Respiratory Rate Estimation Combining Autocorrelation Function-Based Power Spectral Feature Extraction with Gradient Boosting Algorithm

Various machine learning models have been used in the biomedical engineering field, but only a small number of studies have been conducted on respiratory rate estimation. Unlike ensemble models using simple averages of basic learners such as bagging, random forest, and boosting, the gradient boostin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied sciences Jg. 12; H. 16; S. 8355
Hauptverfasser: Lee, Soojeong, Moon, Hyeonjoon, Son, Chang-Hwan, Lee, Gangseong
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Basel MDPI AG 01.08.2022
Schlagworte:
ISSN:2076-3417, 2076-3417
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Various machine learning models have been used in the biomedical engineering field, but only a small number of studies have been conducted on respiratory rate estimation. Unlike ensemble models using simple averages of basic learners such as bagging, random forest, and boosting, the gradient boosting algorithm is based on effective iteration strategies. This gradient boosting algorithm is just beginning to be used for respiratory rate estimation. Based on this, we propose a novel methodology combining an autocorrelation function-based power spectral feature extraction process with the gradient boosting algorithm to estimate respiratory rate since we acquire the respiration frequency using the autocorrelation function-based power spectral feature extraction that finds the time domain’s periodicity. The proposed methodology solves overfitting for the training datasets because we obtain the data dimension by applying autocorrelation function-based power spectral feature extraction and then split the long-resampled wave signal to increase the number of input data samples. The proposed model provides accurate respiratory rate estimates and offers a solution for reliably managing the estimation uncertainty. In addition, the proposed method presents a more precise estimate than conventional respiratory rate measurement techniques.
AbstractList Various machine learning models have been used in the biomedical engineering field, but only a small number of studies have been conducted on respiratory rate estimation. Unlike ensemble models using simple averages of basic learners such as bagging, random forest, and boosting, the gradient boosting algorithm is based on effective iteration strategies. This gradient boosting algorithm is just beginning to be used for respiratory rate estimation. Based on this, we propose a novel methodology combining an autocorrelation function-based power spectral feature extraction process with the gradient boosting algorithm to estimate respiratory rate since we acquire the respiration frequency using the autocorrelation function-based power spectral feature extraction that finds the time domain’s periodicity. The proposed methodology solves overfitting for the training datasets because we obtain the data dimension by applying autocorrelation function-based power spectral feature extraction and then split the long-resampled wave signal to increase the number of input data samples. The proposed model provides accurate respiratory rate estimates and offers a solution for reliably managing the estimation uncertainty. In addition, the proposed method presents a more precise estimate than conventional respiratory rate measurement techniques.
Author Lee, Soojeong
Son, Chang-Hwan
Moon, Hyeonjoon
Lee, Gangseong
Author_xml – sequence: 1
  givenname: Soojeong
  surname: Lee
  fullname: Lee, Soojeong
– sequence: 2
  givenname: Hyeonjoon
  orcidid: 0000-0001-7668-3838
  surname: Moon
  fullname: Moon, Hyeonjoon
– sequence: 3
  givenname: Chang-Hwan
  surname: Son
  fullname: Son, Chang-Hwan
– sequence: 4
  givenname: Gangseong
  orcidid: 0000-0001-7991-3862
  surname: Lee
  fullname: Lee, Gangseong
BookMark eNptUdtO3DAQtSqQyu2pP2CpjyitHceJ8wgrFpCQqGj7bPky3nqVjYPtCPiC_jbe3SIhVD-MZzxnzoznHKODMYyA0BdKvjHWk-9qmmhNW8E4_4SOatK1FWtod_DO_4zOUlqTcnrKBCVH6O8DpMlHlUN8wQ8qA75K2W9U9mHEi7DRfvTjCl_MOZgQIwz7zHIezdapLlUCi3-EJ4j45wQmRzXgJag8x0L1XMIdDj_5_AdfR2U9jBlfhlC6bHmHVYgltTlFh04NCc7-3Sfo9_Lq1-Kmuru_vl1c3FWGtU2uDAdNqNOudkKA1Uq1bSe4sxa0oVo1mgOjfa8tIY73beM6SzkA7w2xNevYCbrd89qg1nKK5avxRQbl5e4hxJVUMXszgBSCmxq6phEKGqep6HoolvdW27pRvHB93XNNMTzOkLJchzmOZXxZd6SldVGDFRTdo0wMKUVw0vi822JZjh8kJXIrn3wnX6k5_1DzNun_0K9shKDb
CitedBy_id crossref_primary_10_1109_ACCESS_2023_3269584
crossref_primary_10_1016_j_compbiomed_2025_110406
crossref_primary_10_3390_diagnostics13050913
crossref_primary_10_1109_JSEN_2024_3474050
Cites_doi 10.1109/TSP.2017.2664048
10.1023/A:1010933404324
10.1007/s10877-014-9621-3
10.1016/j.neucom.2006.03.016
10.1162/089976600300015015
10.1109/JBHI.2022.3144990
10.12968/bjon.2013.22.10.570
10.3390/s20072108
10.1007/BF02600071
10.1109/RBME.2017.2763681
10.1007/s10916-020-01551-4
10.3390/e18080285
10.1109/TBME.2013.2246160
10.1161/CIRCULATIONAHA.114.009024
10.1049/htl.2014.0077
10.1109/TBME.2016.2613124
10.1161/01.CIR.91.10.2504
10.1016/j.annemergmed.2004.06.016
10.1007/s10877-006-9059-3
10.1109/TBME.2019.2923448
10.1109/JSEN.2018.2828599
10.1007/BF02348427
10.1016/j.compbiomed.2022.105338
10.1016/j.enbuild.2017.11.039
10.1017/CBO9780511611483
10.1007/s10877-011-9332-y
10.1161/01.CIR.101.23.e215
10.1007/3-540-44668-0_93
10.1109/BIBM47256.2019.8983313
10.1109/ACCESS.2020.3007524
10.1007/BF00116037
10.1088/0967-3334/28/3/R01
10.1016/j.csda.2013.09.006
10.1007/BF00058655
10.1088/0967-3334/37/4/610
10.1214/aos/1013203451
ContentType Journal Article
Copyright 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app12168355
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials - QC
ProQuest Central
ProQuest One Community College
ProQuest Central Korea
Proquest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_885c2e7448ae4fb1879eb1859dbd24a5
10_3390_app12168355
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c364t-c5eb01fbf2f88edbaa66785fddebc1ba4b5e3199bd00f5964f7d15ee59c0d2373
IEDL.DBID PIMPY
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000846224000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Fri Oct 03 12:40:32 EDT 2025
Mon Nov 24 15:11:27 EST 2025
Sat Nov 29 07:13:54 EST 2025
Tue Nov 18 22:13:42 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-c5eb01fbf2f88edbaa66785fddebc1ba4b5e3199bd00f5964f7d15ee59c0d2373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-7991-3862
0000-0001-7668-3838
OpenAccessLink https://www.proquest.com/publiccontent/docview/2706122163?pq-origsite=%requestingapplication%
PQID 2706122163
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_885c2e7448ae4fb1879eb1859dbd24a5
proquest_journals_2706122163
crossref_citationtrail_10_3390_app12168355
crossref_primary_10_3390_app12168355
PublicationCentury 2000
PublicationDate 2022-08-01
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: 2022-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2022
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Lovett (ref_2) 2005; 45
Chon (ref_11) 2013; 56
Addison (ref_14) 2012; 26
Breiman (ref_33) 1996; 24
Prathosh (ref_16) 2017; 65
Jarchi (ref_7) 2018; 18
Villarroel (ref_10) 2014; 1
Lee (ref_22) 2020; 8
Goldberger (ref_39) 2000; 101
ref_36
ref_32
Breiman (ref_34) 2001; 5
Johansson (ref_17) 2003; 41
Khreis (ref_15) 2020; 67
Lee (ref_29) 2020; 44
ref_18
Friedman (ref_23) 2001; 29
Cohn (ref_38) 1995; 91
Touzani (ref_31) 2018; 158
Charlton (ref_37) 2016; 37
Karlen (ref_40) 2013; 60
Kumar (ref_21) 2022; 144
Philip (ref_4) 2007; 22
Charlton (ref_5) 2018; 11
Maharaj (ref_28) 2014; 70
Fieselmann (ref_1) 1993; 8
Walsh (ref_8) 2014; 130
ref_25
ref_24
Chan (ref_6) 2022; 26
ref_43
ref_20
ref_42
ref_41
Philip (ref_3) 2015; 29
Pimentel (ref_13) 2017; 64
Schapire (ref_35) 1990; 5
ref_27
Rakotomamonjy (ref_30) 2007; 70
Allen (ref_9) 2007; 28
Clifton (ref_12) 2007; 21
Gers (ref_19) 2000; 12
ref_26
References_xml – volume: 65
  start-page: 2902
  year: 2017
  ident: ref_16
  article-title: Estimation of respiratory pattern from video using selective ensemble aggregation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2017.2664048
– volume: 5
  start-page: 5
  year: 2001
  ident: ref_34
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 29
  start-page: 455
  year: 2015
  ident: ref_3
  article-title: The accuracy of respiratory rate assessment by doctors in a London teaching hospital: A cross-sectional study
  publication-title: J. Clin. Monit. Comput.
  doi: 10.1007/s10877-014-9621-3
– volume: 70
  start-page: 1489
  year: 2007
  ident: ref_30
  article-title: Analysis of SVM regression bound for variable ranking
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2006.03.016
– volume: 12
  start-page: 2451
  year: 2000
  ident: ref_19
  article-title: Learning to forget: Continual prediction with LSTM
  publication-title: Neural Comput.
  doi: 10.1162/089976600300015015
– volume: 26
  start-page: 2481
  year: 2022
  ident: ref_6
  article-title: Respiratory rate estimation using u-net-based cascaded framework from electrocardiogram and seismocardiogram signals
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2022.3144990
– ident: ref_24
– volume: 22
  start-page: 570
  year: 2007
  ident: ref_4
  article-title: Staff perceptions of respiratory rate measurement in a general hospital
  publication-title: Brit. J. Nurs.
  doi: 10.12968/bjon.2013.22.10.570
– ident: ref_32
  doi: 10.3390/s20072108
– volume: 8
  start-page: 354
  year: 1993
  ident: ref_1
  article-title: Respiratory rate predicts cardiopulmonary arrest for internal medicine inpatients
  publication-title: J. Gen. Intern. Med.
  doi: 10.1007/BF02600071
– volume: 11
  start-page: 2
  year: 2018
  ident: ref_5
  article-title: Breathing Rate Estimation From the Electrocardiogram and Photoplethysmogram: A Review
  publication-title: IEEE Rev. Biomed. Eng.
  doi: 10.1109/RBME.2017.2763681
– volume: 44
  start-page: 1
  year: 2020
  ident: ref_29
  article-title: Ensemble methodology for confidence interval in oscillometric blood pressure measurements
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-020-01551-4
– ident: ref_26
  doi: 10.3390/e18080285
– volume: 60
  start-page: 1946
  year: 2013
  ident: ref_40
  article-title: Multiparameter respiratory rate estimation from the photoplethysmogram
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2013.2246160
– volume: 130
  start-page: 573
  year: 2014
  ident: ref_8
  article-title: Novel wireless devices for cardiac monitoring
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.114.009024
– volume: 1
  start-page: 87
  year: 2014
  ident: ref_10
  article-title: Continuous non-contact vital sign monitoring in neonatal intensive care unit
  publication-title: Healthc. Technol. Lett.
  doi: 10.1049/htl.2014.0077
– volume: 64
  start-page: 1914
  year: 2017
  ident: ref_13
  article-title: Toward a Robust Estimation of Respiratory Rate From Pulse Oximeters
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2613124
– volume: 91
  start-page: 2504
  year: 1995
  ident: ref_38
  article-title: Structural basis for heart failure: Ventricular remodeling and its pharmacological inhibition
  publication-title: Circulation
  doi: 10.1161/01.CIR.91.10.2504
– volume: 45
  start-page: 68
  year: 2005
  ident: ref_2
  article-title: The vexatious vital: Neither clinical measurements by nurses nor an electronic monitor provides accurate measurements of respiratory rate in triage
  publication-title: Ann. Emerg. Med.
  doi: 10.1016/j.annemergmed.2004.06.016
– volume: 21
  start-page: 55
  year: 2007
  ident: ref_12
  article-title: Measurement of respiratory rate from the photoplethysmogram in chest clinic patients
  publication-title: J. Clin. Monit. Comput.
  doi: 10.1007/s10877-006-9059-3
– volume: 67
  start-page: 893
  year: 2020
  ident: ref_15
  article-title: Breathing rate estimation using Kalman smoother with electrocardiogram and photoplethysmogram
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2019.2923448
– ident: ref_42
– volume: 18
  start-page: 4981
  year: 2018
  ident: ref_7
  article-title: Accelerometrybased estimation of respiratory rate for post-intensive care patient monitoring
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2018.2828599
– volume: 41
  start-page: 242
  year: 2003
  ident: ref_17
  article-title: Neural network for photoplethysmographic respiratory ratemonitoring
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/BF02348427
– volume: 144
  start-page: 1
  year: 2022
  ident: ref_21
  article-title: Deep learning for predicting respiratory rate from biosignals
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.105338
– volume: 158
  start-page: 1533
  year: 2018
  ident: ref_31
  article-title: Gradient boosting machine for modeling the energy consumption of commercial buildings
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2017.11.039
– ident: ref_25
– ident: ref_43
  doi: 10.1017/CBO9780511611483
– ident: ref_27
– volume: 26
  start-page: 45
  year: 2012
  ident: ref_14
  article-title: Developing an algorithm for pulse oximetry derived respiratory rate (RRoxi): A healthy volunteer study
  publication-title: J. Clin. Monit. Comput.
  doi: 10.1007/s10877-011-9332-y
– volume: 101
  start-page: e215
  year: 2000
  ident: ref_39
  article-title: PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– ident: ref_20
  doi: 10.1007/3-540-44668-0_93
– ident: ref_41
– ident: ref_18
  doi: 10.1109/BIBM47256.2019.8983313
– volume: 56
  start-page: 1946
  year: 2013
  ident: ref_11
  article-title: Estimation of Respiratory Rate From Photoplethysmogram Data Using Time–Frequency Spectral Estimation
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 8
  start-page: 125648
  year: 2020
  ident: ref_22
  article-title: Multi-phases and various feature extraction and selection methodology for ensemble gradient boosting in estimating respiratory rate
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3007524
– ident: ref_36
– volume: 5
  start-page: 197
  year: 1990
  ident: ref_35
  article-title: The strength of weak learnability
  publication-title: Mach. Learn.
  doi: 10.1007/BF00116037
– volume: 28
  start-page: R1
  year: 2007
  ident: ref_9
  article-title: Photoplethysmography and its application in clinical physiological measurement
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/28/3/R01
– volume: 70
  start-page: 67
  year: 2014
  ident: ref_28
  article-title: Discriminant analysis of multivariate time series: Application to diagnosis based on ECG signals
  publication-title: Comput. Stat. Data Anal.
  doi: 10.1016/j.csda.2013.09.006
– volume: 24
  start-page: 123
  year: 1996
  ident: ref_33
  article-title: Bagging predictors
  publication-title: Mach. Learn.
  doi: 10.1007/BF00058655
– volume: 37
  start-page: 610
  year: 2016
  ident: ref_37
  article-title: et al. An assessment of algorithms to estimate respiratory rate from the electrocardiogram and photoplethysmogram
  publication-title: Physiol. Meas.
  doi: 10.1088/0967-3334/37/4/610
– volume: 29
  start-page: 1189
  year: 2001
  ident: ref_23
  article-title: Greedy function approximation: A gradient boosting machine
  publication-title: Ann. Statist.
  doi: 10.1214/aos/1013203451
SSID ssj0000913810
Score 2.266836
Snippet Various machine learning models have been used in the biomedical engineering field, but only a small number of studies have been conducted on respiratory rate...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 8355
SubjectTerms Algorithms
autocorrelation function-based power spectral feature extraction
Datasets
Electrocardiography
ensemble learning
gradient boosting technique
Heart failure
Intensive care
Machine learning
Methods
Patients
photolethysmogram
Pneumonia
Pulse oximetry
respiration rate prediction
Sensors
Wavelet transforms
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NSxwxFA9FetCD-ImrVnLYQxUGJ5nJJDm6xW0PZRGp4G3Ipwi6I7Ozpf9B_-2-lxl1i0IvvQ0zIRnyvpP3fo-QsQ6V5UXkGRdGZSVjNgO_OWbOyMrrPDJpE4jrdzmbqdtbfbXS6gtzwnp44H7jzpUSjgcJUYQJZbTYHBvUixLaW89Lk9BLc6lXgqmkgzVD6Kq-IK-AuB7vgxlnFTgc4i8TlJD63yjiZF2mW2RzcAvpRf872-RDmO-QjRWwwB2yPYjhgn4esKJPd8nv69ercnoNfiO9BJntyxEpyLpN_R_oxbJrHPbh6DPf6BSsGT5kEzBinl5hqzSKrejx3IOiW7hsYapfXdvXPVA8rqVf25Qf1tFJ0yy6NO_DXdPCp8c9cjO9_PHlWzb0VshcUZVd5kSwOYs28qhU8NaYCsyWiKDtrGPWlFYEkE5tfZ5HoasySs9ECEK73PNCFvtkbd7MwwGheQQZNqqoChnLyiotOLodZYxGKuPFiJw9b3ftBuBx7H_xUEMAgrSpV2gzIuOXwU893sb7wyZIt5chCJKdXgDr1APr1P9inRE5fqZ6PUjuouYSnT5Ypjj8H2sckXWOBRMpZfCYrHXtMnwiH93P7n7RniSm_QPPQfTg
  priority: 102
  providerName: Directory of Open Access Journals
Title Respiratory Rate Estimation Combining Autocorrelation Function-Based Power Spectral Feature Extraction with Gradient Boosting Algorithm
URI https://www.proquest.com/docview/2706122163
https://doaj.org/article/885c2e7448ae4fb1879eb1859dbd24a5
Volume 12
WOSCitedRecordID wos000846224000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVglwMcKC0gCmXlQw-AFDVx4sQ5oW61C0iwilYglVPkzxapbEqSRfyD_u3OON5tEYgTtyixrESevBmPZ94j5LC0uWKpYxHjUkRZkqgI4mYXaVnkpoxdUihP4vqxWCzE6WlZhfboLpRVbjDRA_XA9ox12wDCR6bRmDE_YgW6ZgbBxNvLHxFqSOFZaxDUuEvGSLwVj8i4-vCp-rrNuSAHpkjioU0vhd0-nhInMAuEIfw3x-T5-_-AZ-9z5jv_920fkYch9qTHg7Hskjt2tUce3GIk3CO74V_v6KtASP36Mbla3pzH0yUEp3QGwDD0PFIAFOVFJujxum80in0M5XV0Di4TL6IpeEpDK9Rjo6h3j8kVirHnuoWpfvXt0FxBMSdM37W-CK2n06bpej_vxRl8TH_-_Qn5Mp99PnkfBQGHSKd51keaWxUnTjnmhLBGSZmDb-QOIFXpRMlMcQsQUCoTx46XeeYKk3Brealjw9IifUpGq2ZlnxEaOwAKKdI8LVyWK1FyhrFN5pwshDR8n7zZrF6tA7s5imxc1LDLwaWuby31PjncDr4cSD3-PmyKZrAdgkzc_kbTntXhx66F4JrZAna50mZOoXg7uD_BS6MMyyRMcrCxkDrAQ1ffGMTzfz9-Qe4z7LfwFYcHZNS3a_uS3NM_-29dOyHj6WxRLSc-kTAJ1n4N3C8SGA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9NAEB2VFIlyAFpAFArsoUiAZGGvvfb6gFADDY2aRlEpUnsy3q8WqcTFdvj4BfwbfiMztpMWgbj1wM2yVyNr_fxmdndmHsBmamPFQ8c9LnLpRUGgPIybnafzJDap74JENU1cR8l4LA8P08kS_JzXwlBa5ZwTG6I2haY98hc8IWfMMXx4dfbZI9UoOl2dS2i0sNi137_ikq16OXyD3_cJ54Ptg9c7Xqcq4OkwjmpPC6v8wCnHnZTWqDyPkbCFw_9c6UDlkRIWcZkq4_tOpHHkEhMIa0WqfcPDJES7V2A5QrD7PVieDPcmR4tdHeqyKQO_LQQMw9Snc-gA3xoDHfGb62sUAv5wAI1XG9z83-bjFtzo4me21QJ-FZbsdA2uX-iquAarHV9V7GnXVPvZbfixf55TwPYxwGbbSG5t3SZDUlSNUAbbmtWFJsGSNkWQDdDt04XXR29v2IQ05dg7qk5Fs4zi51mJpr7VZVsgwmhfm70tm0S6mvWLoqobu6fHOHn1yac78P5Spucu9KbF1N4D5jsku1yGcZi4KFYyFZzis8i5PJG5EevwfI6PTHcd2kko5DTDlRqBKbsApnXYXAw-axuT_H1Yn4C2GELdxJsbRXmcdeSUSSk0twmu1HMbOUUC9OjCpUiNMjzK0cjGHINZR3FVdg7A-_9-_Biu7RzsjbLRcLz7AFY41Y80GZQb0KvLmX0IV_WX-mNVPur-JgYfLhuwvwAPoGS5
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLUJwAFpAFAr4UCRAipo4cewcEOrSXaharVYLSL0FP9tKZVOSLI9fwH_i1zHOY1sE4tYDtyixRorz-ZuxMzMfwFZmU0VjRwPKpAiSKFIBxs0u0JKnJgtdxFXTxPWATybi8DCbrsDPvhbGp1X2nNgQtSm0PyPfptw7Y4rhw7br0iKmu-NXZ58DryDl_7T2chotRPbt96-4fate7u3it35K6Xj0_vXboFMYCHScJnWgmVVh5JSjTghrlJQpkjdzuOaVjpRMFLOI0UyZMHQsSxPHTcSsZZkODY15jHavwCqPcdMzgNXhaDKdLU94fMdNEYVtUWAcZ6H_Jx3hG2DQw35zg41awB_OoPFw41v_89zchptdXE122oWwBit2vg43LnRbXIe1jscq8qxrtv38DvyYnecakBkG3mSEpNfWcxIkS9UIaJCdRV1oL2TSpg6SMYYD_iIYYhRgyNRrzZF3vmoVzRIfVy9KNPWtLtvCEeLPu8mbskmwq8mwKKq6sXt6hJNXH3-6Cx8uZXruwWBezO19IKFDEpQiTmPuklSJjFEftyXOSS6kYRvwosdKrrvO7V5A5DTHHZwHVn4BWBuwtRx81jYs-fuwoQfdcojvMt7cKMqjvCOtXAimqeW4g5c2ccoL06NrFywzytBEopHNHo95R31Vfg7GB_9-_ASuIUrzg73J_kO4Tn1ZSZNYuQmDulzYR3BVf6lPqvJxt7AIfLxsvP4C-c9tUw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Respiratory+Rate+Estimation+Combining+Autocorrelation+Function-Based+Power+Spectral+Feature+Extraction+with+Gradient+Boosting+Algorithm&rft.jtitle=Applied+sciences&rft.au=Lee%2C+Soojeong&rft.au=Moon%2C+Hyeonjoon&rft.au=Chang-Hwan%2C+Son&rft.au=Lee%2C+Gangseong&rft.date=2022-08-01&rft.pub=MDPI+AG&rft.eissn=2076-3417&rft.volume=12&rft.issue=16&rft.spage=8355&rft_id=info:doi/10.3390%2Fapp12168355&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon