A Mixed-Integer Convex Model for the Optimal Placement and Sizing of Distributed Generators in Power Distribution Networks
The optimal placement and sizing of distributed generators is a classical problem in power distribution networks that is usually solved using heuristic algorithms due to its high complexity. This paper proposes a different approach based on a mixed-integer second-order cone programming (MI-SOCP) mod...
Uloženo v:
| Vydáno v: | Applied sciences Ročník 11; číslo 2; s. 627 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Basel
MDPI AG
01.01.2021
|
| Témata: | |
| ISSN: | 2076-3417, 2076-3417 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The optimal placement and sizing of distributed generators is a classical problem in power distribution networks that is usually solved using heuristic algorithms due to its high complexity. This paper proposes a different approach based on a mixed-integer second-order cone programming (MI-SOCP) model that ensures the global optimum of the relaxed optimization model. Second-order cone programming (SOCP) has demonstrated to be an efficient alternative to cope with the non-convexity of the power flow equations in power distribution networks. Of relatively new interest to the power systems community is the extension to MI-SOCP models. The proposed model is an approximation. However, numerical validations in the IEEE 33-bus and IEEE 69-bus test systems for unity and variable power factor confirm that the proposed MI-SOCP finds the best solutions reported in the literature. Being an exact technique, the proposed model allows minimum processing times and zero standard deviation, i.e., the same optimum is guaranteed at each time that the MI-SOCP model is solved (a significant advantage in comparison to metaheuristics). Additionally, load and photovoltaic generation curves for the IEEE 69-node test system are included to demonstrate the applicability of the proposed MI-SOCP to solve the problem of the optimal location and sizing of renewable generators using the multi-period optimal power flow formulation. Therefore, the proposed MI-SOCP also guarantees the global optimum finding, in contrast to local solutions achieved with mixed-integer nonlinear programming solvers available in the GAMS optimization software. All the simulations were carried out via MATLAB software with the CVX package and Gurobi solver. |
|---|---|
| AbstractList | The optimal placement and sizing of distributed generators is a classical problem in power distribution networks that is usually solved using heuristic algorithms due to its high complexity. This paper proposes a different approach based on a mixed-integer second-order cone programming (MI-SOCP) model that ensures the global optimum of the relaxed optimization model. Second-order cone programming (SOCP) has demonstrated to be an efficient alternative to cope with the non-convexity of the power flow equations in power distribution networks. Of relatively new interest to the power systems community is the extension to MI-SOCP models. The proposed model is an approximation. However, numerical validations in the IEEE 33-bus and IEEE 69-bus test systems for unity and variable power factor confirm that the proposed MI-SOCP finds the best solutions reported in the literature. Being an exact technique, the proposed model allows minimum processing times and zero standard deviation, i.e., the same optimum is guaranteed at each time that the MI-SOCP model is solved (a significant advantage in comparison to metaheuristics). Additionally, load and photovoltaic generation curves for the IEEE 69-node test system are included to demonstrate the applicability of the proposed MI-SOCP to solve the problem of the optimal location and sizing of renewable generators using the multi-period optimal power flow formulation. Therefore, the proposed MI-SOCP also guarantees the global optimum finding, in contrast to local solutions achieved with mixed-integer nonlinear programming solvers available in the GAMS optimization software. All the simulations were carried out via MATLAB software with the CVX package and Gurobi solver. |
| Author | Montoya, Oscar Danilo Gil-González, Walter Hernández, Jesus C. Garces, Alejandro |
| Author_xml | – sequence: 1 givenname: Walter orcidid: 0000-0001-7609-1197 surname: Gil-González fullname: Gil-González, Walter – sequence: 2 givenname: Alejandro orcidid: 0000-0001-6496-0594 surname: Garces fullname: Garces, Alejandro – sequence: 3 givenname: Oscar Danilo orcidid: 0000-0001-6051-4925 surname: Montoya fullname: Montoya, Oscar Danilo – sequence: 4 givenname: Jesus C. orcidid: 0000-0001-9117-1689 surname: Hernández fullname: Hernández, Jesus C. |
| BookMark | eNptUUtPHDEMjioqlVJO_QOROKIteW0yOaKlpSvxktqeo0ziLFmGZEiyhfLrO7AVQqg-2Jb9-fPrI9pJOQFCnyn5wrkmR3YcKSWMSKbeoV1GlJxxQdXOK_8D2q91TSbRlHeU7KLHY3weH8DPlqnBCgpe5PQbHvB59jDgkAtu14AvxxZv7YCvBuvgFlLDNnn8Iz7GtMI54JNYW4n9poHHp5Cg2JZLxTHhq3w_kb7kY074Atp9Ljf1E3of7FBh_5_dQ7--ff25-D47uzxdLo7PZo5L0SYNUrrAFA-9DEAt7cBqIefgaJCWgQqOWsUEIc4z7qnXQotOadfTAJ3le2i55fXZrs1Ypk3KH5NtNM-BXFbGlhbdAEYFIXvRizkPWgQtrVaKeialn7PQyTBxHWy5xpLvNlCbWedNSdP4hgnVsY7LuZpQh1uUK7nWAuGlKyXm6Vfm1a8mNH2DdrHZp1O1YuPw35q_5quZqA |
| CitedBy_id | crossref_primary_10_1016_j_engappai_2022_105533 crossref_primary_10_3390_en16010106 crossref_primary_10_1016_j_energy_2025_134953 crossref_primary_10_3390_en16031269 crossref_primary_10_1002_oca_3297 crossref_primary_10_1016_j_ijhydene_2023_02_043 crossref_primary_10_3390_en16010562 crossref_primary_10_3390_inventions9060114 crossref_primary_10_3390_app11094156 crossref_primary_10_3390_su15097078 crossref_primary_10_1016_j_energy_2023_128471 crossref_primary_10_1016_j_segan_2022_100825 crossref_primary_10_1088_1742_6596_2135_1_012010 crossref_primary_10_1016_j_procs_2025_07_214 crossref_primary_10_1371_journal_pone_0308450 crossref_primary_10_1016_j_rineng_2025_107347 crossref_primary_10_3390_app11051972 crossref_primary_10_3390_electronics10121498 crossref_primary_10_3390_a15080277 crossref_primary_10_1016_j_enconman_2024_118560 crossref_primary_10_1016_j_est_2025_117041 crossref_primary_10_3390_electronics12071565 crossref_primary_10_3390_en16145566 crossref_primary_10_1016_j_jestch_2024_101817 crossref_primary_10_3390_electronics10020176 crossref_primary_10_1016_j_prime_2024_100857 crossref_primary_10_1007_s40095_021_00457_2 crossref_primary_10_3390_electronics10040419 crossref_primary_10_1007_s00521_022_08103_6 crossref_primary_10_1016_j_epsr_2024_111367 crossref_primary_10_3390_en15134699 crossref_primary_10_1016_j_ijepes_2024_110399 crossref_primary_10_1155_2023_1000512 crossref_primary_10_3390_math10091600 crossref_primary_10_3390_app11083353 crossref_primary_10_1016_j_heliyon_2024_e36873 crossref_primary_10_1016_j_epsr_2023_109991 crossref_primary_10_1016_j_est_2023_108962 crossref_primary_10_1016_j_measurement_2025_117012 crossref_primary_10_1371_journal_pone_0264958 crossref_primary_10_3390_s22030851 |
| Cites_doi | 10.1186/s40807-017-0040-1 10.1109/TSG.2012.2237420 10.1007/s10107-002-0339-5 10.20944/preprints201809.0439.v2 10.1016/j.asoc.2019.02.003 10.1016/j.enconman.2014.12.037 10.1561/9781680835410 10.1007/978-0-387-74759-0 10.1016/j.apenergy.2019.01.135 10.1016/j.ijepes.2011.08.023 10.1017/CBO9780511804441 10.1016/j.ijepes.2015.09.013 10.1080/15435075.2016.1212355 10.1016/j.asoc.2015.11.036 10.3390/electronics10010026 10.1016/j.ijepes.2014.06.023 10.1016/j.asej.2019.08.011 10.1016/j.jesit.2017.06.001 10.3390/en11041018 10.1016/j.ijepes.2016.03.010 10.1109/TIE.2012.2219840 10.1016/j.ins.2019.03.049 10.1016/j.asoc.2019.105833 10.1109/TIE.2011.2112316 10.3390/app10238616 10.1016/j.ijepes.2019.105442 10.1002/9781119136736 10.1016/j.ijepes.2014.06.031 10.1016/j.apenergy.2018.10.030 10.1109/ISGT-LA.2013.6554425 10.1016/j.ijepes.2015.11.019 10.1080/15325000590964254 10.1111/itor.12001 10.1287/educ.2013.0115 10.1007/BF02579150 10.1016/j.ijepes.2012.08.043 10.1016/j.jesit.2015.11.007 10.1109/TCNS.2014.2309732 |
| ContentType | Journal Article |
| Copyright | 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021. This work is licensed under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION ABUWG AFKRA AZQEC BENPR CCPQU DWQXO PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS DOA |
| DOI | 10.3390/app11020627 |
| DatabaseName | CrossRef ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One Community College ProQuest Central Korea ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) |
| EISSN | 2076-3417 |
| ExternalDocumentID | oai_doaj_org_article_7f46b4b453f94f96a9771d266d52f86f 10_3390_app11020627 |
| GroupedDBID | .4S 2XV 5VS 7XC 8CJ 8FE 8FG 8FH AADQD AAFWJ AAYXX ADBBV ADMLS AFFHD AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS APEBS ARCSS BCNDV BENPR CCPQU CITATION CZ9 D1I D1J D1K GROUPED_DOAJ IAO IGS ITC K6- K6V KC. KQ8 L6V LK5 LK8 M7R MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PROAC TUS ABUWG AZQEC DWQXO PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c364t-c3e66cf273fb6fe1a18ea9465ec1f6a2e7fc1a72400cd23d1d9494879cb1fe8a3 |
| IEDL.DBID | DOA |
| ISICitedReferencesCount | 45 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000610904500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2076-3417 |
| IngestDate | Fri Oct 03 12:53:49 EDT 2025 Mon Oct 20 02:41:17 EDT 2025 Tue Nov 18 21:59:34 EST 2025 Sat Nov 29 07:18:02 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c364t-c3e66cf273fb6fe1a18ea9465ec1f6a2e7fc1a72400cd23d1d9494879cb1fe8a3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6051-4925 0000-0001-9117-1689 0000-0001-6496-0594 0000-0001-7609-1197 |
| OpenAccessLink | https://doaj.org/article/7f46b4b453f94f96a9771d266d52f86f |
| PQID | 2478283657 |
| PQPubID | 2032433 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_7f46b4b453f94f96a9771d266d52f86f proquest_journals_2478283657 crossref_primary_10_3390_app11020627 crossref_citationtrail_10_3390_app11020627 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-01 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Applied sciences |
| PublicationYear | 2021 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Montoya (ref_3) 2020; 11 HassanzadehFard (ref_14) 2016; 13 Sultana (ref_12) 2016; 40 Gholami (ref_38) 2019; 85 Atamturk (ref_29) 2020; 68 ref_30 Eftimov (ref_19) 2019; 489 ref_18 Bayat (ref_35) 2019; 233-234 Moradi (ref_31) 2016; 75 Gandomkar (ref_8) 2005; 33 Sorensen (ref_17) 2015; 22 Xu (ref_20) 2019; 238 Low (ref_26) 2014; 1 Montoya (ref_2) 2020; 115 Mohanty (ref_13) 2016; 3 ref_25 Jain (ref_41) 2012; 60 Muthukumar (ref_36) 2016; 78 ref_23 Othman (ref_16) 2016; 82 ref_22 Vc (ref_10) 2018; 5 ref_21 Nowdeh (ref_39) 2019; 77 Nekooei (ref_15) 2013; 4 Karmarkar (ref_28) 1984; 4 Kaur (ref_37) 2014; 63 Kefayat (ref_1) 2015; 92 Hung (ref_40) 2011; 60 Injeti (ref_9) 2013; 45 ref_27 Reddy (ref_11) 2017; 4 Sultana (ref_34) 2014; 63 Bocanegra (ref_33) 2019; 14 Moradi (ref_32) 2012; 34 ref_5 ref_4 Alizadeh (ref_24) 2003; 95 ref_7 ref_6 |
| References_xml | – ident: ref_30 – volume: 4 start-page: 3 year: 2017 ident: ref_11 article-title: Whale optimization algorithm for optimal sizing of renewable resources for loss reduction in distribution systems publication-title: Renew. Wind Water Sol. doi: 10.1186/s40807-017-0040-1 – volume: 4 start-page: 557 year: 2013 ident: ref_15 article-title: An improved multi-objective harmony search for optimal placement of DGs in distribution systems publication-title: IEEE Trans. Smart Grid doi: 10.1109/TSG.2012.2237420 – volume: 95 start-page: 3 year: 2003 ident: ref_24 article-title: Second-order cone programming publication-title: Math. Program. doi: 10.1007/s10107-002-0339-5 – ident: ref_4 doi: 10.20944/preprints201809.0439.v2 – volume: 77 start-page: 761 year: 2019 ident: ref_39 article-title: Fuzzy multi-objective placement of renewable energy sources in distribution system with objective of loss reduction and reliability improvement using a novel hybrid method publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.02.003 – volume: 92 start-page: 149 year: 2015 ident: ref_1 article-title: A hybrid of ant colony optimization and artificial bee colony algorithm for probabilistic optimal placement and sizing of distributed energy resources publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2014.12.037 – ident: ref_23 doi: 10.1561/9781680835410 – ident: ref_5 doi: 10.1007/978-0-387-74759-0 – volume: 238 start-page: 952 year: 2019 ident: ref_20 article-title: Enhancing photovoltaic hosting capacity—A stochastic approach to optimal planning of static var compensator devices in distribution networks publication-title: Appl. Energy doi: 10.1016/j.apenergy.2019.01.135 – volume: 34 start-page: 66 year: 2012 ident: ref_32 article-title: A combination of genetic algorithm and particle swarm optimization for optimal DG location and sizing in distribution systems publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2011.08.023 – volume: 68 start-page: 609 year: 2020 ident: ref_29 article-title: Submodularity in Conic Quadratic Mixed 0–1 Optimization publication-title: Oper. Res. – ident: ref_25 doi: 10.1017/CBO9780511804441 – volume: 75 start-page: 236 year: 2016 ident: ref_31 article-title: A novel method for optimal DG units capacity and location in Microgrids publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2015.09.013 – volume: 13 start-page: 1615 year: 2016 ident: ref_14 article-title: A novel objective function for optimal DG allocation in distribution systems using meta-heuristic algorithms publication-title: Int. J. Green Energy doi: 10.1080/15435075.2016.1212355 – volume: 40 start-page: 391 year: 2016 ident: ref_12 article-title: Krill herd algorithm for optimal location of distributed generator in radial distribution system publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.11.036 – ident: ref_21 doi: 10.3390/electronics10010026 – volume: 63 start-page: 609 year: 2014 ident: ref_37 article-title: A MINLP technique for optimal placement of multiple DG units in distribution systems publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2014.06.023 – volume: 11 start-page: 409 year: 2020 ident: ref_3 article-title: An exact MINLP model for optimal location and sizing of DGs in distribution networks: A general algebraic modeling system approach publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2019.08.011 – volume: 5 start-page: 663 year: 2018 ident: ref_10 article-title: Ant Lion optimization algorithm for optimal sizing of renewable energy resources for loss reduction in distribution systems publication-title: J. Electr. Syst. Inf. Technol. doi: 10.1016/j.jesit.2017.06.001 – ident: ref_6 doi: 10.3390/en11041018 – volume: 82 start-page: 105 year: 2016 ident: ref_16 article-title: Optimal placement and sizing of voltage controlled distributed generators in unbalanced distribution networks using supervised firefly algorithm publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2016.03.010 – volume: 60 start-page: 5075 year: 2012 ident: ref_41 article-title: A generalized approach for DG planning and viability analysis under market scenario publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2012.2219840 – volume: 489 start-page: 255 year: 2019 ident: ref_19 article-title: A novel statistical approach for comparing meta-heuristic stochastic optimization algorithms according to the distribution of solutions in the search space publication-title: Inf. Sci. doi: 10.1016/j.ins.2019.03.049 – volume: 85 start-page: 105833 year: 2019 ident: ref_38 article-title: A mutated salp swarm algorithm for optimum allocation of active and reactive power sources in radial distribution systems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105833 – volume: 60 start-page: 1700 year: 2011 ident: ref_40 article-title: Multiple distributed generator placement in primary distribution networks for loss reduction publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2011.2112316 – ident: ref_22 doi: 10.3390/app10238616 – volume: 115 start-page: 105442 year: 2020 ident: ref_2 article-title: Relaxed convex model for optimal location and sizing of DGs in DC grids using sequential quadratic programming and random hyperplane approaches publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2019.105442 – ident: ref_18 doi: 10.1002/9781119136736 – volume: 63 start-page: 534 year: 2014 ident: ref_34 article-title: Multi-objective quasi-oppositional teaching learning based optimization for optimal location of distributed generator in radial distribution systems publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2014.06.031 – volume: 14 start-page: 113 year: 2019 ident: ref_33 article-title: Heuristic Approach for Optimal Location and Sizing of Distributed Generators in AC Distribution Networks publication-title: Wseas Trans. Power Syst. – volume: 233-234 start-page: 71 year: 2019 ident: ref_35 article-title: Optimal active and reactive power allocation in distribution networks using a novel heuristic approach publication-title: Appl. Energy doi: 10.1016/j.apenergy.2018.10.030 – ident: ref_7 doi: 10.1109/ISGT-LA.2013.6554425 – volume: 78 start-page: 299 year: 2016 ident: ref_36 article-title: Optimal placement and sizing of distributed generators and shunt capacitors for power loss minimization in radial distribution networks using hybrid heuristic search optimization technique publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2015.11.019 – volume: 33 start-page: 1351 year: 2005 ident: ref_8 article-title: A genetic–based tabu search algorithm for optimal DG allocation in distribution networks publication-title: Electr. Power Compon. Syst. doi: 10.1080/15325000590964254 – volume: 22 start-page: 3 year: 2015 ident: ref_17 article-title: Metaheuristics—The metaphor exposed publication-title: Int. Trans. Oper. Res. doi: 10.1111/itor.12001 – ident: ref_27 doi: 10.1287/educ.2013.0115 – volume: 4 start-page: 373 year: 1984 ident: ref_28 article-title: A new polynomial-time algorithm for linear programming publication-title: Combinatorica doi: 10.1007/BF02579150 – volume: 45 start-page: 142 year: 2013 ident: ref_9 article-title: A novel approach to identify optimal access point and capacity of multiple DGs in a small, medium and large scale radial distribution systems publication-title: Int. J. Electr. Power Energy Syst. doi: 10.1016/j.ijepes.2012.08.043 – volume: 3 start-page: 33 year: 2016 ident: ref_13 article-title: A teaching learning based optimization technique for optimal location and size of DG in distribution network publication-title: J. Electr. Syst. Inf. Technol. doi: 10.1016/j.jesit.2015.11.007 – volume: 1 start-page: 15 year: 2014 ident: ref_26 article-title: Convex Relaxation of Optimal Power Flow—Part I: Formulations and Equivalence publication-title: IEEE Trans. Control Netw. Syst. doi: 10.1109/TCNS.2014.2309732 |
| SSID | ssj0000913810 |
| Score | 2.4133477 |
| Snippet | The optimal placement and sizing of distributed generators is a classical problem in power distribution networks that is usually solved using heuristic... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 627 |
| SubjectTerms | Approximation bound branch & Convex analysis convex optimization distributed generators Generators Genetic algorithms Heuristic Integer programming Mathematical models method Optimization techniques second-order cone programming Simulation Variables |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9QwELWg5QAHoIWKhYJ86AGQItaOP-ITaksrDrCs-FJvkWN7qpVKtmwWVPXXM5N4t0UgLkhRDrFlRZrxzOR58h5jeypoFUWjCg1RFkSAVTgJUIwVCD_WSacecPv6zk4m1cmJm2bArcttlauY2AfqOA-Ekb-SCnNZVRptX59_L0g1ik5Xs4TGTbZJTGXo55sHR5PpxzXKQqyXlRgPP-aV-H1P58KY8SSx8_6WinrG_j8Ccp9lju_97_vdZ3dzfcn3B4fYYjdSu83uXGMd3GZbeT93_HkmnX7xgF3u8_ezixQLgghP04IfUjv6BSettDOOlS3HSpF_wADzDZefEvhOuCL3beSfZpe4MJ8Df0M0vKSglSIf1iYxHz5r-ZTU2K7G0Rv4ZOhA7x6yL8dHnw_fFlmXoQilUUu8J2MCYOEDjYEkvKiSd8roFAQYL5OFILyl7tQQZRlFdERCY11oBKTKlztso5236RHjyYlUjj1UCi-MDg6sBFtFXYYA1qgRe7kyUR0yaTlpZ5zV-PFC9qyv2XPE9taTzweujr9POyBbr6cQwXb_YL44rfN-rS0o06hG6RKcAmc81skiYjUTtYTKwIjtrtygzru-q6984PG_h5-w25J6Y3ooZ5dtLBc_0lN2K_xczrrFs-zEvwCZ3f03 priority: 102 providerName: ProQuest |
| Title | A Mixed-Integer Convex Model for the Optimal Placement and Sizing of Distributed Generators in Power Distribution Networks |
| URI | https://www.proquest.com/docview/2478283657 https://doaj.org/article/7f46b4b453f94f96a9771d266d52f86f |
| Volume | 11 |
| WOSCitedRecordID | wos000610904500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: BENPR dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2076-3417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913810 issn: 2076-3417 databaseCode: PIMPY dateStart: 20110101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3da9RAEB-k-qAPYqviaS370AcVgreb_cg-trVFwZ7BL-pT2OzulIOayt0ppX-9M0laTxR8EUIgybIbdmZnZieT3w9gV0ejk2x1YTCpggGwCq8Qi6lGGaYmm9wn3D6_dbNZdXLi6zWqL64JG-CBh4l76VDbVrfalOg1ehsoYJGJ3EoyCiuLbH2nzq9tpnob7CVDVw0_5JW0r-fvweTpFKPy_uaCeqT-Pwxx712O7sHdMSwUe8PrbMKN3G3BnTWwwC3YHJfhUjwbsaKf34fLPXE8v8ip4MzeaV6IA64ivxBMcXYmKCAVFOCJd2QXvlL3NefMOR0oQpfEh_kldSzOUbxi9FwmvspJDH0zB4-Yd6JmErVfz0mIYjYUji8fwKejw48Hr4uRTqGIpdUrOmdrI1K8gq3FLIOscvDamhwl2qCywyiD46LSmFSZZPKMHeN8bCXmKpQPYaM77_IjENnLXE4DVpoOWtQenUJXJVPGiM7qCby4muEmjljjTHlx1tCeg8XRrIljArvXjb8NEBt_b7bPorpuwrjY_Q3SlmbUluZf2jKB7StBN-NiXTZKU5hUlda4x_9jjCdwW3HhS5-n2YaN1eJ7fgq34o_VfLnYgZv7h7P6_U6vr3RVvzmuv_wEJ5rwoA |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLRLlALSAulDAhyIBUkTsOE5yQKi0VF11d4lEQe0pJLanWqlky2aB0h_Fb8STj20RiFsPSFEOsTWH5GVmPB6_B7ApdSgNL6QXohEeEWB5iUD0fIk890Mb2rrg9nEYjcfx4WGSLsHP7iwMtVV2PrF21GaqqUb-UkgXy-JAhdHr0y8eqUbR7monodHAYt_--O6WbNWrwY77vk-F2H17sL3ntaoCng6UnLu7VUqjC9tYKLQ857HNE6lCqzmqXNgINc8j6q3URgSGm4QoVKJEFxxtnAfO7jVYlgT2Hiyng1F6tKjqEMtmzP3mIGAQJD7tQ7sIK4gN-LfQVysE_BEA6qi2e_t_ex934FabP7OtBvCrsGTLNbh5iVVxDVZbf1WxZy2p9vO7cL7FRpMzazwqgR7bGdumdvszRlpwJ8xl7sxlwuydc6CfnfmUNheobsry0rD3k3NnmE2R7RDNMCmEWcMa2yRWxCYlS0lt7mLcoZ2Nmw776h58uJI3ch965bS068Bswm3g5xhLdznvl2AkMIpNGGiNkZJ9eNFBItMtKTtpg5xkbnFG-Mku4acPm4vJpw0Xyd-nvSFsLaYQgXj9YDo7zlp_lEUoVSELGQaYSExU7tYB3LhszYQCY4V92Ohgl7VercouMPfg38NP4MbewWiYDQfj_YewIqgPqC5bbUBvPvtqH8F1_W0-qWaP2x-IwaerxugvTgpcag |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Nb9QwEB2VLUJwAFpALBTwoUiAFLF2HCc5IFS6rFi1XSLxofYUEttTrVR2y-4CpT-NX8dMPrZFIG49IEU5xJYPzvPMeDx-D2BT20g7WeogQqcCJsAKUoUY9DTKohf5yFcJt4-78WiU7O-n2Qr8bO_CcFllaxMrQ-2mlnPkz5UmX5aEhjbw2JRFZP3By-MvAStI8UlrK6dRQ2TH__hO27f5i2Gf_vVjpQav32-_CRqFgcCGRi_o7Y2xSC4cS4NeFjLxRapN5K1EUygfo5VFzHWW1qnQSZcynUqc2lKiT4qQxr0EqxSSa9WB1Wy4lx0sMzzMuJnIXn0pMAzTHp9Jk7dVzAz8mxus1AL-cAaVhxvc-J_n5iZcb-JqsVUvhDVY8ZN1uHaObXEd1ho7NhdPGrLtp7fgdEvsjU-8Czg1euhnYpvL8E8Ea8QdCYroBUXI4i0Z1s80fMaHDpxPFcXEiXfjUxpYTFH0mX6YlcO8E_XYLGIkxhORsQrdWTutAjGqK-_nt-HDhczIHehMphN_F4RPpQ97BSaaHrKKKcYK48RFobUYG92FZy08ctuQtbNmyFFOmzbGUn4OS13YXHY-rjlK_t7tFeNs2YWJxasP09lh3tipPEZtSl3qKMRUY2oK2h9IR1GcixQmBruw0UIwb6zdPD_D371_Nz-CKwTMfHc42rkPVxWXB1XZrA3oLGZf_QO4bL8txvPZw2YtCfh00RD9BQLzZSo |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Mixed-Integer+Convex+Model+for+the+Optimal+Placement+and+Sizing+of+Distributed+Generators+in+Power+Distribution+Networks&rft.jtitle=Applied+sciences&rft.au=Gil-Gonz%C3%A1lez%2C+Walter&rft.au=Garces%2C+Alejandro&rft.au=Montoya%2C+Oscar+Danilo&rft.au=Hern%C3%A1ndez%2C+Jesus+C.&rft.date=2021-01-01&rft.issn=2076-3417&rft.eissn=2076-3417&rft.volume=11&rft.issue=2&rft.spage=627&rft_id=info:doi/10.3390%2Fapp11020627&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_app11020627 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2076-3417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2076-3417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2076-3417&client=summon |