35
Reinermann (10.1016/j.rse.2024.114476_b51) 2022; 14
Bengtsson (10.1016/j.rse.2024.114476_b4) 2019
Kooistra (10.1016/j.rse.2024.114476_b33) 2024; 21
Ofori-Ampofo (10.1016/j.rse.2024.114476_b45) 2021; 13
Zhang (10.1016/j.rse.2024.114476_b64) 2023
References_xml – year: 2021
  ident: b40
  article-title: Mowing event detection in permanent grasslands: Systematic evaluation of input features from sentinel-1, sentinel-2, and landsat 8 time series
  publication-title: Remote Sens. Environ.
– year: 2023
  ident: b21
  article-title: Grassland mowing event detection using combined optical, SAR, and weather time series
  publication-title: Remote Sens. Environ.
– start-page: 58
  year: 2014
  end-page: 64
  ident: b8
  article-title: Le registre parcellaire graphique: des données géographiques pour décrire la couverture du sol agricole
  publication-title: Cahier Tech. l’INRA
– year: 2020
  ident: b39
  article-title: DeepCropNet: A deep spatial-temporal learning framework for county-level corn yield estimation
  publication-title: Environ. Res. Lett.
– year: 2016
  ident: b7
  article-title: Delayed mowing promotes planthoppers, leafhoppers and spiders in extensively managed meadows
  publication-title: Insect Conserv. Divers.
– volume: 9
  year: 2017
  ident: b24
  article-title: Operational high resolution land cover map production at the country scale using satellite image time series
  publication-title: Remote Sens.
– volume: 15
  year: 2023
  ident: b18
  article-title: A review of data augmentation methods of remote sensing image target recognition
  publication-title: Remote Sens.
– year: 2023
  ident: b49
  article-title: Performance analysis of the imbalanced data method on increasing the classification accuracy of the machine learning hybrid method
  publication-title: Jipi (J. Ilmiah Penelitian Dan Pembelajaran Inform.)
– year: 2019
  ident: b4
  article-title: Grasslands—more important for ecosystem services than you might think
  publication-title: Ecosphere
– year: 2020
  ident: b30
  article-title: Modeling the effects of grassland management intensity on biodiversity
  publication-title: Ecol. Evol.
– year: 2023
  ident: b61
  article-title: Grassland cut detection based on sentinel-2 time series to respond to the environmental and technical challenges of the Austrian fodder production for livestock feeding
  publication-title: Remote Sens. Environ.
– year: 2020
  ident: b16
  article-title: Towards national-scale characterization of grassland use intensity from integrated sentinel-2 and landsat time series
  publication-title: Remote Sens. Environ.
– year: 2018
  ident: b31
  article-title: Regional scale mapping of grassland mowing frequency with sentinel-2 time series
  publication-title: Remote Sens.
– year: 2022
  ident: b53
  article-title: Mapping grassland mowing events across Germany based on combined sentinel-2 and landsat 8 time series
  publication-title: Remote Sens. Environ.
– volume: 7
  start-page: 134677
  year: 2019
  end-page: 134690
  ident: b37
  article-title: Temporal attention networks for multitemporal multisensor crop classification
  publication-title: IEEE Access
– volume: 17
  start-page: 261
  year: 2020
  end-page: 272
  ident: b58
  article-title: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python
  publication-title: Nature Methods
– volume: 9
  start-page: 629
  year: 2017
  ident: b17
  article-title: One-dimensional convolutional neural network land-cover classification of multi-seasonal hyperspectral imagery in the San Francisco Bay Area, California
  publication-title: Remote Sens.
– volume: 10
  start-page: 3004
  year: 2021
  ident: b25
  article-title: Mapping chlorophyll-a concentrations in the Kaštela bay and Brač channel using ridge regression and sentinel-2 satellite images
  publication-title: Electronics
– volume: 9
  year: 2024
  ident: b65
  article-title: Classifying raw irregular time series (CRIT) for large area land cover mapping by adapting transformer model
  publication-title: Sci. Remote Sens.
– year: 2020
  ident: b54
  article-title: Spatial monitoring of grassland management using multi-temporal satellite imagery
  publication-title: Ecol. Indic.
– year: 2023
  ident: b2
  article-title: Land Cover Classification with Gaussian Processes using spatio-spectro-temporal features
  publication-title: IEEE Trans. Geosci. Remote Sens.
– year: 2001
  ident: b19
  article-title: The elements of statistical learning
  publication-title: Springer Series in Statistics
– volume: 13
  start-page: 4668
  year: 2021
  ident: b45
  article-title: Crop type mapping from optical and radar time series using attention-based deep learning
  publication-title: Remote Sens.
– year: 2023
  ident: b56
  article-title: Orfeo ToolBox 8.1.2
– volume: 17
  start-page: 4350
  year: 2024
  end-page: 4367
  ident: b10
  article-title: Self-supervised spatio-temporal representation learning of satellite image time series
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
– reference: Kingma, D., Ba, J., 2015. Adam: A Method for Stochastic Optimization. In: International Conference on Learning Representations. ICLR, San Diego, CA, USA.
– year: 2018
  ident: b12
  article-title: Combining satellite data and agricultural statistics to map grassland management intensity in europe
  publication-title: Environ. Res. Lett.
– year: 2019
  ident: b60
  article-title: Land use alters relationships of grassland productivity with plant and arthropod diversity in inner mongolian grassland
  publication-title: Ecol. Appl.
– year: 2020
  ident: b50
  article-title: Remote sensing of grassland production and management—A review
  publication-title: Remote Sens.
– year: 2010
  ident: b27
  article-title: Les types de climats en France, une construction spatiale
  publication-title: Cybergeo: European Journal of Geography
– volume: 221
  start-page: 430
  year: 2019
  end-page: 443
  ident: b69
  article-title: Deep learning based multi-temporal crop classification
  publication-title: Remote Sens. Environ.
– volume: 153
  start-page: 817
  year: 2012
  end-page: 823
  ident: b6
  article-title: Does breeding success lead meadow passerines to select late mown fields?
  publication-title: J. Ornithol.
– volume: 9
  start-page: 159
  year: 1989
  end-page: 163
  ident: b11
  article-title: Remote sensing of arid soil surface color with landsat thematic mapper
  publication-title: Adv. Space Res.
– volume: 11
  start-page: 523
  year: 2019
  ident: b47
  article-title: Temporal convolutional neural network for the classification of satellite image time series
  publication-title: Remote Sens.
– year: 2005
  ident: b55
  publication-title: Grasslands of the World
– year: 1996
  ident: b42
  article-title: The use of the normalized difference water index (NDWI) in the delineation of open water features
  publication-title: Int. J. Remote Sens.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: b46
  article-title: Scikit-learn: Machine learning in python
  publication-title: J. Mach. Learn. Res.
– year: 2016
  ident: b23
  article-title: iota2-a25386
– year: 2015
  ident: b35
  article-title: Deep learning
  publication-title: Nature
– year: 2001
  ident: b5
  article-title: Random forests
  publication-title: Mach. Learn.
– year: 2023
  ident: b26
  article-title: A review of machine learning techniques in imbalanced data and future trends
– year: 2022
  ident: b48
  article-title: Metrics That Make a Difference: How to Analyze Change and Error
– volume: 35
  start-page: 793
  year: 2020
  end-page: 814
  ident: b68
  article-title: Grassland ecosystem services: a systematic review of research advances and future directions
  publication-title: Landsc. Ecol.
– year: 2023
  ident: b3
  article-title: End-to-end Learning for Land Cover Classification using Irregular and Unaligned SITS by Combining Attention-Based Interpolation with Sparse Variational Gaussian Processes
  publication-title: IEEE J. Sel Top. Appl. Earth Observ. Remote Sens.
– year: 2008
  ident: b20
  article-title: ADASYN: Adaptive synthetic sampling approach for imbalanced learning
  publication-title: IEEE International Joint Conference on Neural Networks
– volume: 12
  start-page: 832
  year: 2020
  ident: b38
  article-title: Synergistic use of multi-temporal RADARSAT-2 and VEN
  publication-title: Remote Sens.
– year: 2000
  ident: b62
  article-title: Grassland Ecosystems
– start-page: 171
  year: 2020
  end-page: 181
  ident: b15
  article-title: Lightweight temporal self-attention for classifying satellite images time series
  publication-title: Advanced Analytics and Learning on Temporal Data
– volume: 173
  start-page: 24
  year: 2021
  end-page: 49
  ident: b28
  article-title: Review on convolutional neural networks (CNN) in vegetation remote sensing
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 221
  start-page: 173
  year: 2019
  end-page: 187
  ident: b67
  article-title: Joint deep learning for land cover and land use classification
  publication-title: Remote Sens. Environ.
– year: 2002
  ident: b9
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: J. Artificial Intelligence Res.
– year: 2013
  ident: b22
  article-title: Evaluation of the impacts of land use on water quality: A case study in the chaohu lake basin
  publication-title: Sci. World J.
– volume: vol. 10001
  year: 2016
  ident: b41
  article-title: MACCS-ATCOR joint algorithm (MAJA)
  publication-title: Remote Sensing of Clouds and the Atmosphere XXI
– volume: 13
  start-page: 471
  year: 2021
  ident: b57
  article-title: Prediction of land use and land cover changes in Mumbai city, India, using remote sensing data and a multilayer perceptron neural network-based Markov chain model
  publication-title: Sustainability
– volume: 351
  start-page: 309
  year: 1974
  ident: b52
  article-title: Monitoring vegetation systems in the great plains with ERTS
  publication-title: NASA Spec. Publ.
– volume: 140
  start-page: 133
  year: 2018
  end-page: 144
  ident: b66
  article-title: A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
– volume: 21
  start-page: 473
  year: 2024
  end-page: 511
  ident: b33
  article-title: Reviews and syntheses: Remotely sensed optical time series for monitoring vegetation productivity
  publication-title: Biogeosciences
– volume: 18
  start-page: 1
  year: 2017
  end-page: 5
  ident: b36
  article-title: Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning
  publication-title: J. Mach. Learn. Res.
– start-page: 243
  year: 2020
  end-page: 248
  ident: b44
  article-title: Machine learning with oversampling and undersampling techniques: Overview study and experimental results
  publication-title: 2020 11th International Conference on Information and Communication Systems
– year: 2022
  ident: b32
  article-title: Exploiting time series of sentinel-1 and sentinel-2 to detect grassland mowing events using deep learning With Reject Region
  publication-title: Sci. Rep.
– year: 2022
  ident: b59
  article-title: Mowing detection using sentinel-1 and sentinel-2 time series for large scale grassland monitoring
  publication-title: Remote Sens. Environ.
– year: 2019
  ident: b63
  article-title: Soil carbon sequestration accelerated by restoration of grassland biodiversity
  publication-title: Nature Commun.
– volume: 14
  start-page: 778
  year: 2017
  end-page: 782
  ident: b34
  article-title: Deep learning classification of land cover and crop types using remote sensing data
  publication-title: IEEE Geosci. Remote Sens. Lett.
– volume: 14
  year: 2022
  ident: b51
  article-title: Detection of grassland mowing events for Germany by combining sentinel-1 and sentinel-2 time series
  publication-title: Remote Sens.
– volume: 114
  start-page: 24
  year: 2016
  end-page: 31
  ident: b1
  article-title: Random forest in remote sensing: A review of applications and future directions
  publication-title: ISPRS J. Photogramm. Remote Sens.
– start-page: 1
  year: 2019
  end-page: 4
  ident: b14
  article-title: Challenges in Grassland Mowing Event Detection with Multimodal Sentinel Images
  publication-title: 2019 10th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp)
– volume: 28
  start-page: 315
  year: 2010
  end-page: 334
  ident: b43
  article-title: Grazing as a tool to maintain biodiversity of grassland - a review
  publication-title: Animal Sci. Pap. Rep.
– year: 2023
  ident: b64
  article-title: Dive into Deep Learning
– volume: 237
  year: 2020
  ident: b13
  article-title: Prediction of plant diversity in grasslands using sentinel-1 and -2 satellite image time series
  publication-title: Remote Sens. Environ.
– volume: 18
  start-page: 1
  issue: 17
  year: 2017
  ident: 10.1016/j.rse.2024.114476_b36
  article-title: Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning
  publication-title: J. Mach. Learn. Res.
– volume: 221
  start-page: 173
  year: 2019
  ident: 10.1016/j.rse.2024.114476_b67
  article-title: Joint deep learning for land cover and land use classification
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.11.014
– year: 2001
  ident: 10.1016/j.rse.2024.114476_b19
  article-title: The elements of statistical learning
  doi: 10.1007/978-0-387-21606-5
– year: 2023
  ident: 10.1016/j.rse.2024.114476_b49
  article-title: Performance analysis of the imbalanced data method on increasing the classification accuracy of the machine learning hybrid method
  publication-title: Jipi (J. Ilmiah Penelitian Dan Pembelajaran Inform.)
– volume: 153
  start-page: 817
  year: 2012
  ident: 10.1016/j.rse.2024.114476_b6
  article-title: Does breeding success lead meadow passerines to select late mown fields?
  publication-title: J. Ornithol.
  doi: 10.1007/s10336-011-0799-6
– year: 2019
  ident: 10.1016/j.rse.2024.114476_b63
  article-title: Soil carbon sequestration accelerated by restoration of grassland biodiversity
  publication-title: Nature Commun.
– year: 2020
  ident: 10.1016/j.rse.2024.114476_b16
  article-title: Towards national-scale characterization of grassland use intensity from integrated sentinel-2 and landsat time series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.03.017
– volume: 221
  start-page: 430
  year: 2019
  ident: 10.1016/j.rse.2024.114476_b69
  article-title: Deep learning based multi-temporal crop classification
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2018.11.032
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.rse.2024.114476_b46
  article-title: Scikit-learn: Machine learning in python
  publication-title: J. Mach. Learn. Res.
– year: 2021
  ident: 10.1016/j.rse.2024.114476_b40
  article-title: Mowing event detection in permanent grasslands: Systematic evaluation of input features from sentinel-1, sentinel-2, and landsat 8 time series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112751
– year: 2023
  ident: 10.1016/j.rse.2024.114476_b2
  article-title: Land Cover Classification with Gaussian Processes using spatio-spectro-temporal features
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2023.3234527
– year: 2005
  ident: 10.1016/j.rse.2024.114476_b55
– year: 2001
  ident: 10.1016/j.rse.2024.114476_b5
  article-title: Random forests
  publication-title: Mach. Learn.
– year: 2023
  ident: 10.1016/j.rse.2024.114476_b64
– year: 1996
  ident: 10.1016/j.rse.2024.114476_b42
  article-title: The use of the normalized difference water index (NDWI) in the delineation of open water features
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431169608948714
– year: 2008
  ident: 10.1016/j.rse.2024.114476_b20
  article-title: ADASYN: Adaptive synthetic sampling approach for imbalanced learning
– ident: 10.1016/j.rse.2024.114476_b29
– volume: 35
  start-page: 793
  year: 2020
  ident: 10.1016/j.rse.2024.114476_b68
  article-title: Grassland ecosystem services: a systematic review of research advances and future directions
  publication-title: Landsc. Ecol.
  doi: 10.1007/s10980-020-00980-3
– year: 2022
  ident: 10.1016/j.rse.2024.114476_b32
  article-title: Exploiting time series of sentinel-1 and sentinel-2 to detect grassland mowing events using deep learning With Reject Region
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-022-04932-6
– year: 2016
  ident: 10.1016/j.rse.2024.114476_b23
– volume: 14
  issue: 7
  year: 2022
  ident: 10.1016/j.rse.2024.114476_b51
  article-title: Detection of grassland mowing events for Germany by combining sentinel-1 and sentinel-2 time series
  publication-title: Remote Sens.
  doi: 10.3390/rs14071647
– volume: 9
  start-page: 629
  issue: 6
  year: 2017
  ident: 10.1016/j.rse.2024.114476_b17
  article-title: One-dimensional convolutional neural network land-cover classification of multi-seasonal hyperspectral imagery in the San Francisco Bay Area, California
  publication-title: Remote Sens.
  doi: 10.3390/rs9060629
– year: 2023
  ident: 10.1016/j.rse.2024.114476_b61
  article-title: Grassland cut detection based on sentinel-2 time series to respond to the environmental and technical challenges of the Austrian fodder production for livestock feeding
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2023.113577
– year: 2000
  ident: 10.1016/j.rse.2024.114476_b62
– volume: 13
  start-page: 471
  issue: 2
  year: 2021
  ident: 10.1016/j.rse.2024.114476_b57
  article-title: Prediction of land use and land cover changes in Mumbai city, India, using remote sensing data and a multilayer perceptron neural network-based Markov chain model
  publication-title: Sustainability
  doi: 10.3390/su13020471
– year: 2022
  ident: 10.1016/j.rse.2024.114476_b59
  article-title: Mowing detection using sentinel-1 and sentinel-2 time series for large scale grassland monitoring
  publication-title: Remote Sens. Environ.
– start-page: 1
  year: 2019
  ident: 10.1016/j.rse.2024.114476_b14
  article-title: Challenges in Grassland Mowing Event Detection with Multimodal Sentinel Images
– year: 2018
  ident: 10.1016/j.rse.2024.114476_b31
  article-title: Regional scale mapping of grassland mowing frequency with sentinel-2 time series
  publication-title: Remote Sens.
  doi: 10.3390/rs10081221
– volume: 21
  start-page: 473
  issue: 2
  year: 2024
  ident: 10.1016/j.rse.2024.114476_b33
  article-title: Reviews and syntheses: Remotely sensed optical time series for monitoring vegetation productivity
  publication-title: Biogeosciences
  doi: 10.5194/bg-21-473-2024
– year: 2022
  ident: 10.1016/j.rse.2024.114476_b53
  article-title: Mapping grassland mowing events across Germany based on combined sentinel-2 and landsat 8 time series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112795
– start-page: 58
  year: 2014
  ident: 10.1016/j.rse.2024.114476_b8
  article-title: Le registre parcellaire graphique: des données géographiques pour décrire la couverture du sol agricole
  publication-title: Cahier Tech. l’INRA
– volume: vol. 10001
  year: 2016
  ident: 10.1016/j.rse.2024.114476_b41
  article-title: MACCS-ATCOR joint algorithm (MAJA)
– volume: 351
  start-page: 309
  issue: 1
  year: 1974
  ident: 10.1016/j.rse.2024.114476_b52
  article-title: Monitoring vegetation systems in the great plains with ERTS
  publication-title: NASA Spec. Publ.
– volume: 114
  start-page: 24
  year: 2016
  ident: 10.1016/j.rse.2024.114476_b1
  article-title: Random forest in remote sensing: A review of applications and future directions
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2016.01.011
– volume: 7
  start-page: 134677
  year: 2019
  ident: 10.1016/j.rse.2024.114476_b37
  article-title: Temporal attention networks for multitemporal multisensor crop classification
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2939152
– year: 2023
  ident: 10.1016/j.rse.2024.114476_b21
  article-title: Grassland mowing event detection using combined optical, SAR, and weather time series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2023.113680
– year: 2013
  ident: 10.1016/j.rse.2024.114476_b22
  article-title: Evaluation of the impacts of land use on water quality: A case study in the chaohu lake basin
  publication-title: Sci. World J.
  doi: 10.1155/2013/329187
– volume: 17
  start-page: 4350
  year: 2024
  ident: 10.1016/j.rse.2024.114476_b10
  article-title: Self-supervised spatio-temporal representation learning of satellite image time series
  publication-title: IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.
  doi: 10.1109/JSTARS.2024.3358066
– volume: 11
  start-page: 523
  issue: 5
  year: 2019
  ident: 10.1016/j.rse.2024.114476_b47
  article-title: Temporal convolutional neural network for the classification of satellite image time series
  publication-title: Remote Sens.
  doi: 10.3390/rs11050523
– volume: 140
  start-page: 133
  year: 2018
  ident: 10.1016/j.rse.2024.114476_b66
  article-title: A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2017.07.014
– year: 2020
  ident: 10.1016/j.rse.2024.114476_b50
  article-title: Remote sensing of grassland production and management—A review
  publication-title: Remote Sens.
  doi: 10.3390/rs12121949
– volume: 237
  year: 2020
  ident: 10.1016/j.rse.2024.114476_b13
  article-title: Prediction of plant diversity in grasslands using sentinel-1 and -2 satellite image time series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2019.111536
– year: 2002
  ident: 10.1016/j.rse.2024.114476_b9
  article-title: SMOTE: Synthetic minority over-sampling technique
  publication-title: J. Artificial Intelligence Res.
  doi: 10.1613/jair.953
– year: 2020
  ident: 10.1016/j.rse.2024.114476_b30
  article-title: Modeling the effects of grassland management intensity on biodiversity
  publication-title: Ecol. Evol.
  doi: 10.1002/ece3.6957
– year: 2023
  ident: 10.1016/j.rse.2024.114476_b56
– year: 2018
  ident: 10.1016/j.rse.2024.114476_b12
  article-title: Combining satellite data and agricultural statistics to map grassland management intensity in europe
  publication-title: Environ. Res. Lett.
  doi: 10.1088/1748-9326/aacc7a
– volume: 9
  year: 2024
  ident: 10.1016/j.rse.2024.114476_b65
  article-title: Classifying raw irregular time series (CRIT) for large area land cover mapping by adapting transformer model
  publication-title: Sci. Remote Sens.
– volume: 10
  start-page: 3004
  issue: 23
  year: 2021
  ident: 10.1016/j.rse.2024.114476_b25
  article-title: Mapping chlorophyll-a concentrations in the Kaštela bay and Brač channel using ridge regression and sentinel-2 satellite images
  publication-title: Electronics
  doi: 10.3390/electronics10233004
– volume: 9
  start-page: 159
  issue: 1
  year: 1989
  ident: 10.1016/j.rse.2024.114476_b11
  article-title: Remote sensing of arid soil surface color with landsat thematic mapper
  publication-title: Adv. Space Res.
  doi: 10.1016/0273-1177(89)90481-X
– year: 2023
  ident: 10.1016/j.rse.2024.114476_b3
  article-title: End-to-end Learning for Land Cover Classification using Irregular and Unaligned SITS by Combining Attention-Based Interpolation with Sparse Variational Gaussian Processes
  publication-title: IEEE J. Sel Top. Appl. Earth Observ. Remote Sens.
– start-page: 171
  year: 2020
  ident: 10.1016/j.rse.2024.114476_b15
  article-title: Lightweight temporal self-attention for classifying satellite images time series
– volume: 14
  start-page: 778
  issue: 5
  year: 2017
  ident: 10.1016/j.rse.2024.114476_b34
  article-title: Deep learning classification of land cover and crop types using remote sensing data
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2017.2681128
– volume: 13
  start-page: 4668
  issue: 22
  year: 2021
  ident: 10.1016/j.rse.2024.114476_b45
  article-title: Crop type mapping from optical and radar time series using attention-based deep learning
  publication-title: Remote Sens.
  doi: 10.3390/rs13224668
– year: 2020
  ident: 10.1016/j.rse.2024.114476_b54
  article-title: Spatial monitoring of grassland management using multi-temporal satellite imagery
  publication-title: Ecol. Indic.
  doi: 10.1016/j.ecolind.2020.106201
– volume: 28
  start-page: 315
  year: 2010
  ident: 10.1016/j.rse.2024.114476_b43
  article-title: Grazing as a tool to maintain biodiversity of grassland - a review
  publication-title: Animal Sci. Pap. Rep.
– year: 2022
  ident: 10.1016/j.rse.2024.114476_b48
– year: 2023
  ident: 10.1016/j.rse.2024.114476_b26
– volume: 17
  start-page: 261
  year: 2020
  ident: 10.1016/j.rse.2024.114476_b58
  article-title: SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python
  publication-title: Nature Methods
  doi: 10.1038/s41592-019-0686-2
– start-page: 243
  year: 2020
  ident: 10.1016/j.rse.2024.114476_b44
  article-title: Machine learning with oversampling and undersampling techniques: Overview study and experimental results
– year: 2010
  ident: 10.1016/j.rse.2024.114476_b27
  article-title: Les types de climats en France, une construction spatiale
  publication-title: Cybergeo: European Journal of Geography
  doi: 10.4000/cybergeo.23155
– year: 2019
  ident: 10.1016/j.rse.2024.114476_b4
  article-title: Grasslands—more important for ecosystem services than you might think
  publication-title: Ecosphere
  doi: 10.1002/ecs2.2582
– volume: 9
  issue: 1
  year: 2017
  ident: 10.1016/j.rse.2024.114476_b24
  article-title: Operational high resolution land cover map production at the country scale using satellite image time series
  publication-title: Remote Sens.
  doi: 10.3390/rs9010095
– volume: 15
  issue: 3
  year: 2023
  ident: 10.1016/j.rse.2024.114476_b18
  article-title: A review of data augmentation methods of remote sensing image target recognition
  publication-title: Remote Sens.
  doi: 10.3390/rs15030827
– volume: 173
  start-page: 24
  year: 2021
  ident: 10.1016/j.rse.2024.114476_b28
  article-title: Review on convolutional neural networks (CNN) in vegetation remote sensing
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.12.010
– year: 2015
  ident: 10.1016/j.rse.2024.114476_b35
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– year: 2019
  ident: 10.1016/j.rse.2024.114476_b60
  article-title: Land use alters relationships of grassland productivity with plant and arthropod diversity in inner mongolian grassland
  publication-title: Ecol. Appl.
– year: 2016
  ident: 10.1016/j.rse.2024.114476_b7
  article-title: Delayed mowing promotes planthoppers, leafhoppers and spiders in extensively managed meadows
  publication-title: Insect Conserv. Divers.
  doi: 10.1111/icad.12186
– volume: 12
  start-page: 832
  issue: 5
  year: 2020
  ident: 10.1016/j.rse.2024.114476_b38
  article-title: Synergistic use of multi-temporal RADARSAT-2 and VENμS data for crop classification based on 1D convolutional neural network
  publication-title: Remote Sens.
  doi: 10.3390/rs12050832
– year: 2020
  ident: 10.1016/j.rse.2024.114476_b39
  article-title: DeepCropNet: A deep spatial-temporal learning framework for county-level corn yield estimation
  publication-title: Environ. Res. Lett.
SSID ssj0015871
Score 2.487021
Snippet Grassland dynamics are modulated by management intensity and impact overall ecosystem functioning. In mowed grasslands, the first mowing date is a key...
Grasslands cover approximately 40% of the Earth's land area, encompassing nearly 70% of the global agricultural land area, and are distributed on all...
SourceID hal
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114476
SubjectTerms agroecology
biodiversity
data collection
Deep-learning models
ecosystems
environment
France
Grassland management intensification
grasslands
Machine Learning
Mowing dates mapping
neural networks
prediction
Regression
Satellite image time series
Statistics
time series analysis
Title Nationwide operational mapping of grassland first mowing dates combining machine learning and Sentinel-2 time series
URI https://dx.doi.org/10.1016/j.rse.2024.114476
https://www.proquest.com/docview/3154158720
https://hal.inrae.fr/hal-04775044
Volume 315
WOSCitedRecordID wos001348420400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0704
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0015871
  issn: 0034-4257
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKBmIvCAoT5UsG8UQVlCZOnTxW0K2Dqpq0MvXNch2HdurSql_bn8efxp3tJGXANB54SSO7dpver_ad7-53hLzXOmNa-cqTSmUeiwLuJWkGhmskQ4Y7CDM1ls77fDCIR6PktFb7UeTCbGc8z-Pr62TxX0UNbSBsTJ39B3GXk0ID3IPQ4Qpih-udBG-Zrq-mqW7OF3pZHPZdysXCRTh_X4LGjBGNzWwKyl_zcn6FPWj7rzDGfGyKRsAIjLPURWEJm8t4htFFuZ55gSlL38RHcmGIBc23BuljR75yn7eTTFf6d6Zbm0lmkiSqo-6NmkjLetCzLvyZeYkr5_8Qi3dPbazA-TRXO5OavEbrW9ElC4M70QgMb6LN6bTHbE4n2F22Q-bh4mI3LbtSxxyzr2zt4mIpD-00v20L9oTi4uNyhcyoAUOGZMb_QMHd65yJ089Hon8y-Ppr707cYq_Th-tEzjyfcaTHZ1uwv_cDHiWwru53TrqjL6UnK4q5rdroHqHwrJsYwxvf52-60b0JBune0BWMAjR8TB45y4V2LOKekJrO6-SwW8kWOt1OsaqTh8fakaHXyYNjUz4a7g7QtrHU4E_JukIq3UEqdUil84yWSKUGqdQilRqk0hKp1CGVFkilOKJCKkWkUovUZ-TbUXf4qee5IiCeCtts7amklaQyUGPmp6mUoE2CQs0jJSMFbS3NQhaPWQZmfluDrZxGkUy4DMYsaWdRlrDwkOzl81w_J5SD6gwWcgu0YBCc9hOe-pEP-ljLb6sg0Q3iFz-_UI4hHwu1zEQRCnkhQGICJSasxBrkQzlkYelhbnszK2QqnH5r9VYBOL1t2DuQfzk98sEDAgW2VfhrkLcFPARsEOj1k7meb1YC_hMMURj4L-4y0UtyUP0nX5G99XKjX5P7agvoWL5x6P4JGEvc4g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nationwide+operational+mapping+of+grassland+first+mowing+dates+combining+machine+learning+and+Sentinel-2+time+series&rft.jtitle=Remote+sensing+of+environment&rft.au=Rivas%2C+Henry&rft.au=Touchais%2C+H%C3%A9l%C3%A8ne&rft.au=Thierion%2C+Vincent&rft.au=Millet%2C+Jerome&rft.date=2024-12-15&rft.pub=Elsevier&rft.issn=0034-4257&rft.eissn=1879-0704&rft.volume=315&rft_id=info:doi/10.1016%2Fj.rse.2024.114476&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-04775044v1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0034-4257&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0034-4257&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0034-4257&client=summon