A Mixed-Integer Convex Model for the Optimal Placement and Sizing of Distributed Generators in Power Distribution Networks

The optimal placement and sizing of distributed generators is a classical problem in power distribution networks that is usually solved using heuristic algorithms due to its high complexity. This paper proposes a different approach based on a mixed-integer second-order cone programming (MI-SOCP) mod...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences Vol. 11; no. 2; p. 627
Main Authors: Gil-González, Walter, Garces, Alejandro, Montoya, Oscar Danilo, Hernández, Jesus C.
Format: Journal Article
Language:English
Published: Basel MDPI AG 01.01.2021
Subjects:
ISSN:2076-3417, 2076-3417
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The optimal placement and sizing of distributed generators is a classical problem in power distribution networks that is usually solved using heuristic algorithms due to its high complexity. This paper proposes a different approach based on a mixed-integer second-order cone programming (MI-SOCP) model that ensures the global optimum of the relaxed optimization model. Second-order cone programming (SOCP) has demonstrated to be an efficient alternative to cope with the non-convexity of the power flow equations in power distribution networks. Of relatively new interest to the power systems community is the extension to MI-SOCP models. The proposed model is an approximation. However, numerical validations in the IEEE 33-bus and IEEE 69-bus test systems for unity and variable power factor confirm that the proposed MI-SOCP finds the best solutions reported in the literature. Being an exact technique, the proposed model allows minimum processing times and zero standard deviation, i.e., the same optimum is guaranteed at each time that the MI-SOCP model is solved (a significant advantage in comparison to metaheuristics). Additionally, load and photovoltaic generation curves for the IEEE 69-node test system are included to demonstrate the applicability of the proposed MI-SOCP to solve the problem of the optimal location and sizing of renewable generators using the multi-period optimal power flow formulation. Therefore, the proposed MI-SOCP also guarantees the global optimum finding, in contrast to local solutions achieved with mixed-integer nonlinear programming solvers available in the GAMS optimization software. All the simulations were carried out via MATLAB software with the CVX package and Gurobi solver.
AbstractList The optimal placement and sizing of distributed generators is a classical problem in power distribution networks that is usually solved using heuristic algorithms due to its high complexity. This paper proposes a different approach based on a mixed-integer second-order cone programming (MI-SOCP) model that ensures the global optimum of the relaxed optimization model. Second-order cone programming (SOCP) has demonstrated to be an efficient alternative to cope with the non-convexity of the power flow equations in power distribution networks. Of relatively new interest to the power systems community is the extension to MI-SOCP models. The proposed model is an approximation. However, numerical validations in the IEEE 33-bus and IEEE 69-bus test systems for unity and variable power factor confirm that the proposed MI-SOCP finds the best solutions reported in the literature. Being an exact technique, the proposed model allows minimum processing times and zero standard deviation, i.e., the same optimum is guaranteed at each time that the MI-SOCP model is solved (a significant advantage in comparison to metaheuristics). Additionally, load and photovoltaic generation curves for the IEEE 69-node test system are included to demonstrate the applicability of the proposed MI-SOCP to solve the problem of the optimal location and sizing of renewable generators using the multi-period optimal power flow formulation. Therefore, the proposed MI-SOCP also guarantees the global optimum finding, in contrast to local solutions achieved with mixed-integer nonlinear programming solvers available in the GAMS optimization software. All the simulations were carried out via MATLAB software with the CVX package and Gurobi solver.
Author Montoya, Oscar Danilo
Gil-González, Walter
Hernández, Jesus C.
Garces, Alejandro
Author_xml – sequence: 1
  givenname: Walter
  orcidid: 0000-0001-7609-1197
  surname: Gil-González
  fullname: Gil-González, Walter
– sequence: 2
  givenname: Alejandro
  orcidid: 0000-0001-6496-0594
  surname: Garces
  fullname: Garces, Alejandro
– sequence: 3
  givenname: Oscar Danilo
  orcidid: 0000-0001-6051-4925
  surname: Montoya
  fullname: Montoya, Oscar Danilo
– sequence: 4
  givenname: Jesus C.
  orcidid: 0000-0001-9117-1689
  surname: Hernández
  fullname: Hernández, Jesus C.
BookMark eNptUUtPHDEMjioqlVJO_QOROKIteW0yOaKlpSvxktqeo0ziLFmGZEiyhfLrO7AVQqg-2Jb9-fPrI9pJOQFCnyn5wrkmR3YcKSWMSKbeoV1GlJxxQdXOK_8D2q91TSbRlHeU7KLHY3weH8DPlqnBCgpe5PQbHvB59jDgkAtu14AvxxZv7YCvBuvgFlLDNnn8Iz7GtMI54JNYW4n9poHHp5Cg2JZLxTHhq3w_kb7kY074Atp9Ljf1E3of7FBh_5_dQ7--ff25-D47uzxdLo7PZo5L0SYNUrrAFA-9DEAt7cBqIefgaJCWgQqOWsUEIc4z7qnXQotOadfTAJ3le2i55fXZrs1Ypk3KH5NtNM-BXFbGlhbdAEYFIXvRizkPWgQtrVaKeialn7PQyTBxHWy5xpLvNlCbWedNSdP4hgnVsY7LuZpQh1uUK7nWAuGlKyXm6Vfm1a8mNH2DdrHZp1O1YuPw35q_5quZqA
CitedBy_id crossref_primary_10_1016_j_engappai_2022_105533
crossref_primary_10_3390_en16010106
crossref_primary_10_1016_j_energy_2025_134953
crossref_primary_10_3390_en16031269
crossref_primary_10_1002_oca_3297
crossref_primary_10_1016_j_ijhydene_2023_02_043
crossref_primary_10_3390_en16010562
crossref_primary_10_3390_inventions9060114
crossref_primary_10_3390_app11094156
crossref_primary_10_3390_su15097078
crossref_primary_10_1016_j_energy_2023_128471
crossref_primary_10_1016_j_segan_2022_100825
crossref_primary_10_1088_1742_6596_2135_1_012010
crossref_primary_10_1016_j_procs_2025_07_214
crossref_primary_10_1371_journal_pone_0308450
crossref_primary_10_1016_j_rineng_2025_107347
crossref_primary_10_3390_app11051972
crossref_primary_10_3390_electronics10121498
crossref_primary_10_3390_a15080277
crossref_primary_10_1016_j_enconman_2024_118560
crossref_primary_10_1016_j_est_2025_117041
crossref_primary_10_3390_electronics12071565
crossref_primary_10_3390_en16145566
crossref_primary_10_1016_j_jestch_2024_101817
crossref_primary_10_3390_electronics10020176
crossref_primary_10_1016_j_prime_2024_100857
crossref_primary_10_1007_s40095_021_00457_2
crossref_primary_10_3390_electronics10040419
crossref_primary_10_1007_s00521_022_08103_6
crossref_primary_10_1016_j_epsr_2024_111367
crossref_primary_10_3390_en15134699
crossref_primary_10_1016_j_ijepes_2024_110399
crossref_primary_10_1155_2023_1000512
crossref_primary_10_3390_math10091600
crossref_primary_10_3390_app11083353
crossref_primary_10_1016_j_heliyon_2024_e36873
crossref_primary_10_1016_j_epsr_2023_109991
crossref_primary_10_1016_j_est_2023_108962
crossref_primary_10_1016_j_measurement_2025_117012
crossref_primary_10_1371_journal_pone_0264958
crossref_primary_10_3390_s22030851
Cites_doi 10.1186/s40807-017-0040-1
10.1109/TSG.2012.2237420
10.1007/s10107-002-0339-5
10.20944/preprints201809.0439.v2
10.1016/j.asoc.2019.02.003
10.1016/j.enconman.2014.12.037
10.1561/9781680835410
10.1007/978-0-387-74759-0
10.1016/j.apenergy.2019.01.135
10.1016/j.ijepes.2011.08.023
10.1017/CBO9780511804441
10.1016/j.ijepes.2015.09.013
10.1080/15435075.2016.1212355
10.1016/j.asoc.2015.11.036
10.3390/electronics10010026
10.1016/j.ijepes.2014.06.023
10.1016/j.asej.2019.08.011
10.1016/j.jesit.2017.06.001
10.3390/en11041018
10.1016/j.ijepes.2016.03.010
10.1109/TIE.2012.2219840
10.1016/j.ins.2019.03.049
10.1016/j.asoc.2019.105833
10.1109/TIE.2011.2112316
10.3390/app10238616
10.1016/j.ijepes.2019.105442
10.1002/9781119136736
10.1016/j.ijepes.2014.06.031
10.1016/j.apenergy.2018.10.030
10.1109/ISGT-LA.2013.6554425
10.1016/j.ijepes.2015.11.019
10.1080/15325000590964254
10.1111/itor.12001
10.1287/educ.2013.0115
10.1007/BF02579150
10.1016/j.ijepes.2012.08.043
10.1016/j.jesit.2015.11.007
10.1109/TCNS.2014.2309732
ContentType Journal Article
Copyright 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
DWQXO
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOA
DOI 10.3390/app11020627
DatabaseName CrossRef
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One
ProQuest Central Korea
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef

Publicly Available Content Database
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
EISSN 2076-3417
ExternalDocumentID oai_doaj_org_article_7f46b4b453f94f96a9771d266d52f86f
10_3390_app11020627
GroupedDBID .4S
2XV
5VS
7XC
8CJ
8FE
8FG
8FH
AADQD
AAFWJ
AAYXX
ADBBV
ADMLS
AFFHD
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
APEBS
ARCSS
BCNDV
BENPR
CCPQU
CITATION
CZ9
D1I
D1J
D1K
GROUPED_DOAJ
IAO
IGS
ITC
K6-
K6V
KC.
KQ8
L6V
LK5
LK8
M7R
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PROAC
TUS
ABUWG
AZQEC
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c364t-c3e66cf273fb6fe1a18ea9465ec1f6a2e7fc1a72400cd23d1d9494879cb1fe8a3
IEDL.DBID BENPR
ISICitedReferencesCount 45
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000610904500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2076-3417
IngestDate Fri Oct 03 12:53:49 EDT 2025
Mon Oct 20 02:41:17 EDT 2025
Tue Nov 18 21:59:34 EST 2025
Sat Nov 29 07:18:02 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c364t-c3e66cf273fb6fe1a18ea9465ec1f6a2e7fc1a72400cd23d1d9494879cb1fe8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6051-4925
0000-0001-9117-1689
0000-0001-6496-0594
0000-0001-7609-1197
OpenAccessLink https://www.proquest.com/docview/2478283657?pq-origsite=%requestingapplication%
PQID 2478283657
PQPubID 2032433
ParticipantIDs doaj_primary_oai_doaj_org_article_7f46b4b453f94f96a9771d266d52f86f
proquest_journals_2478283657
crossref_primary_10_3390_app11020627
crossref_citationtrail_10_3390_app11020627
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Applied sciences
PublicationYear 2021
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Montoya (ref_3) 2020; 11
HassanzadehFard (ref_14) 2016; 13
Sultana (ref_12) 2016; 40
Gholami (ref_38) 2019; 85
Atamturk (ref_29) 2020; 68
ref_30
Eftimov (ref_19) 2019; 489
ref_18
Bayat (ref_35) 2019; 233-234
Moradi (ref_31) 2016; 75
Gandomkar (ref_8) 2005; 33
Sorensen (ref_17) 2015; 22
Xu (ref_20) 2019; 238
Low (ref_26) 2014; 1
Montoya (ref_2) 2020; 115
Mohanty (ref_13) 2016; 3
ref_25
Jain (ref_41) 2012; 60
Muthukumar (ref_36) 2016; 78
ref_23
Othman (ref_16) 2016; 82
ref_22
Vc (ref_10) 2018; 5
ref_21
Nowdeh (ref_39) 2019; 77
Nekooei (ref_15) 2013; 4
Karmarkar (ref_28) 1984; 4
Kaur (ref_37) 2014; 63
Kefayat (ref_1) 2015; 92
Hung (ref_40) 2011; 60
Injeti (ref_9) 2013; 45
ref_27
Reddy (ref_11) 2017; 4
Sultana (ref_34) 2014; 63
Bocanegra (ref_33) 2019; 14
Moradi (ref_32) 2012; 34
ref_5
ref_4
Alizadeh (ref_24) 2003; 95
ref_7
ref_6
References_xml – ident: ref_30
– volume: 4
  start-page: 3
  year: 2017
  ident: ref_11
  article-title: Whale optimization algorithm for optimal sizing of renewable resources for loss reduction in distribution systems
  publication-title: Renew. Wind Water Sol.
  doi: 10.1186/s40807-017-0040-1
– volume: 4
  start-page: 557
  year: 2013
  ident: ref_15
  article-title: An improved multi-objective harmony search for optimal placement of DGs in distribution systems
  publication-title: IEEE Trans. Smart Grid
  doi: 10.1109/TSG.2012.2237420
– volume: 95
  start-page: 3
  year: 2003
  ident: ref_24
  article-title: Second-order cone programming
  publication-title: Math. Program.
  doi: 10.1007/s10107-002-0339-5
– ident: ref_4
  doi: 10.20944/preprints201809.0439.v2
– volume: 77
  start-page: 761
  year: 2019
  ident: ref_39
  article-title: Fuzzy multi-objective placement of renewable energy sources in distribution system with objective of loss reduction and reliability improvement using a novel hybrid method
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.02.003
– volume: 92
  start-page: 149
  year: 2015
  ident: ref_1
  article-title: A hybrid of ant colony optimization and artificial bee colony algorithm for probabilistic optimal placement and sizing of distributed energy resources
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2014.12.037
– ident: ref_23
  doi: 10.1561/9781680835410
– ident: ref_5
  doi: 10.1007/978-0-387-74759-0
– volume: 238
  start-page: 952
  year: 2019
  ident: ref_20
  article-title: Enhancing photovoltaic hosting capacity—A stochastic approach to optimal planning of static var compensator devices in distribution networks
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2019.01.135
– volume: 34
  start-page: 66
  year: 2012
  ident: ref_32
  article-title: A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2011.08.023
– volume: 68
  start-page: 609
  year: 2020
  ident: ref_29
  article-title: Submodularity in Conic Quadratic Mixed 0–1 Optimization
  publication-title: Oper. Res.
– ident: ref_25
  doi: 10.1017/CBO9780511804441
– volume: 75
  start-page: 236
  year: 2016
  ident: ref_31
  article-title: A novel method for optimal DG units capacity and location in Microgrids
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2015.09.013
– volume: 13
  start-page: 1615
  year: 2016
  ident: ref_14
  article-title: A novel objective function for optimal DG allocation in distribution systems using meta-heuristic algorithms
  publication-title: Int. J. Green Energy
  doi: 10.1080/15435075.2016.1212355
– volume: 40
  start-page: 391
  year: 2016
  ident: ref_12
  article-title: Krill herd algorithm for optimal location of distributed generator in radial distribution system
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.11.036
– ident: ref_21
  doi: 10.3390/electronics10010026
– volume: 63
  start-page: 609
  year: 2014
  ident: ref_37
  article-title: A MINLP technique for optimal placement of multiple DG units in distribution systems
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2014.06.023
– volume: 11
  start-page: 409
  year: 2020
  ident: ref_3
  article-title: An exact MINLP model for optimal location and sizing of DGs in distribution networks: A general algebraic modeling system approach
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2019.08.011
– volume: 5
  start-page: 663
  year: 2018
  ident: ref_10
  article-title: Ant Lion optimization algorithm for optimal sizing of renewable energy resources for loss reduction in distribution systems
  publication-title: J. Electr. Syst. Inf. Technol.
  doi: 10.1016/j.jesit.2017.06.001
– ident: ref_6
  doi: 10.3390/en11041018
– volume: 82
  start-page: 105
  year: 2016
  ident: ref_16
  article-title: Optimal placement and sizing of voltage controlled distributed generators in unbalanced distribution networks using supervised firefly algorithm
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2016.03.010
– volume: 60
  start-page: 5075
  year: 2012
  ident: ref_41
  article-title: A generalized approach for DG planning and viability analysis under market scenario
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2012.2219840
– volume: 489
  start-page: 255
  year: 2019
  ident: ref_19
  article-title: A novel statistical approach for comparing meta-heuristic stochastic optimization algorithms according to the distribution of solutions in the search space
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2019.03.049
– volume: 85
  start-page: 105833
  year: 2019
  ident: ref_38
  article-title: A mutated salp swarm algorithm for optimum allocation of active and reactive power sources in radial distribution systems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2019.105833
– volume: 60
  start-page: 1700
  year: 2011
  ident: ref_40
  article-title: Multiple distributed generator placement in primary distribution networks for loss reduction
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2011.2112316
– ident: ref_22
  doi: 10.3390/app10238616
– volume: 115
  start-page: 105442
  year: 2020
  ident: ref_2
  article-title: Relaxed convex model for optimal location and sizing of DGs in DC grids using sequential quadratic programming and random hyperplane approaches
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2019.105442
– ident: ref_18
  doi: 10.1002/9781119136736
– volume: 63
  start-page: 534
  year: 2014
  ident: ref_34
  article-title: Multi-objective quasi-oppositional teaching learning based optimization for optimal location of distributed generator in radial distribution systems
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2014.06.031
– volume: 14
  start-page: 113
  year: 2019
  ident: ref_33
  article-title: Heuristic Approach for Optimal Location and Sizing of Distributed Generators in AC Distribution Networks
  publication-title: Wseas Trans. Power Syst.
– volume: 233-234
  start-page: 71
  year: 2019
  ident: ref_35
  article-title: Optimal active and reactive power allocation in distribution networks using a novel heuristic approach
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2018.10.030
– ident: ref_7
  doi: 10.1109/ISGT-LA.2013.6554425
– volume: 78
  start-page: 299
  year: 2016
  ident: ref_36
  article-title: Optimal placement and sizing of distributed generators and shunt capacitors for power loss minimization in radial distribution networks using hybrid heuristic search optimization technique
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2015.11.019
– volume: 33
  start-page: 1351
  year: 2005
  ident: ref_8
  article-title: A genetic–based tabu search algorithm for optimal DG allocation in distribution networks
  publication-title: Electr. Power Compon. Syst.
  doi: 10.1080/15325000590964254
– volume: 22
  start-page: 3
  year: 2015
  ident: ref_17
  article-title: Metaheuristics—The metaphor exposed
  publication-title: Int. Trans. Oper. Res.
  doi: 10.1111/itor.12001
– ident: ref_27
  doi: 10.1287/educ.2013.0115
– volume: 4
  start-page: 373
  year: 1984
  ident: ref_28
  article-title: A new polynomial-time algorithm for linear programming
  publication-title: Combinatorica
  doi: 10.1007/BF02579150
– volume: 45
  start-page: 142
  year: 2013
  ident: ref_9
  article-title: A novel approach to identify optimal access point and capacity of multiple DGs in a small, medium and large scale radial distribution systems
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2012.08.043
– volume: 3
  start-page: 33
  year: 2016
  ident: ref_13
  article-title: A teaching learning based optimization technique for optimal location and size of DG in distribution network
  publication-title: J. Electr. Syst. Inf. Technol.
  doi: 10.1016/j.jesit.2015.11.007
– volume: 1
  start-page: 15
  year: 2014
  ident: ref_26
  article-title: Convex Relaxation of Optimal Power Flow—Part I: Formulations and Equivalence
  publication-title: IEEE Trans. Control Netw. Syst.
  doi: 10.1109/TCNS.2014.2309732
SSID ssj0000913810
Score 2.4134316
Snippet The optimal placement and sizing of distributed generators is a classical problem in power distribution networks that is usually solved using heuristic...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 627
SubjectTerms Approximation
bound
branch &amp
Convex analysis
convex optimization
distributed generators
Generators
Genetic algorithms
Heuristic
Integer programming
Mathematical models
method
Optimization techniques
second-order cone programming
Simulation
Variables
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NS8NAEF1EPOhBbFWsVpmDBxWCTbLZZI-1Kl6sBRV6C8nujhQ0SltF-uudSWKtKHjxkkOybMK-2fnK7BshDoO8w0dI0CNbhZ5UJve0dBSsSEMORCcxqG3ZbCLu95PhUA8WWn1xTVhFD1wt3GmMUuUyl1GIWqJWGTksviWzYqMAE4WsfTuxXgimSh2sfaauqg7khRTX8_9gsnQBs_J-M0ElU_8PRVxal8sNsV67hdCtPqchllzRFGsLZIFN0ai34QSOaq7o400x68L16N1ZjzN7D24MPa4ifwducfYI5JACOXhwQ3rhiaYfcM6c04GQFRZuRzOaGJ4Rzpk9lxtfOQvV3NyDB0YFDLiJ2tdzAhH6VeH4ZEvcX17c9a68up2CZ0Ilp3R1ShkkfwUJHudnfuIyLVXkjI8qC1yMxs9iLio1NgitbzVzx8Ta5D66JAu3xXLxXLgdATqxlgNr1CHBYzEjy-8IYmNk4CLULXHyucKpqbnGueXFY0oxB8ORLsDREofzwS8Vxcbvw84YqvkQ5sUub5C0pLW0pH9JS0u0P4FO6806SQNJblISqije_Y937InVgAtfyjxNWyxPx69uX6yYt-loMj4o5fQD9AnuIw
  priority: 102
  providerName: Directory of Open Access Journals
Title A Mixed-Integer Convex Model for the Optimal Placement and Sizing of Distributed Generators in Power Distribution Networks
URI https://www.proquest.com/docview/2478283657
https://doaj.org/article/7f46b4b453f94f96a9771d266d52f86f
Volume 11
WOSCitedRecordID wos000610904500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: BENPR
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2076-3417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913810
  issn: 2076-3417
  databaseCode: PIMPY
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB5BywEOQAsVC6WaQw-AFLFJHCc-oba0gkOXiIdUTlFie6qVSrZstlXVX89M4t0WgbhwiZTYsiLNeF4efx_AbtKM5QoJReyrKFLaNpFRnpMVZTmAGBeWjOvJJvLJpDg5MWUouHWhrXJpE3tD7WZWauRvE8W-rEh1lr87_xkJa5ScrgYKjbuwLkhlrOfr-4eT8vOqyiKol0U8Hi7mpZzfy7kwe7xE0Hl_c0U9Yv8fBrn3MkeP_vf_HsPDEF_i3qAQG3DHt5vw4Bbq4CZshP3c4asAOv36CVzv4fH0yrtISoSnfo4H0o5-hcKVdoYc2SJHiviJDcwPXr6U4rvUFbFuHX6ZXvPCOCN8LzC8wqDlHQ5rC5kPTlsshY3tZpy1ASdDB3r3FL4dHX49-BAFXobIplot-Om1tsSBD7GcfVzHha-N0pm3Mek68TnZuM6lO9W6JHWxMwJCkxvbxOSLOt2CtXbW-meApnBOMnQyKSntqOYQwrOuWKsSn5EZwZuliCobQMuFO-Os4uRF5FndkucIdleTzwesjr9P2xdZr6YIwHb_YTY_rcJ-rXL-nUY1KkvJKDK65jg5dhzNuCyhQtMItpdqUIVd31U3OvD838Mv4H4ivTF9KWcb1hbzC_8S7tnLxbSb7wQl3unrA_xWfjwuv_8CTCMAvA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VLRJwoLSAutCCD0UCpIiN4zjxAVV9UHXV7hKJIpVTSPyoVmqzZbO0pT-qv7EzeWyLQNx64JJDYlmW83lmPB5_H8Aaz3t0hcR56KucJ6TOPSUsblaExgCiF2unTCU2EQ2H8eGhSubgqr0LQ2WVrU2sDLUZa8qRf-ACfVkcyDBaP_3hkWoUna62Eho1LPbsr3PcspUf-9v4f99wvvPpYGvXa1QFPB1IMcWnlVI7dNsOR2n9zI9tpoQMrfadzLiNnPaziGorteGB8Y0iCpVI6dx3Ns4C7PcezAsCewfmk_4g-TbL6hDLZuz36ouAQaB6dA6NHpYTG_Bvrq9SCPjDAVRebWfhf5uPJ_C4iZ_ZRg34RZizxRI8usWquASLjb0q2duGVPvdU7jcYIPRhTUepUCP7IRtUbn9BSMtuGOGkTvDSJh9RgN6gt0ndLhAeVOWFYZ9GV1ix2zs2DbRDJNCmDWs7pvEitioYAmpzd18R7SzYV1hXz6Dr3cyI8-hU4wLuwxMxcZQBsKpwAlpXIYhksW1oLXgNnSqC-9bSKS6IWUnbZDjFDdnhJ_0Fn66sDZrfFpzkfy92SZha9aECMSrF-PJUdrYozTC4eQiF2HglHBKZrgP8A1GaybkLpauCyst7NLGqpXpDeZe_Pvza3iwezDYT_f7w72X8JBTHVCVtlqBznTy067CfX02HZWTV80CYvD9rjF6DcH2XTk
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3PT9RAFH7BxRg8oKCGVdQ5YKImjdvp7LRzIAZZN26QtYmawKm284Nsgl3crgr8afx1vtdOF4zGGwcvPbSTSdN-837Nm-8D2OJFj46QuAB9lQuE1EWghMVkRWgMIHqJdsrUYhPxeJwcHKh0CS7aszDUVtnaxNpQm6mmGvkrLtCXJZHEBN75toh0MHx98i0gBSnaaW3lNBqI7Nmzn5i-VdujAf7rZ5wP337afRd4hYFAR1LM8Wql1A5duMM3tmEeJjZXQvatDp3MuY2dDvOY-iy14ZEJjSI6lVjpInQ2ySOc9wYsY0gueAeW09F-erio8BDjZhL2mkOBUaR6tCeN3pYTM_BvbrBWC_jDGdQebnjnf_42d2HVx9Vsp1kIa7Bky3W4fYVtcR3WvB2r2HNPtv3iHpzvsP3JqTUBlUaP7IztUhv-KSONuGOGET3DCJl9QMP6FadPadOB6qksLw37ODnHidnUsQHRD5NymDWsmZtEjNikZCmp0F0-x1XAxk3nfXUfPl_LF3kAnXJa2g1gKjGGKhNORU5I43IMnSyuEa0Ft32nuvCyhUemPVk7aYYcZ5i0EZayK1jqwtZi8EnDUfL3YW8IZ4shRCxe35jOjjJvp7IYX6cQhehHTgmnZI75QWgwijN97hLpurDZQjDz1q7KLvH38N-Pn8ItBGb2fjTeewQrnNqD6mrWJnTms-_2MdzUP-aTavbEryUGX64bor8AgABl-Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Mixed-Integer+Convex+Model+for+the+Optimal+Placement+and+Sizing+of+Distributed+Generators+in+Power+Distribution+Networks&rft.jtitle=Applied+sciences&rft.au=Gil-Gonz%C3%A1lez%2C+Walter&rft.au=Garces%2C+Alejandro&rft.au=Montoya%2C+Oscar+Danilo&rft.au=Hern%C3%A1ndez%2C+Jesus+C.&rft.date=2021-01-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=11&rft.issue=2&rft.spage=627&rft_id=info:doi/10.3390%2Fapp11020627&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app11020627
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon